Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

TRIM44 mediated p62 deubiquitination enhances DNA damage repair by increasing nuclear FLNA and 53BP1 expression

Abstract

Cancer cells show increases in protein degradation pathways, including autophagy, during progression to meet the increased protein degradation demand and support cell survival. On the other hand, reduced autophagy activity during aging is associated with a reduced DNA damage response and increased genomic instability. Therefore, it is a puzzling how DNA repair can be increased in cancer cells that are resistant to chemotherapies or during progression when autophagy activity is intact or increased. We discovered that tripartite motif containing 44 (TRIM44) is a pivotal element regulating the DNA damage response in cancer cells with intact autophagy. TRIM44 deubiquitinates p62, an autophagy substrate, which leads to its oligomerization. This prevents p62 localization to the nucleus upon irradiation. Increased cytoplasmic retention of p62 by TRIM44 prevents the degradation of FLNA and 53BP1, which increases DNA damage repair. Together, our data support TRIM44 a potential therapeutic target for therapy-resistant tumor cells with intact autophagy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: TRIM44 promotes ionizing radiation (IR) resistance and protects MM cells from IR-induced cell death.
Fig. 2: TRIM44 enhances DNA damage repair in MM cells.
Fig. 3: TRIM44 promotes NHEJ-mediated DNA repair and genome instability in MM.
Fig. 4: TRIM44 upregulates HR-mediated DNA repair mechanisms and genome instability in MM.
Fig. 5: TRIM44 interacts with p62.
Fig. 6: TRIM44 promotes p62 deubiquitination.
Fig. 7: TRIM44 increases FLNA, RAD51, and 53BP1 expression by inhibiting p62 nuclear translocation after irradiation.
Fig. 8: Knockdown of p62 rescues TRIM44KD-mediated IR sensitivity.

Similar content being viewed by others

References

  1. Harper JW, Elledge SJ. The DNA damage response: ten years after. Mol Cell. 2007;28:739–45.

    Article  CAS  PubMed  Google Scholar 

  2. Anderson KC. Multiple myeloma: a clinical overview. Oncology. 2011;25:S3–S9. Suppl 2

    Google Scholar 

  3. Boehrer S, Adès L, Tajeddine N, Hofmann WK, Kriener S, Bug G, et al. Suppression of the DNA damage response in acute myeloid leukemia versus myelodysplastic syndrome. Oncogene. 2009;28:2205–18.

    Article  CAS  PubMed  Google Scholar 

  4. Walters DK, Wu X, Tschumper RC, Arendt BK, Huddleston PM, Henderson KJ, et al. Evidence for ongoing DNA damage in multiple myeloma cells as revealed by constitutive phosphorylation of H2AX. Leukemia. 2011;25:1344–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Munshi NC, Anderson KC. New strategies in the treatment of multiple myeloma. Clin Cancer Res. 2013;19:3337–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Michels TC, Petersen KE. Multiple myeloma: diagnosis and treatment. Am Fam Physician. 2017;95:373–83.

    PubMed  Google Scholar 

  7. Blanpain C, Mohrin M, Sotiropoulou PA, Passegue E. DNA-damage response in tissue-specific and cancer stem cells. Cell Stem Cell. 2011;8:16–29.

    Article  CAS  PubMed  Google Scholar 

  8. Shammas MA, Shmookler Reis RJ, Koley H, Batchu RB, Li C, Munshi NC. Dysfunctional homologous recombination mediates genomic instability and progression in myeloma. Blood. 2009;113:2290–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Herrero AB, San Miguel J, Gutierrez NC. Deregulation of DNA double-strand break repair in multiple myeloma: implications for genome stability. PloS One. 2015;10:e0121581.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Nisole S, Stoye JP, Saib A. TRIM family proteins: retroviral restriction and antiviral defence. Nat Rev Microbiol. 2005;3:799–808.

    Article  CAS  PubMed  Google Scholar 

  11. Cambiaghi V, Giuliani V, Lombardi S, Marinelli C, Toffalorio F, Pelicci PG. TRIM proteins in cancer. Adv Exp Med Biol. 2012;770:77–91.

    Article  CAS  PubMed  Google Scholar 

  12. Järvinen AK, Autio R, Kilpinen S, Saarela M, Leivo I, Grénman R, et al. High-resolution copy number and gene expression microarray analyses of head and neck squamous cell carcinoma cell lines of tongue and larynx. Genes, Chromosomes Cancer. 2008;47:500–9.

    Article  PubMed  CAS  Google Scholar 

  13. Luo Q, Lin H, Ye X, Huang J, Lu S, Xu L. Trim44 facilitates the migration and invasion of human lung cancer cells via the NF-kappaB signaling pathway. Int J Clin Oncol. 2015;20:508–17.

    Article  CAS  PubMed  Google Scholar 

  14. Kawaguchi T, Komatsu S, Ichikawa D, Hirajima S, Nishimura Y, Konishi H, et al. Overexpression of TRIM44 is related to invasive potential and malignant outcomes in esophageal squamous cell carcinoma. Tumour Biol. 2017;39:1–9.

  15. Tan Y, Yao H, Hu J, Liu L. Knockdown of TRIM44 inhibits the proliferation and invasion in prostate cancer cells. Oncol Res. 2017;25:1253–9.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kashimoto K, Komatsu S, Ichikawa D, Arita T, Konishi H, Nagata H, et al. Overexpression of TRIM44 contributes to malignant outcome in gastric carcinoma. Cancer Sci. 2012;103:2021–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yamada Y, Takayama KI, Fujimura T, Ashikari D, Obinata D, Takahashi S, et al. A novel prognostic factor TRIM44 promotes cell proliferation and migration, and inhibits apoptosis in testicular germ cell tumor. Cancer Sci. 2017;108:32–41.

    Article  CAS  PubMed  Google Scholar 

  18. Kawabata H, Azuma K, Ikeda K, Sugitani I, Kinowaki K, Fujii T, et al. TRIM44 is a poor prognostic factor for breast cancer patients as a modulator of NF-kappaB signaling. Int J Mol Sci. 2017;18:18.

    Article  CAS  Google Scholar 

  19. Chen Z, Lin TC, Bi X, Lu G, Dawson BC, Miranda R, et al. TRIM44 promotes quiescent multiple myeloma cell occupancy and survival in the osteoblastic niche via HIF-1alpha stabilization. Leukemia. 2019;33:469–86.

    Article  CAS  PubMed  Google Scholar 

  20. Hewitt G, Carroll B, Sarallah R, Correia-Melo C, Ogrodnik M, Nelson G, et al. SQSTM1/p62 mediates crosstalk between autophagy and the UPS in DNA repair. Autophagy. 2016;12:1917–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Huen MS, Grant R, Manke I, Minn K, Yu X, Yaffe MB, et al. RNF8 transduces the DNA-damage signal via histone ubiquitylation and checkpoint protein assembly. Cell. 2007;131:901–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kolas NK, Chapman JR, Nakada S, Ylanko J, Chahwan R, Sweeney FD, et al. Orchestration of the DNA-damage response by the RNF8 ubiquitin ligase. Science. 2007;318:1637–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Petermann E, Orta ML, Issaeva N, Schultz N, Helleday T. Hydroxyurea-stalled replication forks become progressively inactivated and require two different RAD51-mediated pathways for restart and repair. Mol Cell. 2010;37:492–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gogineni VR, Nalla AK, Gupta R, Dinh DH, Klopfenstein JD, Rao JS. Chk2-mediated G2/M cell cycle arrest maintains radiation resistance in malignant meningioma cells. Cancer Lett. 2011;313:64–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Klaude M, Eriksson S, Nygren J, Ahnstrom G. The comet assay: mechanisms and technical considerations. Mutat Res. 1996;363:89–96.

    Article  PubMed  Google Scholar 

  26. Olive PL, Banath JP. The comet assay: a method to measure DNA damage in individual cells. Nat Protoc. 2006;1:23–9.

    Article  CAS  PubMed  Google Scholar 

  27. Gourzones-Dmitriev C, Kassambara A, Sahota S, Rème T, Moreaux J, Bourquard P, et al. DNA repair pathways in human multiple myeloma: role in oncogenesis and potential targets for treatment. Cell Cycle. 2013;12:2760–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nübel U, Dordel J, Kurt K, Strommenger B, Westh H, Shukla SK, et al. A timescale for evolution, population expansion, and spatial spread of an emerging clone of methicillin-resistant Staphylococcus aureus. PLoS Pathog. 2010;6:e1000855.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Panier S, Boulton SJ. Double-strand break repair: 53BP1 comes into focus. Nat Rev Mol Cell Biol. 2014;15:7–18.

    Article  CAS  PubMed  Google Scholar 

  30. Pierce AJ, Johnson RD, Thompson LH, Jasin M. XRCC3 promotes homology-directed repair of DNA damage in mammalian cells. Genes Dev. 1999;13:2633–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ahmed KM, Pandita RK, Singh DK, Hunt CR, Pandita TK. beta1-Integrin impacts Rad51 stability and DNA double-strand break repair by homologous recombination. Mol Cell Biol. 2018;38:38.

    Article  Google Scholar 

  32. Pan JA, Sun Y, Jiang YP, Bott AJ, Jaber N, Dou Z, et al. TRIM21 ubiquitylates SQSTM1/p62 and suppresses protein sequestration to regulate redox homeostasis. Mol Cell. 2016;62:149–51.

    Article  CAS  PubMed  Google Scholar 

  33. Pankiv S, Lamark T, Bruun JA, Overvatn A, Bjorkoy G, Johansen T. Nucleocytoplasmic shuttling of p62/SQSTM1 and its role in recruitment of nuclear polyubiquitinated proteins to promyelocytic leukemia bodies. J Biol Chem. 2010;285:5941–53.

    Article  CAS  PubMed  Google Scholar 

  34. Velkova A, Carvalho MA, Johnson JO, Tavtigian SV, Monteiro AN. Identification of Filamin A as a BRCA1-interacting protein required for efficient DNA repair. Cell Cycle. 2010;9:1421–33.

    Article  CAS  PubMed  Google Scholar 

  35. Mirman Z, de Lange T. 53BP1: a DSB escort. Genes Dev. 2020;34:7–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ong CA, Shannon NB, Ross-Innes CS, O'donovan M, Rueda OM, Hu DE, et al. Amplification of TRIM44: pairing a prognostic target with potential therapeutic strategy. J Natl Cancer Inst. 2014;106:106.

    Article  Google Scholar 

  37. Chen Z, Orlowski RZ, Wang M, Kwak L, McCarty N. Osteoblastic niche supports the growth of quiescent multiple myeloma cells. Blood. 2014;123:2204–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lindahl T. Molecular biology: ensuring error-free DNA repair. Nature. 2004;427:598.

    Article  CAS  PubMed  Google Scholar 

  39. Torgovnick A, Schumacher B. DNA repair mechanisms in cancer development and therapy. Front Genet. 2015;6:157.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Dietlein F, Thelen L, Reinhardt HC. Cancer-specific defects in DNA repair pathways as targets for personalized therapeutic approaches. Trends Genet. 2014;30:326–39.

    Article  CAS  PubMed  Google Scholar 

  41. Rodgers K, McVey M. Error-prone repair of DNA double-strand breaks. J Cell Physiol. 2016;231:15–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang Y, Zhang N, Zhang L, Li R, Fu W, Ma K, et al. Autophagy regulates chromatin ubiquitination in DNA damage response through elimination of SQSTM1/p62. Mol Cell. 2016;63:34–48.

    Article  CAS  PubMed  Google Scholar 

  43. Terry LJ, Shows EB, Wente SR. Crossing the nuclear envelope: hierarchical regulation of nucleocytoplasmic transport. Science. 2007;318:1412–6.

    Article  CAS  PubMed  Google Scholar 

  44. Kirkin V, McEwan DG, Novak I, Dikic I. A role for ubiquitin in selective autophagy. Mol Cell. 2009;34:259–69.

    Article  CAS  PubMed  Google Scholar 

  45. Ichimura Y, Kumanomidou T, Sou YS, Mizushima T, Ezaki J, Ueno T, et al. Structural basis for sorting mechanism of p62 in selective autophagy. J Biol Chem. 2008;283:22847–57.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by NIH grant (R01CA181319) and CPRIT grant (RP20093) given to NM.

Author information

Authors and Affiliations

Authors

Contributions

LL and TCL performed experiments and generated all figures in the manuscript and NM initiated and supervised overall project and write a manuscript.

Corresponding author

Correspondence to Nami McCarty.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyu, L., Lin, TC. & McCarty, N. TRIM44 mediated p62 deubiquitination enhances DNA damage repair by increasing nuclear FLNA and 53BP1 expression. Oncogene 40, 5116–5130 (2021). https://doi.org/10.1038/s41388-021-01890-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-01890-7

This article is cited by

Search

Quick links