Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The crucial p53-dependent oncogenic role of JAB1 in osteosarcoma in vivo

Abstract

Osteosarcoma (OS) is the most common primary bone cancer and ranks amongst the leading causes of cancer mortality in young adults. Jun activation domain-binding protein 1 (JAB1) is overexpressed in many cancers and has recently emerged as a novel target for cancer treatment. However, the role of JAB1 in osteosarcoma was virtually unknown. In this study, we demonstrate that JAB1-knockdown in malignant osteosarcoma cell lines significantly reduced their oncogenic properties, including proliferation, colony formation, and motility. We also performed RNA-sequencing analysis in JAB1-knockdown OS cells and identified 4110 genes that are significantly differentially expressed. This demonstrated for the first time that JAB1 regulates a large and specific transcriptome in cancer. We also found that JAB1 is overexpressed in human OS and correlates with a poor prognosis. Moreover, we generated a novel mouse model that overexpresses Jab1 specifically in osteoblasts upon a TP53 heterozygous sensitizing background. Interestingly, by 13 months of age, a significant proportion of these mice spontaneously developed conventional OS. Finally, we demonstrate that a novel, highly specific small molecule inhibitor of JAB1, CSN5i-3, reduces osteosarcoma cell viability, and has specific effects on the ubiquitin–proteasome system in OS. Thus, we show for the first time that the overexpression of JAB1 in vivo can result in accelerated spontaneous tumor formation in a p53-dependent manner. In summary, JAB1 might be a unique target for the treatment of osteosarcoma and other cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The downregulation of JAB1 inhibits 143B and U2OS osteosarcoma cell growth in vitro.
Fig. 2: The RNA-seq analysis of JAB1-depleted 143B human OS cells.
Fig. 3: The Gene set enrichment analysis identifies altered oncogenic pathways upon JAB1-knockdown in 143B OS cells.
Fig. 4: JAB1 is overexpressed in human OS biopsies, and JAB1-knockdown increases apoptosis and alters multiple major signal transduction pathways in OS cells.
Fig. 5: The osteoblast-specific overexpression of Jab1 results in accelerated, spontaneous, and p53-dependent OS formation in mice.
Fig. 6: The characterization of spontaneous OS tumors in Col1a1-Jab1; p53+/− mice.
Fig. 7: JAB1 is a potential therapeutic target in osteosarcoma.

Similar content being viewed by others

References

  1. Mirabello L, Troisi RJ, Savage SA. Osteosarcoma incidence and survival rates from 1973 to 2004: data from the surveillance, epidemiology, and end results program. Cancer. 2009;115:1531–43.

    PubMed  PubMed Central  Google Scholar 

  2. Gianferante DM, Mirabello L, Savage SA. Germline and somatic genetics of osteosarcoma—connecting aetiology, biology and therapy. Nat Rev Endocrinol. 2017;13:480–91.

    CAS  PubMed  Google Scholar 

  3. Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery CA Jr., Butel JS, et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature. 1992;356:215–21.

    CAS  PubMed  Google Scholar 

  4. Jacks T, Remington L, Williams BO, Schmitt EM, Halachmi S, Bronson RT, et al. Tumor spectrum analysis in p53-mutant mice. Curr Biol. 1994;4:1–7.

    CAS  PubMed  Google Scholar 

  5. Lin PP, Pandey MK, Jin F, Raymond AK, Akiyama H, Lozano G. Targeted mutation of p53 and Rb in mesenchymal cells of the limb bud produces sarcomas in mice. Carcinogenesis. 2009;30:1789–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Walkley CR, Qudsi R, Sankaran VG, Perry JA, Gostissa M, Roth SI, et al. Conditional mouse osteosarcoma, dependent on p53 loss and potentiated by loss of Rb, mimics the human disease. Genes Dev. 2008;22:1662–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Berman SD, Calo E, Landman AS, Danielian PS, Miller ES, West JC, et al. Metastatic osteosarcoma induced by inactivation of Rb and p53 in the osteoblast lineage. Proc Natl Acad Sci USA. 2008;105:11851–6.

    CAS  PubMed  Google Scholar 

  8. Kato JY, Yoneda-Kato N. Mammalian COP9 signalosome. Genes Cells. 2009;14:1209–25.

    CAS  PubMed  Google Scholar 

  9. Liu G, Claret FX, Zhou F, Pan Y. Jab1/COPS5 as a novel biomarker for diagnosis, prognosis, therapy prediction and therapeutic tools for human cancer. Front Pharmacol. 2018;9:135.

    PubMed  PubMed Central  Google Scholar 

  10. Wei N, Serino G, Deng XW. The COP9 signalosome: more than a protease. Trends Biochem Sci. 2008;33:592–600.

    CAS  PubMed  Google Scholar 

  11. Claret FX, Hibi M, Dhut S, Toda T, Karin M. A new group of conserved coactivators that increase the specificity of AP-1 transcription factors. Nature. 1996;383:453–7.

    CAS  PubMed  Google Scholar 

  12. Bashur LA, Chen D, Chen Z, Liang B, Pardi R, Murakami S, et al. Loss of jab1 in osteochondral progenitor cells severely impairs embryonic limb development in mice. J Cell Physiol. 2014;229:1607–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen D, Bashur LA, Liang B, Panattoni M, Tamai K, Pardi R, et al. The transcriptional co-regulator Jab1 is crucial for chondrocyte differentiation in vivo. J Cell Sci. 2013;126:234–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Sitte S, Glasner J, Jellusova J, Weisel F, Panattoni M, Pardi R, et al. JAB1 is essential for B cell development and germinal center formation and inversely regulates Fas ligand and Bcl6 expression. J Immunol. 2012;188:2677–86.

    CAS  PubMed  Google Scholar 

  15. Panattoni M, Sanvito F, Basso V, Doglioni C, Casorati G, Montini E, et al. Targeted inactivation of the COP9 signalosome impairs multiple stages of T cell development. J Exp Med. 2008;205:465–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Oh W, Lee EW, Sung YH, Yang MR, Ghim J, Lee HW, et al. Jab1 induces the cytoplasmic localization and degradation of p53 in coordination with Hdm2. J Biol Chem. 2006;281:17457–65.

    CAS  PubMed  Google Scholar 

  17. Lauvrak SU, Munthe E, Kresse SH, Stratford EW, Namlos HM, Meza-Zepeda LA, et al. Functional characterisation of osteosarcoma cell lines and identification of mRNAs and miRNAs associated with aggressive cancer phenotypes. Br J Cancer. 2013;109:2228–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Collier CD, Wirtz EC, Knafler GJ, Morris WZ, Getty PJ, Greenfield EM. Micrometastatic drug screening platform shows heterogeneous response to MAP chemotherapy in osteosarcoma cell lines. Clin Orthop Relat Res. 2018;476:1400–11.

    PubMed  PubMed Central  Google Scholar 

  19. Ottaviano L, Schaefer KL, Gajewski M, Huckenbeck W, Baldus S, Rogel U, et al. Molecular characterization of commonly used cell lines for bone tumor research: a trans-European EuroBoNet effort. Genes Chromosomes Cancer. 2010;49:40–51.

    CAS  PubMed  Google Scholar 

  20. Behjati S, Tarpey PS, Haase K, Ye H, Young MD, Alexandrov LB, et al. Recurrent mutation of IGF signalling genes and distinct patterns of genomic rearrangement in osteosarcoma. Nat Commun. 2017;8:15936.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Perry JA, Kiezun A, Tonzi P, Van Allen EM, Carter SL, Baca SC, et al. Complementary genomic approaches highlight the PI3K/mTOR pathway as a common vulnerability in osteosarcoma. Proc Natl Acad Sci USA. 2014;111:E5564–73.

    CAS  PubMed  Google Scholar 

  22. Zhang F, Yan T, Guo W, Sun K, Wang S, Bao X, et al. Novel oncogene COPS3 interacts with Beclin1 and Raf-1 to regulate metastasis of osteosarcoma through autophagy. J Exp Clin Cancer Res. 2018;37:135.

    PubMed  PubMed Central  Google Scholar 

  23. Crone SG, Jacobsen A, Federspiel B, Bardram L, Krogh A, Lund AH, et al. microRNA-146a inhibits G protein-coupled receptor-mediated activation of NF-kappaB by targeting CARD10 and COPS8 in gastric cancer. Mol Cancer. 2012;11:71.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Lee YH, Judge AD, Seo D, Kitade M, Gomez-Quiroz LE, Ishikawa T, et al. Molecular targeting of CSN5 in human hepatocellular carcinoma: a mechanism of therapeutic response. Oncogene. 2011;30:4175–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44–57.

    PubMed  Google Scholar 

  26. Huang da W, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37:1–13.

    PubMed  Google Scholar 

  27. Ballatori SE, Hinds PW. Osteosarcoma: prognosis plateau warrants retinoblastoma pathway targeted therapy. Signal Transduct Target Ther. 2016;1:16001.

    PubMed  PubMed Central  Google Scholar 

  28. Loukil A, Cheung CT, Bendris N, Lemmers B, Peter M, Blanchard JM. Cyclin A2: at the crossroads of cell cycle and cell invasion. World J Biol Chem. 2015;6:346–50.

    PubMed  PubMed Central  Google Scholar 

  29. Gavet O, Pines J. Progressive activation of CyclinB1-Cdk1 coordinates entry to mitosis. Dev Cell. 2010;18:533–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhou G, Zheng Q, Engin F, Munivez E, Chen Y, Sebald E, et al. Dominance of SOX9 function over RUNX2 during skeletogenesis. Proc Natl Acad Sci USA. 2006;103:19004–9.

    CAS  PubMed  Google Scholar 

  31. Tao J, Jiang MM, Jiang L, Salvo JS, Zeng HC, Dawson B, et al. Notch activation as a driver of osteogenic sarcoma. Cancer Cell. 2014;26:390–401.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Enchev RI, Schulman BA, Peter M. Protein neddylation: beyond cullin-RING ligases. Nat Rev Mol Cell Biol. 2015;16:30–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Malhab LJ, Descamps S, Delaval B, Xirodimas DP. The use of the NEDD8 inhibitor MLN4924 (Pevonedistat) in a cyclotherapy approach to protect wild-type p53 cells from MLN4924 induced toxicity. Sci Rep. 2016;6:37775.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Soucy TA, Smith PG, Milhollen MA, Berger AJ, Gavin JM, Adhikari S, et al. An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer. Nature. 2009;458:732–6.

    CAS  PubMed  Google Scholar 

  35. Zhou L, Jiang Y, Luo Q, Li L, Jia L. Neddylation: a novel modulator of the tumor microenvironment. Mol Cancer. 2019;18:77.

    PubMed  PubMed Central  Google Scholar 

  36. Schlierf A, Altmann E, Quancard J, Jefferson AB, Assenberg R, Renatus M, et al. Targeted inhibition of the COP9 signalosome for treatment of cancer. Nat Commun. 2016;7:13166.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang Z, Liu P, Inuzuka H, Wei W. Roles of F-box proteins in cancer. Nat Rev Cancer. 2014;14:233–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Tian L, Peng G, Parant JM, Leventaki V, Drakos E, Zhang Q, et al. Essential roles of Jab1 in cell survival, spontaneous DNA damage and DNA repair. Oncogene. 2010;29:6125–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Mori M, Yoneda-Kato N, Yoshida A, Kato JY. Stable form of JAB1 enhances proliferation and maintenance of hematopoietic progenitors. J Biol Chem. 2008;283:29011–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Swords RT, Watts J, Erba HP, Altman JK, Maris M, Anwer F, et al. Expanded safety analysis of pevonedistat, a first-in-class NEDD8-activating enzyme inhibitor, in patients with acute myeloid leukemia and myelodysplastic syndromes. Blood. Cancer J. 2017;7:e520.

    CAS  Google Scholar 

  41. Manasanch EE, Orlowski RZ. Proteasome inhibitors in cancer therapy. Nat Rev Clin Oncol. 2017;14:417–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Pan Y, Zhang Q, Atsaves V, Yang H, Claret FX. Suppression of Jab1/CSN5 induces radio- and chemo-sensitivity in nasopharyngeal carcinoma through changes to the DNA damage and repair pathways. Oncogene. 2013;32:2756–66.

    CAS  PubMed  Google Scholar 

  43. Pan Y, Wang S, Su B, Zhou F, Zhang R, Xu T, et al. Stat3 contributes to cancer progression by regulating Jab1/Csn5 expression. Oncogene. 2017;36:1069–79.

    CAS  PubMed  Google Scholar 

  44. Zhang Y, Zvi YS, Batko B, Zaphiros N, O’Donnell EF, Wang J, et al. Down-regulation of Skp2 expression inhibits invasion and lung metastasis in osteosarcoma. Sci Rep. 2018;8:14294.

    PubMed  PubMed Central  Google Scholar 

  45. Sun R, Xie HY, Qian JX, Huang YN, Yang F, Zhang FL, et al. FBXO22 possesses both protumorigenic and antimetastatic roles in breast cancer progression. Cancer Res. 2018;78:5274–86.

    CAS  PubMed  Google Scholar 

  46. Johmura Y, Maeda I, Suzuki N, Wu W, Goda A, Morita M, et al. Fbxo22-mediated KDM4B degradation determines selective estrogen receptor modulator activity in breast cancer. J Clin Investig. 2018;128:5603–19.

    PubMed  Google Scholar 

  47. Lu R, Hu X, Zhou J, Sun J, Zhu AZ, Xu X, et al. COPS5 amplification and overexpression confers tamoxifen-resistance in ERalpha-positive breast cancer by degradation of NCoR. Nat Commun. 2016;7:12044.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Liang B, Cotter MM, Chen D, Hernandez CJ, Zhou G. Ectopic expression of SOX9 in osteoblasts alters bone mechanical properties. Calcif Tissue Int. 2012;90:76–89.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Teresa Pizzuto for her expert histology work. We also thank Dr Eva Altmann (Novartis) for the generous gift of CSN5i-3. This study was supported in part by the NCI R03 CA175874, the American Cancer Society Research Grant #119999-IRG-91-022-IRG, and the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health R01 AR068361 to GZ, and the T32 AR007505 to WES and LAB, as well as the Rally Foundation for Childhood Cancer Research and Open Hands Overflowing Hearts Fellowship to WES under award ID CON221575. This research was supported by the Cytometry and Imaging Microscopy Shared Resource of the Case Comprehensive Cancer Center (P30CA043703) and the Genomics Core Facility of the CWRU School of Medicine’s Genetics and Genome Sciences Department. The content of this study is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Funding

NCI R03 CA175874 to GZ, ACS #119999-IRG-91-022-18-IRG to GZ, NIAMS R01 AR068361 to GZ, NIAMS T32 AR7505-30 to WES and LAB, and the Rally Foundation for Childhood Cancer Research and Open Hands Overflowing Hearts Fellowship CON221575 to WES.

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: WES, GZ. Development of methodology: WES, MKM, LAB, YC, BL, EG, DD, and GZ. Acquisition of data: WES, MKM, LAB, RE, AM, EG, and GZ. Analysis of data: WES, MKM, LAB, RE, RC, DD, and GZ. Writing of the paper: WES, MKM, DD, and GZ. Study supervision: WES, GZ.

Corresponding author

Correspondence to Guang Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samsa, W.E., Mamidi, M.K., Bashur, L.A. et al. The crucial p53-dependent oncogenic role of JAB1 in osteosarcoma in vivo. Oncogene 39, 4581–4591 (2020). https://doi.org/10.1038/s41388-020-1320-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-1320-6

This article is cited by

Search

Quick links