Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

MicroRNA-200 family governs ovarian inclusion cyst formation and mode of ovarian cancer spread

Abstract

Epidemiologic and histopathologic findings and the laying hen model support the long-standing incessant ovulation hypothesis and cortical inclusion cyst involvement in sporadic ovarian cancer development. MicroRNA-200 (miR-200) family is highly expressed in ovarian cancer. Herewith, we show that ovarian surface epithelial (OSE) cells with ectopic miR-200 expression formed stabilized cysts in three-dimensional (3D) organotypic culture with E-cadherin fragment expression and steroid hormone pathway activation, whereas ovarian cancer 3D cultures with miR-200 knockdown showed elevated TGF-β expression, mitotic spindle disorientation, increased lumenization, disruption of ROCK-mediated myosin II phosphorylation, and SRC signaling, which led to histotype-dependent loss of collective movement in tumor spread. Gene expression profiling revealed that epithelial–mesenchymal transition and hypoxia were the top enriched gene sets regulated by miR-200 in both OSE and ovarian cancer cells. The molecular changes uncovered by the in vitro studies were verified in both human and laying hen ovarian cysts and tumor specimens. As miR-200 is also essential for ovulation, our results of estrogen pathway activation in miR-200-expressing OSE cells add another intriguing link between incessant ovulation and ovarian carcinogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Ovarian cell lines with aberrant miR-200 expression showed reduced growth rates and changes in marker expression.
Fig. 2: Overexpression of miR-200 stabilized OSE7 spheroids.
Fig. 3: Elevated expression of miR-200 in human and laying hen inclusion cysts and ovarian tumor tissues and association with estrogen response protein TFF1.
Fig. 4: Ovarian cancer spheroids with miR-200 KD had increased number of lumina and defects in mitotic spindle orientation.
Fig. 5: TGF-β regulated myosin II phosphorylation for the single-cell migration in ovarian cancer cells with miR-200 knockdown.
Fig. 6: miR-200-regulated SRC phosphorylation for cell motility and tumor spread.

Similar content being viewed by others

References

  1. Rauh-Hain JA, Krivak TC, Del Carmen MG, Olawaiye AB. Ovarian cancer screening and early detection in the general population. Rev Obstet Gynecol. 2011;4:15–21.

    PubMed  PubMed Central  Google Scholar 

  2. Fathalla MF. Incessant ovulation-a factor in ovarian neoplasia? Lancet. 1971;2:163.

    CAS  PubMed  Google Scholar 

  3. Gruessner C, Gruessner A, Glaser K, Abushahin N, Laughren C, Zheng W, et al. Biomarkers and endosalpingiosis in the ovarian and tubal microenvironment of women at high-risk for pelvic serous carcinoma. Am J Cancer Res. 2014;4:61–72.

    PubMed  PubMed Central  Google Scholar 

  4. Hankinson SE, Hunter DJ, Colditz GA, Willett WC, Stampfer MJ, Rosner B, et al. Tubal ligation, hysterectomy, and risk of ovarian cancer. A prospective study. J Am Med Assoc. 1993;270:2813–8.

    CAS  Google Scholar 

  5. Whiteman DC, Murphy MF, Cook LS, Cramer DW, Hartge P, Marchbanks PA, et al. Multiple births and risk of epithelial ovarian cancer. J Natl Cancer Inst. 2000;92:1172–7.

    CAS  PubMed  Google Scholar 

  6. Cramer DW, Hutchison GB, Welch WR, Scully RE, Ryan KJ. Determinants of ovarian cancer risk. I. Reproductive experiences and family history. J Natl Cancer Inst. 1983;71:711–6.

    CAS  PubMed  Google Scholar 

  7. Johnson PA, Giles JR. The hen as a model of ovarian cancer. Nat Rev Cancer. 2013;13:432–6.

    CAS  PubMed  Google Scholar 

  8. Ansenberger K, Zhuge Y, Lagman JA, Richards C, Barua A, Bahr JM, et al. E-cadherin expression in ovarian cancer in the laying hen, Gallus domesticus, compared to human ovarian cancer. Gynecol Oncol. 2009;113:362–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Barnes MN, Berry WD, Straughn JM, Kirby TO, Leath CA, Huh WK, et al. A pilot study of ovarian cancer chemoprevention using medroxyprogesterone acetate in an avian model of spontaneous ovarian carcinogenesis. Gynecol Oncol. 2002;87:57–63.

    CAS  PubMed  Google Scholar 

  10. Giles JR, Elkin RG, Trevino LS, Urick ME, Ramachandran R, Johnson PA. The restricted ovulator chicken: a unique animal model for investigating the etiology of ovarian cancer. Int J Gynecol Cancer. 2010;20:738–44.

    PubMed  Google Scholar 

  11. Scully RE. Pathology of ovarian cancer precursors. J Cell Biochem Suppl. 1995;23:208–18.

    CAS  PubMed  Google Scholar 

  12. Lee Y, Miron A, Drapkin R, Nucci MR, Medeiros F, Saleemuddin A, et al. A candidate precursor to serous carcinoma that originates in the distal fallopian tube. J Pathol. 2007;211:26–35.

    CAS  PubMed  Google Scholar 

  13. Kurman RJ, Shih IeM. Molecular pathogenesis and extraovarian origin of epithelial ovarian cancer-shifting the paradigm. Hum Pathol. 2011;42:918–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Seidman JD, Kurman RJ, Ronnett BM. Primary and metastatic mucinous adenocarcinomas in the ovaries: incidence in routine practice with a new approach to improve intraoperative diagnosis. Am J Surg Pathol. 2003;27:985–93.

    PubMed  Google Scholar 

  15. Sampson JA. Metastatic or embolic endometriosis, due to the menstrual dissemination of endometrial tissue into the venous circulation. Am J Pathol. 1927;3:93–110, 143.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Worley MJ, Welch WR, Berkowitz RS, Ng SW. Endometriosis-associated ovarian cancer: a review of pathogenesis. Int J Mol Sci. 2013;14:5367–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Perets R, Wyant GA, Muto KW, Bijron JG, Poole BB, Chin KT, et al. Transformation of the fallopian tube secretory epithelium leads to high-grade serous ovarian cancer in Brca;Tp53;Pten models. Cancer Cell. 2013;24:751–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Przybycin CG, Kurman RJ, Ronnett BM, Shih Ie M, Vang R. Are all pelvic (nonuterine) serous carcinomas of tubal origin? Am J Surg Pathol. 2010;34:1407–16.

    PubMed  Google Scholar 

  19. Howitt BE, Hanamornroongruang S, Lin DI, Conner JE, Schulte S, Horowitz N, et al. Evidence for a dualistic model of high-grade serous carcinoma: BRCA mutation status, histology, and tubal intraepithelial carcinoma. Am J Surg Pathol. 2015;39:287–93.

    PubMed  Google Scholar 

  20. Kim J, Coffey DM, Ma L, Matzuk MM. The ovary is an alternative site of origin for high-grade serous ovarian cancer in mice. Endocrinology. 2015;156:1975–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Wu R, Baker SJ, Hu TC, Norman KM, Fearon ER, Cho KR. Type I to type II ovarian carcinoma progression: mutant Trp53 or Pik3ca confers a more aggressive tumor phenotype in a mouse model of ovarian cancer. Am J Pathol. 2013;182:1391–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Choi PW, Yang J, Ng SK, Feltmate C, Muto MG, Hasselblatt K, et al. Loss of E-cadherin disrupts ovarian epithelial inclusion cyst formation and collective cell movement in ovarian cancer cells. Oncotarget. 2016;7:4110–21.

    PubMed  Google Scholar 

  23. Friedl P, Locker J, Sahai E, Segall JE. Classifying collective cancer cell invasion. Nat Cell Biol. 2012;14:777–83.

    PubMed  Google Scholar 

  24. Yang J, Zhou Y, Ng SK, Huang KC, Ni X, Choi PW, et al. Characterization of MicroRNA-200 pathway in ovarian cancer and serous intraepithelial carcinoma of fallopian tube. BMC Cancer. 2017;17:422.

    PubMed  PubMed Central  Google Scholar 

  25. Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol. 2008;10:593–601.

    CAS  PubMed  Google Scholar 

  26. Zhao S, Ma Y, Huang X. Trefoil factor 1 elevates the malignant phenotype of mucinous ovarian cancer cell through Wnt/beta-catenin signaling. Int J Clin Exp Pathol. 2015;8:10412–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Bryant DM, Datta A, Rodriguez-Fraticelli AE, Peranen J, Martin-Belmonte F, Mostov KE. A molecular network for de novo generation of the apical surface and lumen. Nat Cell Biol. 2010;12:1035–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Rodriguez-Fraticelli AE, Galvez-Santisteban M, Martin-Belmonte F. Divide and polarize: recent advances in the molecular mechanism regulating epithelial tubulogenesis. Curr Opin Cell Biol. 2011;23:638–46.

    CAS  PubMed  Google Scholar 

  29. Canel M, Serrels A, Frame MC, Brunton VG. E-cadherin-integrin crosstalk in cancer invasion and metastasis. J Cell Sci. 2013;126:393–401.

    CAS  PubMed  Google Scholar 

  30. Parsons JT, Horwitz AR, Schwartz MA. Cell adhesion: integrating cytoskeletal dynamics and cellular tension. Nat Rev Mol Cell Biol. 2010;11:633–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Wyckoff JB, Pinner SE, Gschmeissner S, Condeelis JS, Sahai E. ROCK- and myosin-dependent matrix deformation enables protease-independent tumor-cell invasion in vivo. Curr Biol. 2006;16:1515–23.

    CAS  PubMed  Google Scholar 

  32. Avizienyte E, Fincham VJ, Brunton VG, Frame MC. Src SH3/2 domain-mediated peripheral accumulation of Src and phospho-myosin is linked to deregulation of E-cadherin and the epithelial-mesenchymal transition. Mol Biol Cell. 2004;15:2794–803.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Konecny GE, Glas R, Dering J, Manivong K, Qi J, Finn RS, et al. Activity of the multikinase inhibitor dasatinib against ovarian cancer cells. Br J Cancer. 2009;101:1699–708.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Drapkin R, Crum CP, Hecht JL. Expression of candidate tumor markers in ovarian carcinoma and benign ovary: evidence for a link between epithelial phenotype and neoplasia. Hum Pathol. 2004;35:1014–21.

    CAS  PubMed  Google Scholar 

  35. Matsumura N, Huang Z, Mori S, Baba T, Fujii S, Konishi I, et al. Epigenetic suppression of the TGF-beta pathway revealed by transcriptome profiling in ovarian cancer. Genome Res. 2011;21:74–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Hua Y, Choi PW, Trachtenberg AJ, Ng AC, Kuo WP, Ng SK, et al. Epithelialization of mouse ovarian tumor cells originating in the fallopian tube stroma. Oncotarget. 2016;7:66077–86.

    PubMed  PubMed Central  Google Scholar 

  37. David JM, Rajasekaran AK. Dishonorable discharge: the oncogenic roles of cleaved E-cadherin fragments. Cancer Res. 2012;72:2917–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Ryniers F, Stove C, Goethals M, Brackenier L, Noe V, Bracke M, et al. Plasmin produces an E-cadherin fragment that stimulates cancer cell invasion. Biol Chem. 2002;383:159–65.

    CAS  PubMed  Google Scholar 

  39. Konze SA, van Diepen L, Schroder A, Olmer R, Moller H, Pich A, et al. Cleavage of E-cadherin and beta-catenin by calpain affects Wnt signaling and spheroid formation in suspension cultures of human pluripotent stem cells. Mol Cell Proteom. 2014;13:990–1007.

    CAS  Google Scholar 

  40. Steinhusen U, Weiske J, Badock V, Tauber R, Bommert K, Huber O. Cleavage and shedding of E-cadherin after induction of apoptosis. J Biol Chem. 2001;276:4972–80.

    CAS  PubMed  Google Scholar 

  41. Cochrane DR, Tessier-Cloutier B, Lawrence KM, Nazeran T, Karnezis AN, Salamanca C, et al. Clear cell and endometrioid carcinomas: are their differences attributable to distinct cells of origin? J Pathol. 2017;243:26–36.

    CAS  PubMed  Google Scholar 

  42. Kolin DL, Dinulescu DM, Crum CP. Origin of clear cell carcinoma: nature or nurture? J Pathol. 2018;244:131–4.

    PubMed  Google Scholar 

  43. Kommoss F, Faruqi A, Gilks CB, Lamshang Leen S, Singh N, Wilkinson N, et al. Uterine serous carcinomas frequently metastasize to the fallopian tube and can mimic serous tubal intraepithelial carcinoma. Am J Surg Pathol. 2017;41:161–70.

    PubMed  Google Scholar 

  44. McDaniel AS, Stall JN, Hovelson DH, Cani AK, Liu CJ, Tomlins SA, et al. Next-generation sequencing of tubal intraepithelial carcinomas. JAMA Oncol. 2015;1:1128–32.

    PubMed  PubMed Central  Google Scholar 

  45. Esselen KM, Ng SK, Hua Y, White M, Jimenez CA, Welch WR, et al. Endosalpingiosis as it relates to tubal, ovarian and serous neoplastic tissues: an immunohistochemical study of tubal and Mullerian antigens. Gynecol Oncol. 2014;132:316–21.

    CAS  PubMed  Google Scholar 

  46. Ho SM. Estrogen, progesterone and epithelial ovarian cancer. Reprod Biol Endocrinol. 2003;1:73.

    PubMed  PubMed Central  Google Scholar 

  47. Hasuwa H, Ueda J, Ikawa M, Okabe M. miR-200b and miR-429 function in mouse ovulation and are essential for female fertility. Science. 2013;341:71–3.

    CAS  PubMed  Google Scholar 

  48. Messina A, Langlet F, Chachlaki K, Roa J, Rasika S, Jouy N, et al. A microRNA switch regulates the rise in hypothalamic GnRH production before puberty. Nat Neurosci. 2016;19:835–44.

    CAS  PubMed  Google Scholar 

  49. Aguilar-Rojas A, Perez-Solis MA, Maya-Nunez G. The gonadotropin-releasing hormone system: perspectives from reproduction to cancer (Review). Int J Oncol. 2016;48:861–8.

    CAS  PubMed  Google Scholar 

  50. Mertens-Walker I, Baxter RC, Marsh DJ. Gonadotropin signalling in epithelial ovarian cancer. Cancer Lett. 2012;324:152–9.

    CAS  PubMed  Google Scholar 

  51. Burk U, Schubert J, Wellner U, Schmalhofer O, Vincan E, Spaderna S, et al. A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep. 2008;9:582–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Ozdamar B, Bose R, Barrios-Rodiles M, Wang HR, Zhang Y, Wrana JL. Regulation of the polarity protein Par6 by TGFbeta receptors controls epithelial cell plasticity. Science. 2005;307:1603–9.

    CAS  PubMed  Google Scholar 

  53. Giampieri S, Manning C, Hooper S, Jones L, Hill CS, Sahai E. Localized and reversible TGFbeta signalling switches breast cancer cells from cohesive to single cell motility. Nat Cell Biol. 2009;11:1287–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Atfi A, Drobetsky E, Boissonneault M, Chapdelaine A, Chevalier S. Transforming growth factor beta down-regulates Src family protein tyrosine kinase signaling pathways. J Biol Chem. 1994;269:30688–93.

    CAS  PubMed  Google Scholar 

  55. Avizienyte E, Wyke AW, Jones RJ, McLean GW, Westhoff MA, Brunton VG, et al. Src-induced de-regulation of E-cadherin in colon cancer cells requires integrin signalling. Nat Cell Biol. 2002;4:632–8.

    CAS  PubMed  Google Scholar 

  56. Klinghoffer RA, Sachsenmaier C, Cooper JA, Soriano P. Src family kinases are required for integrin but not PDGFR signal transduction. EMBO J. 1999;18:2459–71.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge Dr. Gregory Goodall for the provision of lentiviral miR-200 expression constructs and control, Mr. Shi-Kin Ma for the help of constructing the polar graphs, the support of the CNOOC Grants to the first author, and the Robert and Deborah First Fund, the Sperling Family Fund Foundation, Ruth N. White Gynecologic Oncology Research Fund, Women’s Cancer Program and Gillette Center for Women’s Cancer from Dana–Farber Cancer Institute, Ovarian Cancer Research Foundation, Adler Foundation, Inc., and Friends of Dana–Farber Cancer Institute to The Laboratory of Gynecologic Oncology at Brigham and Women’s Hospital.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wing-Ping Fong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, PW., So, W.W., Yang, J. et al. MicroRNA-200 family governs ovarian inclusion cyst formation and mode of ovarian cancer spread. Oncogene 39, 4045–4060 (2020). https://doi.org/10.1038/s41388-020-1264-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-1264-x

This article is cited by

Search

Quick links