Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

EGFR activates GDH1 transcription to promote glutamine metabolism through MEK/ERK/ELK1 pathway in glioblastoma

A Correction to this article was published on 12 July 2022

This article has been updated

Abstract

Cancer metabolism research has recently been revived and its focus expanded from glucose and the Warburg’s effects on other nutrients, such as glutamine. The underlying mechanism of oncogenic alterations of glutaminolysis remains unclear. Genetic alterations of EGFR are observed in ~50% of glioblastoma (GBM) patients, and have been found to play important roles in the metabolic abnormalities of GBM. In this study, we found that glutamine metabolism was upregulated after EGFR activation in a GDH1 (glutamate dehydrogenase 1)-dependent manner. Knockdown of GDH1 significantly reduced the cell proliferation, colony formation and tumorigenesis abilities of glioblastoma cells. Furthermore, we showed that GDH1-mediated glutaminolysis was involved in EGF-promoted cell proliferation. EGFR triggered the phosphorylation of ELK1 at Ser 383 through activating MEK/ERK signaling. Phosphorylated ELK1 enriched in the promoter of GDH1 to activate the transcription of GDH1, which then promoted glutamine metabolism. In addition, EGFR activation did not accelerate glutaminolysis in ELK1 knockdown or ELK1 Ser383-mutated cells. Collectively, our findings indicate that EGFR phosphorylates ELK1 to activate GDH1 transcription and glutaminolysis through MEK/ERK pathway, providing new insight into oncogenic alterations of glutamine metabolism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: EGFR activation promotes glutamine metabolism in a GDH1-dependent manner.
Fig. 2: GDH1 is required for cell proliferation and tumor growth in GBM.
Fig. 3: GDH1-mediated glutaminolysis is involved in regulation of EGF-promoted proliferation in GBM cells.
Fig. 4: ELK1 promote the transcription of GDH1.
Fig. 5: EGFR promotes GDH1 transcription by activating MEK/ERK/ELK1 signaling pathway.
Fig. 6: EGFR promotes glutaminolysis through ELK1-GDH1 axis.

Similar content being viewed by others

Change history

References

  1. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    CAS  PubMed  Google Scholar 

  2. DeBerardinis RJ, Cheng T. Q’s next: the diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene. 2010;29:313–24.

    CAS  PubMed  Google Scholar 

  3. Hensley CT, Wasti AT, DeBerardinis RJ. Glutamine and cancer: cell biology, physiology, and clinical opportunities. J Clin Investig. 2013;123:3678–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Mayers JR, Vander Heiden MG. Famine versus feast: understanding the metabolism of tumors in vivo. Trends Biochemical Sci. 2015;40:130–40.

    CAS  Google Scholar 

  5. Altman BJ, Stine ZE, Dang CV. From Krebs to clinic: glutamine metabolism to cancer therapy. Nat Rev Cancer. 2016;16:619–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Bhutia YD, Babu E, Ramachandran S, Ganapathy V. Amino Acid transporters in cancer and their relevance to “glutamine addiction”: novel targets for the design of a new class of anticancer drugs. Cancer Res. 2015;75:1782–8.

    CAS  PubMed  Google Scholar 

  7. Jiang L, Shestov AA, Swain P, Yang C, Parker SJ, Wang QA, et al. Reductive carboxylation supports redox homeostasis during anchorage-independent growth. Nature. 2016;532:255–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S, et al. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci USA. 2007;104:19345–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Fan J, Kamphorst JJ, Mathew R, Chung MK, White E, Shlomi T, et al. Glutamine-driven oxidative phosphorylation is a major ATP source in transformed mammalian cells in both normoxia and hypoxia. Mol Syst Biol. 2013;9:712.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang R, Dillon CP, Shi LZ, Milasta S, Carter R, Finkelstein D, et al. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity. 2011;35:871–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang YQ, Wang HL, Xu J, Tan J, Fu LN, Wang JL, et al. Sirtuin5 contributes to colorectal carcinogenesis by enhancing glutaminolysis in a deglutarylation-dependent manner. Nat Commun. 2018;9:545.

    PubMed  PubMed Central  Google Scholar 

  12. Ostrom QT, Gittleman H, Truitt G, Boscia A, Kruchko C, Barnholtz-Sloan JS. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2011-5. Neuro Oncol. 2018;20:iv1–iv86.

    PubMed  PubMed Central  Google Scholar 

  13. Liu F, Hon GC, Villa GR, Turner KM, Ikegami S, Yang H, et al. EGFR mutation promotes glioblastoma through epigenome and transcription factor network remodeling. Mol Cell. 2015;60:307–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Halatsch ME, Schmidt U, Behnke-Mursch J, Unterberg A, Wirtz CR. Epidermal growth factor receptor inhibition for the treatment of glioblastoma multiforme and other malignant brain tumours. Cancer Treat Rev. 2006;32:74–89.

    CAS  PubMed  Google Scholar 

  15. Hatanpaa KJ, Burma S, Zhao D, Habib AA. Epidermal growth factor receptor in glioma: signal transduction, neuropathology, imaging, and radioresistance. Neoplasia. 2010;12:675–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Felsberg J, Hentschel B, Kaulich K, Gramatzki D, Zacher A, Malzkorn B, et al. Epidermal growth factor receptor variant III (EGFRvIII) positivity in EGFR-amplified glioblastomas: prognostic role and comparison between primary and recurrent tumors. Clin Cancer Res. 2017;23:6846–55.

    CAS  PubMed  Google Scholar 

  17. Babic I, Anderson ES, Tanaka K, Guo D, Masui K, Li B, et al. EGFR mutation-induced alternative splicing of Max contributes to growth of glycolytic tumors in brain cancer. Cell Metab. 2013;17:1000–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Mai WX, Gosa L, Daniels VW, Ta L, Tsang JE, Higgins B, et al. Cytoplasmic p53 couples oncogene-driven glucose metabolism to apoptosis and is a therapeutic target in glioblastoma. Nat Med. 2017;23:1342–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Ji H, Lee JH, Wang Y, Pang Y, Zhang T, Xia Y, et al. EGFR phosphorylates FAM129B to promote Ras activation. Proc Natl Acad Sci USA. 2016;113:644–9.

    CAS  PubMed  Google Scholar 

  20. Lee JH, Liu R, Li J, Wang Y, Tan L, Li XJ, et al. EGFR-phosphorylated platelet isoform of phosphofructokinase 1 promotes PI3K activation. Mol Cell. 2018;70:197–210.e197.

    PubMed  PubMed Central  Google Scholar 

  21. Jin L, Li D, Alesi GN, Fan J, Kang HB, Lu Z, et al. Glutamate dehydrogenase 1 signals through antioxidant glutathione peroxidase 1 to regulate redox homeostasis and tumor growth. Cancer Cell. 2015;27:257–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Yordy JS, Muise-Helmericks RC. Signal transduction and the Ets family of transcription factors. Oncogene. 2000;19:6503–13.

    CAS  PubMed  Google Scholar 

  23. Dunham I, Kundaje A, Aldred SF, Collins PJ, Davis CA, Doyle F, et al. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489:57–74.

  24. Jameson KL, Mazur PK, Zehnder AM, Zhang J, Zarnegar B, Sage J, et al. IQGAP1 scaffold-kinase interaction blockade selectively targets RAS-MAP kinase-driven tumors. Nat Med. 2013;19:626–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Agnihotri S, Zadeh G. Metabolic reprogramming in glioblastoma: the influence of cancer metabolism on epigenetics and unanswered questions. Neuro Oncol. 2016;18:160–72.

    PubMed  Google Scholar 

  26. Tateishi K, Iafrate AJ, Ho Q, Curry WT, Batchelor TT, Flaherty KT, et al. Myc-driven glycolysis is a therapeutic target in glioblastoma. Clin Cancer Res. 2016;22:4452–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Michalak KP, Mackowska-Kedziora A, Sobolewski B, Wozniak P. Key roles of glutamine pathways in reprogramming the cancer metabolism. Oxid Med Cell Longev. 2015;2015:964321.

    PubMed  PubMed Central  Google Scholar 

  28. Tanaka K, Sasayama T, Irino Y, Takata K, Nagashima H, Satoh N, et al. Compensatory glutamine metabolism promotes glioblastoma resistance to mTOR inhibitor treatment. J Clin Investig. 2015;125:1591–602.

    PubMed  PubMed Central  Google Scholar 

  29. Stehle P, Ellger B, Kojic D, Feuersenger A, Schneid C, Stover J, et al. Glutamine dipeptide-supplemented parenteral nutrition improves the clinical outcomes of critically ill patients: a systematic evaluation of randomised controlled trials. Clin Nutr ESPEN. 2017;17:75–85.

    PubMed  Google Scholar 

  30. Kovacevic Z. The pathway of glutamine and glutamate oxidation in isolated mitochondria from mammalian cells. Biochemical J. 1971;125:757–63.

    CAS  Google Scholar 

  31. Craze ML, El-Ansari R, Aleskandarany MA, Cheng KW, Alfarsi L, Masisi B, et al. Glutamate dehydrogenase (GLUD1) expression in breast cancer. Breast Cancer Res Treat. 2019;174:79–91.

    CAS  PubMed  Google Scholar 

  32. Nwosu ZC, Battello N, Rothley M, Pioronska W, Sitek B, Ebert MP, et al. Liver cancer cell lines distinctly mimic the metabolic gene expression pattern of the corresponding human tumours. J Exp Clin Cancer Res. 2018;37:211.

    PubMed  PubMed Central  Google Scholar 

  33. Jin L, Chun J, Pan C, Kumar A, Zhang G, Ha Y, et al. The PLAG1-GDH1 axis promotes anoikis resistance and tumor metastasis through CamKK2-AMPK signaling in LKB1-deficient lung cancer. Mol Cell. 2018;69:87–99.e87.

    CAS  PubMed  Google Scholar 

  34. Shao N, Chai Y, Cui JQ, Wang N, Aysola K, Reddy ES, et al. Induction of apoptosis by Elk-1 and deltaElk-1 proteins. Oncogene. 1998;17:527–32.

    CAS  PubMed  Google Scholar 

  35. Chai Y, Chipitsyna G, Cui J, Liao B, Liu S, Aysola K, et al. c-Fos oncogene regulator Elk-1 interacts with BRCA1 splice variants BRCA1a/1b and enhances BRCA1a/1b-mediated growth suppression in breast cancer cells. Oncogene. 2001;20:1357–67.

    CAS  PubMed  Google Scholar 

  36. Zhang X, Zhang B, Gao J, Wang X, Liu Z. Regulation of the microRNA 200b (miRNA-200b) by transcriptional regulators PEA3 and ELK-1 protein affects expression of Pin1 protein to control anoikis. J Biol Chem. 2013;288:32742–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Dittmer J, Nordheim A. Ets transcription factors and human disease. Biochim Biophys Acta. 1998;1377:F1–11.

    CAS  PubMed  Google Scholar 

  38. Ma J, Zeng S, Zhang Y, Deng G, Qu Y, Guo C, et al. BMP4 promotes oxaliplatin resistance by an induction of epithelial-mesenchymal transition via MEK1/ERK/ELK1 signaling in hepatocellular carcinoma. Cancer Lett. 2017;411:117–29.

    CAS  PubMed  Google Scholar 

  39. Ohguchi H, Harada T, Sagawa M, Kikuchi S, Tai YT, Richardson PG, et al. KDM6B modulates MAPK pathway mediating multiple myeloma cell growth and survival. Leukemia. 2017;31:2661–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Hipskind RA, Rao VN, Mueller CG, Reddy ES, Nordheim A. Ets-related protein Elk-1 is homologous to the c-fos regulatory factor p62TCF. Nature. 1991;354:531–4.

    CAS  PubMed  Google Scholar 

  41. Yeh HY, Cheng SW, Lin YC, Yeh CY, Lin SF, Soo VW. Identifying significant genetic regulatory networks in the prostate cancer from microarray data based on transcription factor analysis and conditional independency. BMC Med Genom. 2009;2:70.

    Google Scholar 

  42. Maicas M, Vazquez I, Vicente C, Garcia-Sanchez MA, Marcotegui N, Urquiza L, et al. Functional characterization of the promoter region of the human EVI1 gene in acute myeloid leukemia: RUNX1 and ELK1 directly regulate its transcription. Oncogene. 2013;32:2069–78.

    CAS  PubMed  Google Scholar 

  43. Boros J, Donaldson IJ, O’Donnell A, Odrowaz ZA, Zeef L, Lupien M, et al. Elucidation of the ELK1 target gene network reveals a role in the coordinate regulation of core components of the gene regulation machinery. Genome Res. 2009;19:1963–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Yang R, Yi L, Dong Z, Ouyang Q, Zhou J, Pang Y, et al. Tigecycline inhibits glioma growth by regulating miRNA-199b-5p-HES1-AKT pathway. Mol Cancer Therapeutics. 2016;15:421–9.

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Nos. 81672502 and 81872071), the grant to the Key Laboratory of Higher Education Institutes of Shandong Province, the National Natural Science Foundation Cultivation Project of Jining Medical University (600788002) and Faculty Startup Fund for RY from Jining Medical University (600788001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rui Yang or Hongjuan Cui.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, R., Li, X., Wu, Y. et al. EGFR activates GDH1 transcription to promote glutamine metabolism through MEK/ERK/ELK1 pathway in glioblastoma. Oncogene 39, 2975–2986 (2020). https://doi.org/10.1038/s41388-020-1199-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-1199-2

This article is cited by

Search

Quick links