Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Aurora B induces epithelial–mesenchymal transition by stabilizing Snail1 to promote basal-like breast cancer metastasis

Abstract

Aurora B is a serine/threonine kinase that has been implicated in regulating cell proliferation in distinct cancers, including breast cancer. Here we show that Aurora B expression is elevated in basal-like breast cancer (BLBC) compared with other breast cancer subtypes. This high level of expression seems to correlate with poor metastasis-free survival and relapse-free survival in affected patients. Mechanistically, we show that elevated Aurora B expression in breast cancer cells activates AKT/GSK3β to stabilize Snail1 protein, a master regulator of epithelial–mesenchymal transition (EMT), leading to EMT induction in a kinase-dependent manner. Conversely, Aurora B knock down by short-hairpin RNAs (shRNAs) suppresses AKT/GSK3β/Snail1 signaling, reverses EMT and reduces breast cancer metastatic potential in vitro and in vivo. Finally, we identified a specific OCT4 phosphorylation site (T343) responsible for mediating Aurora B-induced AKT/GSK3β/Snail1 signaling and EMT that could be attenuated by Aurora B kinase inhibitor treatment. These findings support that Aurora B induces EMT to promote breast cancer metastasis via OCT4/AKT/GSK3β/Snail1 signaling. Pharmacologic Aurora B inhibition might be a potential effective treatment for breast cancer patients with metastatic disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Elevated Aurora B expression in breast cancer is associated with aggressive disease.
Fig. 2: Aurora B knockdown reverses the basal-like breast cancer cell mesenchymal phenotype.
Fig. 3: Aurora B knockdown suppresses basal-like breast cancer tumor metastasis.
Fig. 4: Aurora B expression stabilizes Snail1 protein.
Fig. 5: AKT/GSK3β activation is essential for Aurora B-induced Snail1 stability, which is dependent upon Aurora B kinase activity.
Fig. 6: OCT4 phosphorylation at T343 is a critical mediator for Aurora B-induced EMT.
Fig. 7: Aurora B inhibitor inhibits Aurora B-induced EMT and metastasis of TNBC.

Similar content being viewed by others

References

  1. Vargo-Gogola T, Rosen JM. Modelling breast cancer: one size does not fit all. Nat Rev Cancer. 2007;7:659–72.

    Article  CAS  PubMed  Google Scholar 

  2. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature. 2000;406:747–52.

    Article  CAS  PubMed  Google Scholar 

  3. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA. 2001;98:10869–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rakha EA, Reis-Filho JS, Ellis IO. Basal-like breast cancer: a critical review. J Clin Oncol. 2008;26:2568–81.

    Article  PubMed  Google Scholar 

  5. Dent R, Trudeau M, Pritchard KI, Hanna WM, Kahn HK, Sawka CA, et al. Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res. 2007;13:4429–34.

    Article  PubMed  Google Scholar 

  6. Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial–mesenchymal transitions in development and disease. Cell. 2009;139:871–90.

    Article  CAS  PubMed  Google Scholar 

  7. Sarrio D, Rodriguez-Pinilla SM, Hardisson D, Cano A, Moreno-Bueno G, Palacios J. Epithelial-mesenchymal transition in breast cancer relates to the basal-like phenotype. Cancer Res. 2008;68:989–97.

    Article  CAS  PubMed  Google Scholar 

  8. Dong C, Yuan T, Wu Y, Wang Y, Fan TW, Miriyala S, et al. Loss of FBP1 by Snail-mediated repression provides metabolic advantages in basal-like breast cancer. Cancer Cell. 2013;23:316–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zeng Q, Li W, Lu D, Wu Z, Duan H, Luo Y, et al. CD146, an epithelial-mesenchymal transition inducer, is associated with triple-negative breast cancer. Proc Natl Acad Sci USA. 2012;109:1127–32.

    Article  PubMed  Google Scholar 

  10. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, et al. The epithelial–mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133:704–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Brabletz T, Kalluri R, Nieto MA, Weinberg RA. EMT in cancer. Nat Rev Cancer. 2018;18:128–34.

    Article  CAS  PubMed  Google Scholar 

  12. Yu M, Bardia A, Wittner BS, Stott SL, Smas ME, Ting DT, et al. Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science. 2013;339:580–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shibue T, Weinberg RA. EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nat Rev Clin Oncol. 2017;14:611–29.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15:178–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mittal V. Epithelial mesenchymal transition in tumor metastasis. Annu Rev Pathol. 2018;13:395–412.

    Article  CAS  PubMed  Google Scholar 

  16. Chaffer CL, Marjanovic ND, Lee T, Bell G, Kleer CG, Reinhardt F, et al. Poised chromatin at the ZEB1 promoter enables breast cancer cell plasticity and enhances tumorigenicity. Cell. 2013;154:61–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schmidt JM, Panzilius E, Bartsch HS, Irmler M, Beckers J, Kari V, et al. Stem-cell-like properties and epithelial plasticity arise as stable traits after transient Twist1 activation. Cell Rep. 2015;10:131–9.

    Article  CAS  PubMed  Google Scholar 

  18. Ye X, Tam WL, Shibue T, Kaygusuz Y, Reinhardt F, Ng Eaton E, et al. Distinct EMT programs control normal mammary stem cells and tumour-initiating cells. Nature. 2015;525:256–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang A, Wang Q, Han Z, Hu W, Xi L, Gao Q, et al. Reduced expression of Snail decreases breast cancer cell motility by downregulating the expression and inhibiting the activity of RhoA GTPase. Oncol Lett. 2013;6:339–46.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zhou BP, Deng J, Xia W, Xu J, Li YM, Gunduz M, et al. Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial-mesenchymal transition. Nat Cell Biol. 2004;6:931–40.

    Article  CAS  PubMed  Google Scholar 

  21. Vinas-Castells R, Beltran M, Valls G, Gomez I, Garcia JM, Montserrat-Sentis B, et al. The hypoxia-controlled FBXL14 ubiquitin ligase targets SNAIL1 for proteasome degradation. J Biol Chem. 2010;285:3794–805.

    Article  CAS  PubMed  Google Scholar 

  22. Jin Y, Shenoy AK, Doernberg S, Chen H, Luo H, Shen H, et al. FBXO11 promotes ubiquitination of the Snail family of transcription factors in cancer progression and epidermal development. Cancer Lett. 2015;362:70–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Goldenson B, Crispino JD. The aurora kinases in cell cycle and leukemia. Oncogene. 2015;34:537–45.

    Article  CAS  PubMed  Google Scholar 

  24. Portella G, Passaro C, Chieffi P. Aurora B: a new prognostic marker and therapeutic target in cancer. Curr Med Chem. 2011;18:482–96.

    Article  CAS  PubMed  Google Scholar 

  25. Krenn V, Musacchio A. The Aurora B kinase in chromosome Bi-orientation and spindle checkpoint signaling. Front Oncol. 2015;5:225.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Fernandez-Miranda G, Trakala M, Martin J, Escobar B, Gonzalez A, Ghyselinck NB, et al. Genetic disruption of aurora B uncovers an essential role for aurora C during early mammalian development. Development. 2011;138:2661–72.

    Article  CAS  PubMed  Google Scholar 

  27. Chieffi P, Cozzolino L, Kisslinger A, Libertini S, Staibano S, Mansueto G, et al. Aurora B expression directly correlates with prostate cancer malignancy and influence prostate cell proliferation. Prostate. 2006;66:326–33.

    Article  CAS  PubMed  Google Scholar 

  28. Vischioni B, Oudejans JJ, Vos W, Rodriguez JA, Giaccone G. Frequent overexpression of aurora B kinase, a novel drug target, in non-small cell lung carcinoma patients. Mol Cancer Ther. 2006;5:2905–13.

    Article  CAS  PubMed  Google Scholar 

  29. Zeng WF, Navaratne K, Prayson RA, Weil RJ. Aurora B expression correlates with aggressive behaviour in glioblastoma multiforme. J Clin Pathol. 2007;60:218–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sorrentino R, Libertini S, Pallante PL, Troncone G, Palombini L, Bavetsias V, et al. Aurora B overexpression associates with the thyroid carcinoma undifferentiated phenotype and is required for thyroid carcinoma cell proliferation. J Clin Endocrinol Metab. 2005;90:928–35.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang Y, Jiang C, Li H, Lv F, Li X, Qian X, et al. Elevated Aurora B expression contributes to chemoresistance and poor prognosis in breast cancer. Int J Clin Exp Pathol. 2015;8:751–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Gonzalez-Loyola A, Fernandez-Miranda G, Trakala M, Partida D, Samejima K, Ogawa H, et al. Aurora B overexpression causes aneuploidy and p21Cip1 repression during tumor development. Mol Cell Biol. 2015;35:3566–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Guise AJ, Greco TM, Zhang IY, Yu F, Cristea IM. Aurora B-dependent regulation of class IIa histone deacetylases by mitotic nuclear localization signal phosphorylation. Mol Cell Proteom. 2012;11:1220–9.

    Article  CAS  Google Scholar 

  34. Wang C, Chen J, Cao W, Sun L, Sun H, Liu Y. Aurora-B and HDAC synergistically regulate survival and proliferation of lymphoma cell via AKT, mTOR and Notch pathways. Eur J Pharmacol. 2016;779:1–7.

    Article  CAS  PubMed  Google Scholar 

  35. Gully CP, Zhang F, Chen J, Yeung JA, Velazquez-Torres G, Wang E, et al. Antineoplastic effects of an Aurora B kinase inhibitor in breast cancer. Mol Cancer. 2010;9:42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jezequel P, Campone M, Gouraud W, Guerin-Charbonnel C, Leux C, Ricolleau G, et al. bc-GenExMiner: an easy-to-use online platform for gene prognostic analyses in breast cancer. Breast Cancer Res Treat. 2012;131:765–75.

    Article  PubMed  Google Scholar 

  37. Scheel C, Eaton EN, Li SH, Chaffer CL, Reinhardt F, Kah KJ, et al. Paracrine and autocrine signals induce and maintain mesenchymal and stem cell states in the breast. Cell. 2011;145:926–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu ZC, Wang HS, Zhang G, Liu H, Chen XH, Zhang F, et al. AKT/GSK-3beta regulates stability and transcription of snail which is crucial for bFGF-induced epithelial-mesenchymal transition of prostate cancer cells. Biochim Biophys Acta. 2014;1840:3096–105.

    Article  CAS  PubMed  Google Scholar 

  39. Shin J, Kim TW, Kim H, Kim HJ, Suh MY, Lee S, et al. Aurkb/PP1-mediated resetting of Oct4 during the cell cycle determines the identity of embryonic stem cells. eLife. 2016;5:e10877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang D, Lu P, Zhang H, Luo M, Zhang X, Wei X, et al. Oct-4 and Nanog promote the epithelial-mesenchymal transition of breast cancer stem cells and are associated with poor prognosis in breast cancer patients. Oncotarget. 2014;5:10803–15.

    PubMed  PubMed Central  Google Scholar 

  41. Brumbaugh J, Hou Z, Russell JD, Howden SE, Yu P, Ledvina AR, et al. Phosphorylation regulates human OCT4. Proc Natl Acad Sci USA. 2012;109:7162–8.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Abulaiti X, Zhang H, Wang A, Li N, Li Y, Wang C, et al. Phosphorylation of threonine(343) is crucial for OCT4 interaction with SOX2 in the maintenance of mouse embryonic stem cell pluripotency. Stem Cell Rep. 2017;9:1630–41.

    Article  CAS  Google Scholar 

  43. Porcelli L, Guida G, Quatrale AE, Cocco T, Sidella L, Maida I, et al. Aurora kinase B inhibition reduces the proliferation of metastatic melanoma cells and enhances the response to chemotherapy. J Transl Med. 2015;13:26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhu XP, Liu ZL, Peng AF, Zhou YF, Long XH, Luo QF, et al. Inhibition of Aurora-B suppresses osteosarcoma cell migration and invasion. Exp Ther Med. 2014;7:560–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nadler Y, Camp RL, Schwartz C, Rimm DL, Kluger HM, Kluger Y. Expression of Aurora A (but not Aurora B) is predictive of survival in breast cancer. Clin Cancer Res. 2008;14:4455–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yook JI, Li XY, Ota I, Hu C, Kim HS, Kim NH, et al. A Wnt-Axin2-GSK3beta cascade regulates Snail1 activity in breast cancer cells. Nat Cell Biol. 2006;8:1398–406.

    Article  CAS  PubMed  Google Scholar 

  47. Campbell PA, Rudnicki MA. Oct4 interaction with Hmgb2 regulates Akt signaling and pluripotency. Stem Cells. 2013;31:1107–20.

    Article  CAS  PubMed  Google Scholar 

  48. Lin Y, Yang Y, Li W, Chen Q, Li J, Pan X, et al. Reciprocal regulation of Akt and Oct4 promotes the self-renewal and survival of embryonal carcinoma cells. Mol Cell. 2012;48:627–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pattabiraman DR, Weinberg RA. Targeting the epithelial-to-mesenchymal transition: the case for differentiation-based therapy. Cold Spring Harb Symp Quant Biol. 2016;81:11–19.

    Article  PubMed  Google Scholar 

  50. Kai K, Kondo K, Wang X, Xie X, Pitner MK, Reyes ME, et al. Antitumor activity of KW-2450 against triple-negative breast cancer by inhibiting Aurora A and B kinases. Mol Cancer Ther. 2015;14:2687–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ma Y, Cao H, Lou S, Shao X, Lv W, Qi X, et al. Sequential treatment with aurora B inhibitors enhances cisplatin-mediated apoptosis via c-Myc. J Mol Med. 2015;93:427–38.

    Article  CAS  PubMed  Google Scholar 

  52. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102:15545–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Riaz M, van Jaarsveld MT, Hollestelle A, Prager-van der Smissen WJ, Heine AA, Boersma AW, et al. miRNA expression profiling of 51 human breast cancer cell lines reveals subtype and driver mutation-specific miRNAs. Breast Cancer Res: BCR. 2013;15:R33.

  54. Chin SF, Teschendorff AE, Marioni JC, Wang Y, Barbosa-Morais NL, Thorne NP, et al. High-resolution aCGH and expression profiling identifies a novel genomic subtype of ER negative breast cancer. Genome Biol. 2007;8:R215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Calabro A, Beissbarth T, Kuner R, Stojanov M, Benner A, Asslaber M, et al. Effects of infiltrating lymphocytes and estrogen receptor on gene expression and prognosis in breast cancer. Breast Cancer Res Treat. 2009;116:69–77.

    Article  CAS  PubMed  Google Scholar 

  56. Liberzon A, Birger C, Thorvaldsdottir H, Ghandi M, Mesirov JP, Tamayo P. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 2015;1:417–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (81672912, 81972753, and 81502537), the Science and Technology Program of Guangdong Province, China (2017B030301016 and 2016A030310128), the Shenzhen Basic Research Program (JCYJ20170818143630465, JCYJ20170818101638620, and JCYJ20180507182203049) and the Shenzhen Peacock Innovation Team Project (KQTD20140630100658078). The authors would like to thank Dr Jessica Tamanini (Shenzhen University, ETediting) for editing the paper prior to submission. We acknowledge the help of the Instrumental Analysis Center of Shenzhen University (Xili Campus) for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suping Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Lin, X., Wu, L. et al. Aurora B induces epithelial–mesenchymal transition by stabilizing Snail1 to promote basal-like breast cancer metastasis. Oncogene 39, 2550–2567 (2020). https://doi.org/10.1038/s41388-020-1165-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-1165-z

This article is cited by

Search

Quick links