Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The molecular march of primary and recurrent nasopharyngeal carcinoma

Abstract

Nasopharyngeal carcinoma (NPC) results from the aberrant and uncontrolled growth of the nasopharyngeal epithelium. It is highly associated with the Epstein–Barr virus, especially in regions where it is endemic. In the last decade, significant advances in genetic sequencing techniques have allowed the discovery of many new abnormal molecular processes that undoubtedly contribute to the establishment, growth and spread of this deadly disease. In this review, we consider NPC as EBV induced. We summarise the recent discoveries and how they add to our understanding of the pathophysiology of NPC in the context of genomics first in primary and then in recurrent disease. Overall, we find key early events lead to p16 inactivation and cyclin D1 expression, allowing latent viral infection. Host and viral factors work together to affect a variety of molecular pathways, the most fundamental being activation of NF-κB. Nonetheless, much still yearns to be discovered, especially in recurrent NPC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Establishment of EBV latency in the Nasopharyngeal Epithelium.
Fig. 2: Pathogenesis of nasopharyngeal carcinoma.

Similar content being viewed by others

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.

    Article  PubMed  Google Scholar 

  2. Chen YP, Chan ATC, Le QT, Blanchard P, Sun Y, Ma J. Nasopharyngeal carcinoma. Lancet. 2019;394:64–80.

    Article  PubMed  Google Scholar 

  3. Stelow EB, Wenig BM. Update from the 4th edition of the World Health Organization classification of head and neck tumours: nasopharynx. Head Neck Pathol. 2017;11:16–22.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Xu T, Tang J, Gu M, Liu L, Wei W, Yang H. Recurrent nasopharyngeal carcinoma: a clinical dilemma and challenge. Curr Oncol. 2013;20:e406–19.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Odumade OA, Hogquist KA, Balfour HH Jr. Progress and problems in understanding and managing primary Epstein-Barr virus infections. Clin Microbiol Rev. 2011;24:193–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tsang CM, Yip YL, Lo KW, Deng W, To KF, Hau PM, et al. Cyclin D1 overexpression supports stable EBV infection in nasopharyngeal epithelial cells. Proc Natl Acad Sci USA. 2012;109:E3473–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tsang CM, Tsao SW. The role of Epstein-Barr virus infection in the pathogenesis of nasopharyngeal carcinoma. Virol Sin. 2015;30:107–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bruce JP, Yip K, Bratman SV, Ito E, Liu FF. Nasopharyngeal cancer: molecular landscape. J Clin Oncol. 2015;33:3346–55.

    Article  CAS  PubMed  Google Scholar 

  9. Wang LW, Jiang S, Gewurz BE. Epstein-Barr Virus LMP1-mediated oncogenicity. J Virol. 2017;91:e01718–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ohtani N, Brennan P, Gaubatz S, Sanij E, Hertzog P, Wolvetang E, et al. Epstein-Barr virus LMP1 blocks p16INK4a-RB pathway by promoting nuclear export of E2F4/5. J Cell Biol. 2003;162:173–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rovedo M, Longnecker R. Epstein-barr virus latent membrane protein 2B (LMP2B) modulates LMP2A activity. J Virol. 2007;81:84–94.

    Article  CAS  PubMed  Google Scholar 

  12. Busson P, McCoy R, Sadler R, Gilligan K, Tursz T, Raab-Traub N. Consistent transcription of the Epstein-Barr virus LMP2 gene in nasopharyngeal carcinoma. J Virol. 1992;66:3257–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Miller CL, Lee JH, Kieff E, Longnecker R. An integral membrane protein (LMP2) blocks reactivation of Epstein-Barr virus from latency following surface immunoglobulin crosslinking. Proc Natl Acad Sci USA. 1994;91:772–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Moody CA, Scott RS, Su T, Sixbey JW. Length of Epstein-Barr virus termini as a determinant of epithelial cell clonal emergence. J Virol. 2003;77:8555–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dawson CW, Port RJ, Young LS. The role of the EBV-encoded latent membrane proteins LMP1 and LMP2 in the pathogenesis of nasopharyngeal carcinoma (NPC). Semin Cancer Biol. 2012;22:144–53.

    Article  CAS  PubMed  Google Scholar 

  16. Shah KM, Stewart SE, Wei W, Woodman CB, O’Neil JD, Dawson CW, et al. The EBV-encoded latent membrane proteins, LMP2A and LMP2B, limit the actions of interferon by targeting interferon receptors for degradation. Oncogene. 2009;28:3903–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Longan L, Longnecker R. Epstein-Barr virus latent membrane protein 2A has no growth-altering effects when expressed in differentiating epithelia. J Gen Virol. 2000;81:2245–52.

    Article  CAS  PubMed  Google Scholar 

  18. Wang C, Wang H, Zhang Y, Guo W, Long C, Wang J, et al. Berberine inhibits the proliferation of human nasopharyngeal carcinoma cells via an Epstein-Barr virus nuclear antigen 1-dependent mechanism. Oncol Rep. 2017;37:2109–20.

    Article  CAS  PubMed  Google Scholar 

  19. Khan G, Coates PJ, Kangro HO, Slavin G. Epstein Barr virus (EBV) encoded small RNAs: targets for detection by in situ hybridisation with oligonucleotide probes. J Clin Pathol. 1992;45:616–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ahmed W, Philip PS, Tariq S, Khan G. Epstein-Barr virus-encoded small RNAs (EBERs) are present in fractions related to exosomes released by EBV-transformed cells. PLoS One. 2014;9:e99163.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Wang Y, Guo Z, Shu Y, Zhou H, Wang H, Zhang W. BART miRNAs: an unimaginable force in the development of nasopharyngeal carcinoma. Eur J Cancer Prev. 2017;26:144–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Barth S, Pfuhl T, Mamiani A, Ehses C, Roemer K, Kremmer E, et al. Epstein-Barr virus-encoded microRNA miR-BART2 down-regulates the viral DNA polymerase BALF5. Nucleic Acids Res. 2008;36:666–75.

    Article  CAS  PubMed  Google Scholar 

  23. Iizasa H, Wulff BE, Alla NR, Maragkakis M, Megraw M, Hatzigeorgiou A, et al. Editing of Epstein-Barr virus-encoded BART6 microRNAs controls their dicer targeting and consequently affects viral latency. J Biol Chem. 2010;285:33358–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li J, Zeng XH, Mo HY, Rolen U, Gao YF, Zhang XS, et al. Functional inactivation of EBV-specific T-lymphocytes in nasopharyngeal carcinoma: implications for tumor immunotherapy. PLoS One. 2007;2:e1122.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Li L, Liu D, Hutt-Fletcher L, Morgan A, Masucci MG, Levitsky V. Epstein-Barr virus inhibits the development of dendritic cells by promoting apoptosis of their monocyte precursors in the presence of granulocyte macrophage-colony-stimulating factor and interleukin-4. Blood. 2002;99:3725–34.

    Article  CAS  PubMed  Google Scholar 

  26. Randall RE, Goodbourn S. Interferons and viruses: an interplay between induction, signalling, antiviral responses and virus countermeasures. J Gen Virol. 2008;89:1–47.

    Article  CAS  PubMed  Google Scholar 

  27. Roberge CJ, Larochelle B, Rola-Pleszczynski M, Gosselin J. Epstein-Barr virus induces GM-CSF synthesis by monocytes: effect on EBV-induced IL-1 and IL-1 receptor antagonist production in neutrophils. Virology. 1997;238:344–52.

    Article  CAS  PubMed  Google Scholar 

  28. Gosselin J, Menezes J, D’Addario M, Hiscott J, Flamand L, Lamoureux G, et al. Inhibition of tumor necrosis factor-alpha transcription by Epstein-Barr virus. Eur J Immunol. 1991;21:203–8.

    Article  CAS  PubMed  Google Scholar 

  29. Shen Y, Zhang S, Sun R, Wu T, Qian J. Understanding the interplay between host immunity and Epstein-Barr virus in NPC patients. Emerg Microbes Infect. 2015;4:e20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Levitskaya J, Coram M, Levitsky V, Imreh S, Steigerwald-Mullen PM, Klein G, et al. Inhibition of antigen processing by the internal repeat region of the Epstein-Barr virus nuclear antigen-1. Nature. 1995;375:685–8.

    Article  CAS  PubMed  Google Scholar 

  31. Tudor CS, Dawson CW, Eckhardt J, Niedobitek G, Buttner AC, Seliger B, et al. c-Myc and EBV-LMP1: two opposing regulators of the HLA class I antigen presentation machinery in epithelial cells. Br J Cancer. 2012;106:1980–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang L, MacIsaac KD, Zhou T, Huang PY, Xin C, Dobson JR, et al. Genomic analysis of nasopharyngeal carcinoma reveals TME-based subtypes. Mol Cancer Res. 2017;15:1722–32.

    Article  CAS  PubMed  Google Scholar 

  33. Vockerodt M, Haier B, Buttgereit P, Tesch H, Kube D. The Epstein-Barr virus latent membrane protein 1 induces interleukin-10 in Burkitt’s lymphoma cells but not in Hodgkin’s cells involving the p38/SAPK2 pathway. Virology. 2001;280:183–98.

    Article  CAS  PubMed  Google Scholar 

  34. Kitagawa N, Goto M, Kurozumi K, Maruo S, Fukayama M, Naoe T, et al. Epstein-Barr virus-encoded poly(A)(-) RNA supports Burkitt’s lymphoma growth through interleukin-10 induction. EMBO J. 2000;19:6742–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lau KM, Cheng SH, Lo KW, Lee SA, Woo JK, van Hasselt CA, et al. Increase in circulating Foxp3+CD4+CD25(high) regulatory T cells in nasopharyngeal carcinoma patients. Br J Cancer. 2007;96:617–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fogg M, Murphy JR, Lorch J, Posner M, Wang F. Therapeutic targeting of regulatory T cells enhances tumor-specific CD8+ T cell responses in Epstein-Barr virus associated nasopharyngeal carcinoma. Virology. 2013;441:107–13.

    Article  CAS  PubMed  Google Scholar 

  37. Jin S, Li R, Chen MY, Yu C, Tang LQ, Liu YM, et al. Single-cell transcriptomic analysis defines the interplay between tumor cells, viral infection, and the microenvironment in nasopharyngeal carcinoma. Cell Res. 2020;30:950–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen YP, Yin JH, Li WF, Li HJ, Chen DP, Zhang CJ, et al. Single-cell transcriptomics reveals regulators underlying immune cell diversity and immune subtypes associated with prognosis in nasopharyngeal carcinoma. Cell Res. 2020;30:1024–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lin DC, Meng X, Hazawa M, Nagata Y, Varela AM, Xu L, et al. The genomic landscape of nasopharyngeal carcinoma. Nat Genet. 2014;46:866–71.

    Article  CAS  PubMed  Google Scholar 

  40. Yuan L, Liu ZH, Lin ZR, Xu LH, Zhong Q, Zeng MS. Recurrent FGFR3-TACC3 fusion gene in nasopharyngeal carcinoma. Cancer Biol Ther. 2014;15:1613–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang J, Xie GF, He Y, Deng L, Long YK, Yang XH, et al. Interfering expression of Chimeric transcript SEPT7P2-PSPH promotes cell proliferation in patients with nasopharyngeal carcinoma. J Oncol. 2019;2019:1654724.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Zhong Q, Liu ZH, Lin ZR, Hu ZD, Yuan L, Liu YM, et al. The RARS-MAD1L1 fusion gene induces cancer stem cell-like properties and therapeutic resistance in nasopharyngeal carcinoma. Clin Cancer Res 2018;24:659–73.

    Article  CAS  PubMed  Google Scholar 

  43. Zheng H, Dai W, Cheung AK, Ko JM, Kan R, Wong BW, et al. Whole-exome sequencing identifies multiple loss-of-function mutations of NF-kappaB pathway regulators in nasopharyngeal carcinoma. Proc Natl Acad Sci USA. 2016;113:11283–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Li YY, Chung GT, Lui VW, To KF, Ma BB, Chow C, et al. Exome and genome sequencing of nasopharynx cancer identifies NF-kappaB pathway activating mutations. Nat Commun. 2017;8:14121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Saridakis V, Sheng Y, Sarkari F, Holowaty MN, Shire K, Nguyen T, et al. Structure of the p53 binding domain of HAUSP/USP7 bound to Epstein-Barr nuclear antigen 1 implications for EBV-mediated immortalization. Mol Cell. 2005;18:25–36.

    Article  CAS  PubMed  Google Scholar 

  46. Jiang N, Liu N, Yang F, Zhou Q, Cui R, Jiang W, et al. Hotspot mutations in common oncogenes are infrequent in nasopharyngeal carcinoma. Oncol Rep. 2014;32:1661–9.

    Article  CAS  PubMed  Google Scholar 

  47. Chow YP, Tan LP, Chai SJ, Abdul Aziz N, Choo SW, Lim PV, et al. Exome Sequencing Identifies Potentially Druggable Mutations in Nasopharyngeal Carcinoma. Sci Rep. 2017;7:42980.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Huang DP, Lo KW, van Hasselt CA, Woo JK, Choi PH, Leung SF, et al. A region of homozygous deletion on chromosome 9p21-22 in primary nasopharyngeal carcinoma. Cancer Res. 1994;54:4003–6.

    CAS  PubMed  Google Scholar 

  49. Chan AS, To KF, Lo KW, Ding M, Li X, Johnson P, et al. Frequent chromosome 9p losses in histologically normal nasopharyngeal epithelia from southern Chinese. Int J Cancer. 2002;102:300–3.

    Article  CAS  PubMed  Google Scholar 

  50. Wang HY, Li F, Liu N, Liu XY, Yang XH, Guo YM, et al. Prognostic implications of a molecular classifier derived from whole-exome sequencing in nasopharyngeal carcinoma. Cancer Med. 2019;8:2705–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Chung AK, OuYang CN, Liu H, Chao M, Luo JD, Lee CY, et al. Targeted sequencing of cancer-related genes in nasopharyngeal carcinoma identifies mutations in the TGF-beta pathway. Cancer Med. 2019;8:5116–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hui AB, Or YY, Takano H, Tsang RK, To KF, Guan XY, et al. Array-based comparative genomic hybridization analysis identified cyclin D1 as a target oncogene at 11q13.3 in nasopharyngeal carcinoma. Cancer Res. 2005;65:8125–33.

    Article  CAS  PubMed  Google Scholar 

  53. Dai W, Cheung AK, Ko JM, Cheng Y, Zheng H, Ngan RK, et al. Comparative methylome analysis in solid tumors reveals aberrant methylation at chromosome 6p in nasopharyngeal carcinoma. Cancer Med. 2015;4:1079–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhao R, Choi BY, Lee MH, Bode AM, Dong Z. Implications of genetic and epigenetic alterations of CDKN2A (p16(INK4a)) in cancer. EBioMed. 2016;8:30–9.

    Article  Google Scholar 

  55. Dai W, Zheng H, Cheung AK, Tang CS, Ko JM, Wong BW, et al. Whole-exome sequencing identifies MST1R as a genetic susceptibility gene in nasopharyngeal carcinoma. Proc Natl Acad Sci USA. 2016;113:3317–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chin YM, Mushiroda T, Takahashi A, Kubo M, Krishnan G, Yap LF, et al. HLA-A SNPs and amino acid variants are associated with nasopharyngeal carcinoma in Malaysian Chinese. Int J Cancer. 2015;136:678–87.

    CAS  PubMed  Google Scholar 

  57. Tang M, Zeng Y, Poisson A, Marti D, Guan L, Zheng Y, et al. Haplotype-dependent HLA susceptibility to nasopharyngeal carcinoma in a Southern Chinese population. Genes Immun. 2010;11:334–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhou Y, Shi D, Miao J, Wu H, Chen J, Zhou X, et al. PD-L1 predicts poor prognosis for nasopharyngeal carcinoma irrespective of PD-1 and EBV-DNA load. Sci Rep. 2017;7:43627.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Sousa H, Mesquita L, Ribeiro J, Catarino R, Breda E, Medeiros R. Polymorphisms in host immune response associated genes and risk of nasopharyngeal carcinoma development in Portugal. Immunobiology. 2016;221:145–52.

    Article  CAS  PubMed  Google Scholar 

  60. Hui EP, Taylor GS, Jia H, Ma BB, Chan SL, Ho R, et al. Phase I trial of recombinant modified vaccinia ankara encoding Epstein-Barr viral tumor antigens in nasopharyngeal carcinoma patients. Cancer Res. 2013;73:1676–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Li J, Chen QY, He J, Li ZL, Tang XF, Chen SP, et al. Phase I trial of adoptively transferred tumor-infiltrating lymphocyte immunotherapy following concurrent chemoradiotherapy in patients with locoregionally advanced nasopharyngeal carcinoma. Oncoimmunology. 2015;4:e976507.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Peng L, Liu JQ, Chen YP, Ma J. The next decade of clinical trials in locoregionally advanced nasopharyngeal carcinoma. Br J Radiol. 2019;92:20181031.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Peng L, Liu ZL, Xu C, Tang LL, Liu X, Lin AH, et al. The efficacy and safety of anti-epidermal growth factor receptor monoclonal antibodies in nasopharyngeal carcinoma: literature-based meta-analyses. J Cancer. 2018;9:4510–20.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Zhan Y, Fan S. Multiple mechanisms involving in radioresistance of nasopharyngeal carcinoma. J Cancer. 2020;11:4193–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Tsang NM, Chuang CC, Tseng CK, Hao SP, Kuo TT, Lin CY, et al. Presence of the latent membrane protein 1 gene in nasopharyngeal swabs from patients with mucosal recurrent nasopharyngeal carcinoma. Cancer. 2003;98:2385–92.

    Article  CAS  PubMed  Google Scholar 

  66. Xu T, Su B, Wang C, Wang S, Huang H, Pan Y, et al. Molecular markers to assess short-term disease local recurrence in nasopharyngeal carcinoma. Oncol Rep. 2015;33:1418–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Pan Y, Wang S, Su B, Zhou F, Zhang R, Xu T, et al. Stat3 contributes to cancer progression by regulating Jab1/Csn5 expression. Oncogene. 2017;36:1069–79.

    Article  CAS  PubMed  Google Scholar 

  68. Kung CP, Meckes DG Jr, Raab-Traub N. Epstein-Barr virus LMP1 activates EGFR, STAT3, and ERK through effects on PKCdelta. J Virol. 2011;85:4399–408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Pan Y, Zhang Q, Atsaves V, Yang H, Claret FX. Suppression of Jab1/CSN5 induces radio- and chemo-sensitivity in nasopharyngeal carcinoma through changes to the DNA damage and repair pathways. Oncogene. 2013;32:2756–66.

    Article  CAS  PubMed  Google Scholar 

  70. Huang ZX, Li WF, Lin S, Huang Y, Du JM, Tan YX, et al. [Identification of differentially expressed genes in recurrent nasopharyngeal carcinoma and analysis of their chromosomal location]. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2010;45:47–51.

    PubMed  Google Scholar 

  71. Huang Z, Li W, Lin S, Fang X, Zhang C, Liao Z. Identification of novel tumor suppressor genes down-regulated in recurrent nasopharyngeal cancer by DNA microarray. Indian J Otolaryngol Head Neck Surg. 2014;66:120–5.

    Article  PubMed  Google Scholar 

  72. Chen G, Hao H, Ai JW. Regulatory role of CDX2 and NOX4 expression associated with recurrent nasopharyngeal carcinoma. Eur Rev Med Pharm Sci. 2018;22:450–5.

    CAS  Google Scholar 

  73. You R, Liu YP, Lin DC, Li Q, Yu T, Zou X, et al. Clonal mutations activate the NF-kappaB pathway to promote recurrence of nasopharyngeal carcinoma. Cancer Res. 2019;79:5930–43.

    Article  CAS  PubMed  Google Scholar 

  74. Chen CL, Sheen TS, Lou IU, Huang AC. Expression of multidrug resistance 1 and glutathione-S-transferase-Pi protein in nasopharyngeal carcinoma. Hum Pathol. 2001;32:1240–4.

    Article  CAS  PubMed  Google Scholar 

  75. Chen C, Wang F, Wang Z, Li C, Luo H, Liang Y, et al. Polymorphisms in ERCC1 C8092A predict progression-free survival in metastatic/recurrent nasopharyngeal carcinoma treated with cisplatin-based chemotherapy. Cancer Chemother Pharmacol. 2013;72:315–22.

    Article  CAS  PubMed  Google Scholar 

  76. Yuan Y, Zhou X, Song J, Qiu X, Li J, Ye L, et al. Expression and clinical significance of epidermal growth factor receptor and type 1 insulin-like growth factor receptor in nasopharyngeal carcinoma. Ann Otol Rhinol Laryngol. 2008;117:192–200.

    Article  PubMed  Google Scholar 

  77. Zhang W, Wang L, Zheng F, Zou R, Xie C, Guo Q, et al. Long noncoding RNA expression signatures of metastatic nasopharyngeal carcinoma and their prognostic value. Biomed Res Int. 2015;2015:618924.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Hua WF, Zhong Q, Xia TL, Chen Q, Zhang MY, Zhou AJ, et al. RBM24 suppresses cancer progression by upregulating miR-25 to target MALAT1 in nasopharyngeal carcinoma. Cell Death Dis. 2016;7:e2352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Nie GH, Li Z, Duan HF, Luo L, Hu HY, Yang WQ, et al. lncRNA C22orf32-1 contributes to the tumorigenesis of nasopharyngeal carcinoma. Oncol Lett. 2017;13:4487–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Chen L, Sun L, Dong L, Cui P, Xia Z, Li C, et al. The role of long noncoding RNA-LET in cell proliferation and invasion of nasopharyngeal carcinoma and its mechanism. Onco Targets Ther. 2017;10:2769–78.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Ren S, Li G, Liu C, Cai T, Su Z, Wei M, et al. Next generation deep sequencing identified a novel lncRNA n375709 associated with paclitaxel resistance in nasopharyngeal carcinoma. Oncol Rep. 2016;36:1861–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Nie Y, Liu X, Qu S, Song E, Zou H, Gong C. Long non-coding RNA HOTAIR is an independent prognostic marker for nasopharyngeal carcinoma progression and survival. Cancer Sci. 2013;104:458–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Gao W, Chan JY, Wong TS. Differential expression of long noncoding RNA in primary and recurrent nasopharyngeal carcinoma. Biomed Res Int. 2014;2014:404567.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Alajez NM, Shi W, Hui AB, Bruce J, Lenarduzzi M, Ito E, et al. Enhancer of Zeste homolog 2 (EZH2) is overexpressed in recurrent nasopharyngeal carcinoma and is regulated by miR-26a, miR-101, and miR-98. Cell Death Dis. 2010;1:e85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wang S, Zhang R, Claret FX, Yang H. Involvement of microRNA-24 and DNA methylation in resistance of nasopharyngeal carcinoma to ionizing radiation. Mol Cancer Ther. 2014;13:3163–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wang LJ, Chou YF, Chen PR, Su B, Hsu YC, Chang CH, et al. Differential miRNA expression in repeated recurrence of nasopharyngeal carcinoma. Cancer Lett 2014;344:188–94.

    Article  CAS  PubMed  Google Scholar 

  87. Chen TC, Chen CH, Wang CP, Lin PH, Yang TL, Lou PJ, et al. The immunologic advantage of recurrent nasopharyngeal carcinoma from the viewpoint of Galectin-9/Tim-3-related changes in the tumour microenvironment. Sci Rep. 2017;7:10349.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Zhou Y, Miao J, Wu H, Tang H, Kuang J, Zhou X, et al. PD-1 and PD-L1 expression in 132 recurrent nasopharyngeal carcinoma: the correlation with anemia and outcomes. Oncotarget. 2017;8:51210–23.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Ma BBY, Lim WT, Goh BC, Hui EP, Lo KW, Pettinger A, et al. Antitumor activity of nivolumab in recurrent and metastatic nasopharyngeal carcinoma: an international, multicenter study of the mayo clinic phase 2 consortium (NCI-9742). J Clin Oncol. 2018;36:1412–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hsu C, Lee SH, Ejadi S, Even C, Cohen RB, Le Tourneau C, et al. Safety and antitumor activity of pembrolizumab in patients with programmed death-ligand 1-positive nasopharyngeal carcinoma: results of the KEYNOTE-028 study. J Clin Oncol. 2017;35:4050–6.

    Article  CAS  PubMed  Google Scholar 

  91. Ma BB, Goh BC, Lim WT, Hui EP, Tan EH, Lopes Gde L, et al. Multicenter phase II study of the AKT inhibitor MK-2206 in recurrent or metastatic nasopharyngeal carcinoma from patients in the mayo phase II consortium and the cancer therapeutics research group (MC1079). Invest N Drugs 2015;33:985–91.

    Article  CAS  Google Scholar 

  92. Ma WS, Ma JG, Xing LN. Efficacy and safety of recombinant human adenovirus p53 combined with chemoradiotherapy in the treatment of recurrent nasopharyngeal carcinoma. Anticancer Drugs 2017;28:230–6.

    Article  CAS  PubMed  Google Scholar 

  93. Almobarak AA, Jebreel AB, Abu-Zaid A. Molecular targeted therapy in the management of recurrent and metastatic nasopharyngeal carcinoma: a comprehensive literature review. Cureus. 2019;11:e4210.

    PubMed  PubMed Central  Google Scholar 

  94. Tsang CM, Lui VWY, Bruce JP, Pugh TJ, Lo KW. Translational genomics of nasopharyngeal cancer. Semin Cancer Biol 2020;61:84–100.

    Article  CAS  PubMed  Google Scholar 

  95. Zhang J, Jia L, Lin W, Yip YL, Lo KW, Lau VM, et al. Epstein-Barr virus-encoded latent membrane protein 1 upregulates glucose transporter 1 transcription via the mTORC1/NF-kappaB signaling pathways. J Virol.2017;91:e02168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zhang J, Jia L, Liu T, Yip YL, Tang WC, Lin W, et al. mTORC2-mediated PDHE1alpha nuclear translocation links EBV-LMP1 reprogrammed glucose metabolism to cancer metastasis in nasopharyngeal carcinoma. Oncogene. 2019;38:4669–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Yang CF, Yang GD, Huang TJ, Li R, Chu QQ, Xu L, et al. EB-virus latent membrane protein 1 potentiates the stemness of nasopharyngeal carcinoma via preferential activation of PI3K/AKT pathway by a positive feedback loop. Oncogene. 2016;35:3419–31.

    Article  CAS  PubMed  Google Scholar 

  98. Ye D, Zhu J, Zhao Q, Ma W, Xiao Y, Xu G, et al. LMP1 up-regulates calreticulin to induce epithelial-mesenchymal transition via TGF-beta/Smad3/NRP1 pathway in nasopharyngeal carcinoma cells. J Cancer. 2020;11:1257–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Liao C, Zhou Q, Zhang Z, Wu X, Zhou Z, Li B, et al. Epstein-Barr virus-encoded latent membrane protein 1 promotes extracellular vesicle secretion through syndecan-2 and synaptotagmin-like-4 in nasopharyngeal carcinoma cells. Cancer Sci. 2020;111:857–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Tempera I, De Leo A, Kossenkov AV, Cesaroni M, Song H, Dawany N, et al. Identification of MEF2B, EBF1, and IL6R as Direct Gene Targets of Epstein-Barr Virus (EBV) Nuclear Antigen 1 Critical for EBV-Infected B-Lymphocyte Survival. J Virol. 2016;90:345–55.

    Article  CAS  PubMed  Google Scholar 

  101. Wood VH, O’Neil JD, Wei W, Stewart SE, Dawson CW, Young LS. Epstein-Barr virus-encoded EBNA1 regulates cellular gene transcription and modulates the STAT1 and TGFbeta signaling pathways. Oncogene. 2007;26:4135–47.

    Article  CAS  PubMed  Google Scholar 

  102. Cheng S, Li Z, He J, Fu S, Duan Y, Zhou Q, et al. Epstein-Barr virus noncoding RNAs from the extracellular vesicles of nasopharyngeal carcinoma (NPC) cells promote angiogenesis via TLR3/RIG-I-mediated VCAM-1 expression. Biochim Biophys Acta Mol Basis Dis. 2019;1865:1201–13.

    Article  CAS  PubMed  Google Scholar 

  103. Duan Y, Li Z, Cheng S, Chen Y, Zhang L, He J, et al. Nasopharyngeal carcinoma progression is mediated by EBER-triggered inflammation via the RIG-I pathway. Cancer Lett 2015;361:67–74.

    Article  CAS  PubMed  Google Scholar 

  104. Li Z, Duan Y, Cheng S, Chen Y, Hu Y, Zhang L, et al. EBV-encoded RNA via TLR3 induces inflammation in nasopharyngeal carcinoma. Oncotarget. 2015;6:24291–303.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Zheng X, Wang J, Wei L, Peng Q, Gao Y, Fu Y, et al. Epstein-Barr Virus MicroRNA miR-BART5-3p Inhibits p53 Expression. J Virol.2018;92:e01022–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Zhou X, Zheng J, Tang Y, Lin Y, Wang L, Li Y, et al. EBV encoded miRNA BART8-3p promotes radioresistance in nasopharyngeal carcinoma by regulating ATM/ATR signaling pathway. Biosci Rep. 2019;39:BSR20190415

    Article  PubMed  PubMed Central  Google Scholar 

  107. Lung RW, Hau PM, Yu KH, Yip KY, Tong JH, Chak WP, et al. EBV-encoded miRNAs target ATM-mediated response in nasopharyngeal carcinoma. J Pathol 2018;244:394–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Lyu X, Wang J, Guo X, Wu G, Jiao Y, Faleti OD, et al. EBV-miR-BART1-5P activates AMPK/mTOR/HIF1 pathway via a PTEN independent manner to promote glycolysis and angiogenesis in nasopharyngeal carcinoma. PLoS Pathog. 2018;14:e1007484.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Xu YJ, Zhou R, Zong JF, Lin WS, Tong S, Guo QJ, et al. Epstein-Barr virus-coded miR-BART13 promotes nasopharyngeal carcinoma cell growth and metastasis via targeting of the NKIRAS2/NF-kappaB pathway. Cancer Lett. 2019;447:33–40.

    Article  CAS  PubMed  Google Scholar 

  110. Song Y, Li X, Zeng Z, Li Q, Gong Z, Liao Q, et al. Epstein-Barr virus encoded miR-BART11 promotes inflammation-induced carcinogenesis by targeting FOXP1. Oncotarget 2016;7:36783–99.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Dai W, Zheng H, Cheung AK, Lung ML. Genetic and epigenetic landscape of nasopharyngeal carcinoma. Chin Clin Oncol. 2016;5:16.

    Article  PubMed  Google Scholar 

  112. Wu ZH, Zhou T, Sun HY. DNA methylation-based diagnostic and prognostic biomarkers of nasopharyngeal carcinoma patients. Med (Baltim) 2020;99:e20682.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas J. Campion.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Campion, N.J., Ally, M., Jank, B.J. et al. The molecular march of primary and recurrent nasopharyngeal carcinoma. Oncogene 40, 1757–1774 (2021). https://doi.org/10.1038/s41388-020-01631-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-01631-2

This article is cited by

Search

Quick links