Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Deubiquitylase USP25 prevents degradation of BCR-ABL protein and ensures proliferation of Ph-positive leukemia cells

Abstract

Fusion genes resulting from chromosomal rearrangements are frequently found in a variety of cancer cells. Some of these are known to be driver oncogenes, such as BCR-ABL in chronic myelogenous leukemia (CML). The products of such fusion genes are abnormal proteins that are ordinarily degraded in cells by a mechanism known as protein quality control. This suggests that the degradation of BCR-ABL protein is suppressed in CML cells to ensure their proliferative activity. Here, we show that ubiquitin-specific protease 25 (USP25) suppresses the degradation of BCR-ABL protein in cells harboring Philadelphia chromosome (Ph). USP25 was found proximal to BCR-ABL protein in cells. Depletion of USP25 using shRNA-mediated gene silencing increased the ubiquitylated BCR-ABL, and reduced the level of BCR-ABL protein. Accordingly, BCR-ABL-mediated signaling and cell proliferation were suppressed in BCR-ABL-positive leukemia cells by the depletion of USP25. We further found that pharmacological inhibition of USP25 induced rapid degradation of BCR-ABL protein in Ph-positive leukemia cells, regardless of their sensitivity to tyrosine kinase inhibitors. These results indicate that USP25 is a novel target for inducing the degradation of oncogenic BCR-ABL protein in Ph-positive leukemia cells. This could be an effective approach to overcome resistance to kinase inhibitors.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Identification of USP25 responsible for the maintenance of BCR-ABL protein levels.
Fig. 2: USP25 is required for the maintenance of BCR-ABL protein levels in Ph-positive leukemia.
Fig. 3: USP25 is required for the proliferation of leukemia cells expressing BCR-ABL protein.
Fig. 4: The DUB activity of USP25 is required for the maintenance of BCR-ABL protein levels and the proliferation of Ph-positive leukemia cells.
Fig. 5: USP25 is proximal to BCR-ABL.
Fig. 6: USP25 deubiquitylates BCR-ABL.
Fig. 7: USP25 inhibitors attenuate the stability of BCR-ABL and STAT5 proteins in Ph-positive leukemia cells.

References

  1. 1.

    Rudkin CT, Hungerford DA, Nowell PC. DNA contents of chromosome Ph1 and chromosome 21 in human chronic granulocytic leukemia. Science. 1964;144:1229–31.

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Rowley JD. Letter: a new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature. 1973;243:290–3.

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Konopka JB, Watanabe SM, Witte ON. An alteration of the human c-abl protein in K562 leukemia cells unmasks associated tyrosine kinase activity. Cell. 1984;37:1035–42.

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Heisterkamp N, Stam K, Groffen J, de Klein A, Grosveld G. Structural organization of the bcr gene and its role in the Ph’ translocation. Nature. 1985;315:758–61.

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Shtivelman E, Lifshitz B, Gale RP, Canaani E. Fused transcript of abl and bcr genes in chronic myelogenous leukaemia. Nature. 1985;315:550–4.

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Hochhaus A, Larson RA, Guilhot F, Radich JP, Branford S, Hughes TP, et al. Long-term outcomes of imatinib treatment for chronic myeloid leukemia. N Engl J Med. 2017;376:917–27.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Gandhi V, Plunkett W, Cortes JE. Omacetaxine: a protein translation inhibitor for treatment of chronic myelogenous leukemia. Clin Cancer Res. 2014;20:1735–40.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    Alvandi F, Kwitkowski VE, Ko CW, Rothmann MD, Ricci S, Saber H, et al. U.S. Food and Drug Administration approval summary: omacetaxine mepesuccinate as treatment for chronic myeloid leukemia. Oncologist. 2014;19:94–9.

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Massimino M, Stella S, Tirro E, Romano C, Pennisi MS, Puma A, et al. Non ABL-directed inhibitors as alternative treatment strategies for chronic myeloid leukemia. Mol Cancer. 2018;17:56.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  10. 10.

    Peng C, Brain J, Hu Y, Goodrich A, Kong L, Grayzel D, et al. Inhibition of heat shock protein 90 prolongs survival of mice with BCR-ABL-T315I-induced leukemia and suppresses leukemic stem cells. Blood. 2007;110:678–85.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Peng C, Li D, Li S. Heat shock protein 90: a potential therapeutic target in leukemic progenitor and stem cells harboring mutant BCR-ABL resistant to kinase inhibitors. Cell Cycle. 2007;6:2227–31.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  12. 12.

    Lai AC, Toure M, Hellerschmied D, Salami J, Jaime-Figueroa S, Ko E, et al. Modular PROTAC design for the degradation of oncogenic BCR-ABL. Angew Chem Int Ed Engl. 2016;55:807–10.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  13. 13.

    Demizu Y, Shibata N, Hattori T, Ohoka N, Motoi H, Misawa T, et al. Development of BCR-ABL degradation inducers via the conjugation of an imatinib derivative and a cIAP1 ligand. Bioorg Med Chem Lett. 2016;26:4865–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. 14.

    Shibata N, Miyamoto N, Nagai K, Shimokawa K, Sameshima T, Ohoka N, et al. Development of protein degradation inducers of oncogenic BCR-ABL protein by conjugation of ABL kinase inhibitors and IAP ligands. Cancer Sci. 2017;108:1657–66.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Shimokawa K, Shibata N, Sameshima T, Miyamoto N, Ujikawa O, Nara H, et al. Targeting the allosteric site of oncoprotein BCR-ABL as an alternative strategy for effective target protein degradation. ACS Med Chem Lett. 2017;8:1042–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Shibata N, Shimokawa K, Nagai K, Ohoka N, Hattori T, Miyamoto N, et al. Pharmacological difference between degrader and inhibitor against oncogenic BCR-ABL kinase. Sci Rep. 2018;8:13549.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  17. 17.

    Pal A, Young MA, Donato NJ. Emerging potential of therapeutic targeting of ubiquitin-specific proteases in the treatment of cancer. Cancer Res. 2014;74:4955–66.

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Harrigan JA, Jacq X, Martin NM, Jackson SP. Deubiquitylating enzymes and drug discovery: emerging opportunities. Nat Rev Drug Discov. 2018;17:57–78.

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Tsukahara F, Maru Y. Bag1 directly routes immature BCR-ABL for proteasomal degradation. Blood. 2010;116:3582–92.

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Daley GQ, Baltimore D. Transformation of an interleukin 3-dependent hematopoietic cell line by the chronic myelogenous leukemia-specific P210bcr/abl protein. Proc Natl Acad Sci USA. 1988;85:9312–6.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  21. 21.

    Altun M, Kramer HB, Willems LI, McDermott JL, Leach CA, Goldenberg SJ, et al. Activity-based chemical proteomics accelerates inhibitor development for deubiquitylating enzymes. Chem Biol. 2011;18:1401–12.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  22. 22.

    Lawson AP, Long MJC, Coffey RT, Qian Y, Weerapana E, El Oualid F, et al. Naturally occurring isothiocyanates exert anticancer effects by inhibiting deubiquitinating enzymes. Cancer Res. 2015;75:5130–42.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Kawaguchi K, Uo K, Tanaka T, Komada M. Tandem UIMs confer Lys48 ubiquitin chain substrate preference to deubiquitinase USP25. Sci Rep. 2017;7:45037.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Tanno H, Shigematsu T, Nishikawa S, Hayakawa A, Denda K, Tanaka T, et al. Ubiquitin-interacting motifs confer full catalytic activity, but not ubiquitin chain substrate specificity, to deubiquitinating enzyme USP37. J Biol Chem. 2014;289:2415–23.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  25. 25.

    Klejman A, Schreiner SJ, Nieborowska-Skorska M, Slupianek A, Wilson M, Smithgall TE, et al. The Src family kinase Hck couples BCR/ABL to STAT5 activation in myeloid leukemia cells. EMBO J. 2002;21:5766–74.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    Okabe S, Tauchi T, Ohyashiki K. Establishment of a new Philadelphia chromosome-positive acute lymphoblastic leukemia cell line (SK-9) with T315I mutation. Exp Hematol. 2010;38:765–72.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  27. 27.

    Denuc A, Bosch-Comas A, Gonzalez-Duarte R, Marfany G. The UBA-UIM domains of the USP25 regulate the enzyme ubiquitination state and modulate substrate recognition. PLoS One. 2009;4:e5571.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  28. 28.

    Roux KJ, Kim DI, Raida M, Burke B. A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. J Cell Biol. 2012;196:801–10.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    Choi-Rhee E, Schulman H, Cronan JE. Promiscuous protein biotinylation by Escherichia coli biotin protein ligase. Protein Sci. 2004;13:3043–50.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Cronan JE. Targeted and proximity-dependent promiscuous protein biotinylation by a mutant Escherichia coli biotin protein ligase. J Nutr Biochem. 2005;16:416–8.

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Hjerpe R, Aillet F, Lopitz-Otsoa F, Lang V, England P, Rodriguez MS. Efficient protection and isolation of ubiquitylated proteins using tandem ubiquitin-binding entities. EMBO Rep. 2009;10:1250–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    Wrigley JD, Gavory G, Simpson I, Preston M, Plant H, Bradley J, et al. Identification and characterization of dual inhibitors of the USP25/28 deubiquitinating enzyme subfamily. ACS Chem Biol. 2017;12:3113–25.

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Deng S, Zhou H, Xiong R, Lu Y, Yan D, Xing T, et al. Over-expression of genes and proteins of ubiquitin specific peptidases (USPs) and proteasome subunits (PSs) in breast cancer tissue observed by the methods of RFDD-PCR and proteomics. Breast Cancer Res Treat. 2007;104:21–30.

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Li J, Tan Q, Yan M, Liu L, Lin H, Zhao F, et al. miRNA-200c inhibits invasion and metastasis of human non-small cell lung cancer by directly targeting ubiquitin specific peptidase 25. Mol Cancer. 2014;13:166.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  35. 35.

    Sauer F, Klemm T, Kollampally RB, Tessmer I, Nair RK, Popov N, et al. Differential oligomerization of the deubiquitinases USP25 and USP28 regulates their activities. Mol Cell. 2019;74:421–35 e410.

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Xu D, Liu J, Fu T, Shan B, Qian L, Pan L, et al. USP25 regulates Wnt signaling by controlling the stability of tankyrases. Genes Dev. 2017;31:1024–35.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Gelmini S, Poggesi M, Distante V, Bianchi S, Simi L, Luconi M, et al. Tankyrase, a positive regulator of telomere elongation, is over expressed in human breast cancer. Cancer Lett. 2004;216:81–7.

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Huang SM, Mishina YM, Liu S, Cheung A, Stegmeier F, Michaud GA, et al. Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature. 2009;461:614–20.

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Wang W, Li N, Li X, Tran MK, Han X, Chen J. Tankyrase inhibitors target YAP by stabilizing angiomotin family proteins. Cell Rep. 2015;13:524–32.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  40. 40.

    Popov N, Wanzel M, Madiredjo M, Zhang D, Beijersbergen R, Bernards R, et al. The ubiquitin-specific protease USP28 is required for MYC stability. Nat Cell Biol. 2007;9:765–74.

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Liu B, Sureda-Gomez M, Zhen Y, Amador V, Reverter D. A quaternary tetramer assembly inhibits the deubiquitinating activity of USP25. Nat Commun. 2018;9:4973.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  42. 42.

    Gersch M, Wagstaff JL, Toms AV, Graves B, Freund SMV, Komander D. Distinct USP25 and USP28 oligomerization states regulate deubiquitinating activity. Mol Cell. 2019;74:436–51 e437.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW, et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science. 2005;310:644–8.

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, Ishikawa S, et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature. 2007;448:561–6.

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Kohno T, Ichikawa H, Totoki Y, Yasuda K, Hiramoto M, Nammo T, et al. KIF5B-RET fusions in lung adenocarcinoma. Nat Med. 2012;18:375–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. 46.

    Takeuchi K, Soda M, Togashi Y, Suzuki R, Sakata S, Hatano S, et al. RET, ROS1 and ALK fusions in lung cancer. Nat Med. 2012;18:378–81.

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Lipson D, Capelletti M, Yelensky R, Otto G, Parker A, Jarosz M, et al. Identification of new ALK and RET gene fusions from colorectal and lung cancer biopsies. Nat Med. 2012;18:382–4.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. 48.

    Kishi K. A new leukemia cell line with Philadelphia chromosome characterized as basophil precursors. Leuk Res. 1985;9:381–90.

    CAS  PubMed  Article  Google Scholar 

  49. 49.

    Ui-Tei K, Naito Y, Takahashi F, Haraguchi T, Ohki-Hamazaki H, Juni A, et al. Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference. Nucleic Acids Res. 2004;32:936–48.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. 50.

    Reckel S, Hamelin R, Georgeon S, Armand F, Jolliet Q, Chiappe D, et al. Differential signaling networks of Bcr-Abl p210 and p190 kinases in leukemia cells defined by functional proteomics. Leukemia. 2017;31:1502–12.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

This study was supported, in part, by the Japan Society for the Promotion of Science (KAKENHI Grant Numbers 18K07311 to NS, 16H05090 and 18H05502 to MN), by the Project for Cancer Research and Therapeutic Evolution (P-CREATE) (JP17cm0106522j0002 to NS) from the Japan Agency for Medical Research and Development (AMED), and by the Takeda Science Foundation (to NS). We thank Dr Okabe (Tokyo Medical University) for kindly providing SK-9 cells. We thank Dr Gemma Richards from Edanz Group (www.edanzediting.com/ac) for editing a draft of this paper.

Funding

This study was supported, in part, by the Japan Society for the Promotion of Science (KAKENHI Grant Numbers 18K07311 to NS, 16H05090 and 18H05502 to MN), by the Project for Cancer Research and Therapeutic Evolution (P-CREATE) (JP17cm0106522j0002 to NS) from the Japan Agency for Medical Research and Development (AMED), and by the Takeda Science Foundation (to NS).

Author information

Affiliations

Authors

Contributions

NS and MN designed the research; NS performed the research; GT, YD, KM, KU-T, and TA contributed new reagents or analytic tools; NS, NO, and MN analyzed the data; NS and MN wrote the paper.

Corresponding author

Correspondence to Mikihiko Naito.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shibata, N., Ohoka, N., Tsuji, G. et al. Deubiquitylase USP25 prevents degradation of BCR-ABL protein and ensures proliferation of Ph-positive leukemia cells. Oncogene 39, 3867–3878 (2020). https://doi.org/10.1038/s41388-020-1253-0

Download citation

Further reading

Search

Quick links