Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Pten-NOLC1 fusion promotes cancers involving MET and EGFR signalings

Abstract

Inactivation of Pten gene through deletions and mutations leading to excessive pro-growth signaling pathway activations frequently occurs in cancers. Here, we report a Pten derived pro-cancer growth gene fusion Pten-NOLC1 originated from a chr10 genome rearrangement and identified through a transcriptome sequencing analysis of human cancers. Pten-NOLC1 fusion is present in primary human cancer samples and cancer cell lines from different organs. The product of Pten-NOLC1 is a nuclear protein that interacts and activates promoters of EGFR, c-MET, and their signaling molecules. Pten-NOLC1 promotes cancer proliferation, growth, invasion, and metastasis, and reduces the survival of animals xenografted with Pten-NOLC1-expressing cancer cells. Genomic disruption of Pten-NOLC1 induces cancer cell death, while genomic integration of this fusion gene into the liver coupled with somatic Pten deletion produces spontaneous liver cancers in mice. Our studies indicate that Pten-NOLC1 gene fusion is a driver for human cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pten-NOLC1 fusion.
Fig. 2: Pten-NOLC1 fusion in human cancers.
Fig. 3: Pten-NOLC1 is localized in the nucleus and lacks PIP3 phosphatase activity.
Fig. 4: Pten-NOLC1 promotes cancer cell growth and invasion in vitro and in vivo.
Fig. 5: Pten-NOLC1 interacts with genomic DNA and activates the expression of progrowth genes.
Fig. 6: Pten-NOLC1 fusion generates spontaneous liver cancer.

Similar content being viewed by others

References

  1. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  Google Scholar 

  2. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57–70.

    Article  CAS  Google Scholar 

  3. Luo JH, Liu S, Zuo ZH, Chen R, Tseng GC, Yu YP. Discovery and classification of fusion transcripts in prostate cancer and normal prostate tissue. Am J Pathol 2015;185:1834–45.

  4. Benson ES. Leukemia and the Philadelphia chromosome. Postgrad Med. 1961;30:A22–A28.

    Article  CAS  Google Scholar 

  5. Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW. et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science. 2005;310:644–8.

    Article  CAS  Google Scholar 

  6. Kroll TG, Sarraf P, Pecciarini L, Chen CJ, Mueller E, Spiegelman BM. et al. PAX8-PPARgamma1 fusion oncogene in human thyroid carcinoma [corrected]. Science. 2000;289:1357–60.

    Article  CAS  Google Scholar 

  7. Chen ZH, Yu YP, Tao J, Liu S, Tseng G, Nalesnik M, et al. MAN2A1-FER fusion gene is expressed by human liver and other tumor types and has oncogenic activity in mice. Gastroenterology. 2017;153:1120–32.

    Article  CAS  Google Scholar 

  8. Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI. et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science. 1997;275:1943–7.

    Article  CAS  Google Scholar 

  9. Steck PA, Pershouse MA, Jasser SA, Yung WK, Lin H, Ligon AH, et al. Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet. 1997;15:356–62.

    Article  CAS  Google Scholar 

  10. Myers MP, Pass I, Batty IH, Van der Kaay J, Stolarov JP, Hemmings BA, et al. The lipid phosphatase activity of PTEN is critical for its tumor supressor function. Proc Natl Acad Sci USA. 1998;95:13513–8.

    Article  CAS  Google Scholar 

  11. Maehama T, Dixon JE. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem. 1998;273:13375–8.

    Article  CAS  Google Scholar 

  12. Sansal I, Sellers WR. The biology and clinical relevance of the PTEN tumor suppressor pathway. J Clin Oncol. 2004;22:2954–63.

    Article  CAS  Google Scholar 

  13. McCubrey JA, Steelman LS, Abrams SL, Lee JT, Chang F, Bertrand FE, et al. Roles of the RAF/MEK/ERK and PI3K/PTEN/AKT pathways in malignant transformation and drug resistance. Adv Enzym Regul. 2006;46:249–79.

    Article  CAS  Google Scholar 

  14. Baker SJ. PTEN enters the nuclear age. Cell. 2007;128:25–28.

    Article  CAS  Google Scholar 

  15. Trotman LC, Wang X, Alimonti A, Chen Z, Teruya-Feldstein J, Yang H, et al. Ubiquitination regulates PTEN nuclear import and tumor suppression. Cell. 2007;128:141–56.

    Article  CAS  Google Scholar 

  16. Yin Y, Shen WH. PTEN: a new guardian of the genome. Oncogene. 2008;27:5443–53.

    Article  CAS  Google Scholar 

  17. Chen HK, Pai CY, Huang JY, Yeh NH. Human Nopp140, which interacts with RNA polymerase I: implications for rRNA gene transcription and nucleolar structural organization. Mol Cell Biol. 1999;19:8536–46.

    Article  CAS  Google Scholar 

  18. Tsai YT, Lin CI, Chen HK, Lee KM, Hsu CY, Yang SJ, et al. Chromatin tethering effects of hNopp140 are involved in the spatial organization of nucleolus and the rRNA gene transcription. J Biomed Sci. 2008;15:471–86.

    Article  CAS  Google Scholar 

  19. Renvoise B, Colasse S, Burlet P, Viollet L, Meier UT, Lefebvre S. The loss of the snoRNP chaperone Nopp140 from Cajal bodies of patient fibroblasts correlates with the severity of spinal muscular atrophy. Hum Mol Genet. 2009;18:1181–9.

    Article  CAS  Google Scholar 

  20. Hwang YC, Lu TY, Huang DY, Kuo YS, Kao CF, Yeh NH, et al. NOLC1, an enhancer of nasopharyngeal carcinoma progression, is essential for TP53 to regulate MDM2 expression. Am J Pathol. 2009;175:342–54.

    Article  CAS  Google Scholar 

  21. Litovchick L, Sadasivam S, Florens L, Zhu X, Swanson SK, Velmurugan S, et al. Evolutionarily conserved multisubunit RBL2/p130 and E2F4 protein complex represses human cell cycle-dependent genes in quiescence. Mol Cell. 2007;26:539–51.

    Article  CAS  Google Scholar 

  22. Gao X, Wang Q, Li W, Yang B, Song H, Ju W, et al. Identification of nucleolar and coiled-body phosphoprotein 1 (NOLC1) minimal promoter regulated by NF-kappaB and CREB. BMB Rep. 2011;44:70–75.

    Article  CAS  Google Scholar 

  23. Isaac C, Yang Y, Meier UT. Nopp140 functions as a molecular link between the nucleolus and the coiled bodies. J Cell Biol. 1998;142:319–29.

    Article  CAS  Google Scholar 

  24. Pai CY, Chen HK, Sheu HL, Yeh NH. Cell-cycle-dependent alterations of a highly phosphorylated nucleolar protein p130 are associated with nucleologenesis. J Cell Sci. 1995;108:1911–20.

    CAS  PubMed  Google Scholar 

  25. Li AG, Piluso LG, Cai X, Wei G, Sellers WR, Liu X. Mechanistic insights into maintenance of high p53 acetylation by PTEN. Mol Cell. 2006;23:575–87.

    Article  Google Scholar 

  26. Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE, et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell. 2013;154:1380–9.

    Article  CAS  Google Scholar 

  27. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337:816–21.

    Article  CAS  Google Scholar 

  28. Lee YM, Miau LH, Chang CJ, Lee SC. Transcriptional induction of the alpha-1 acid glycoprotein (AGP) gene by synergistic interaction of two alternative activator forms of AGP/enhancer-binding protein (C/EBP beta) and NF-kappaB or Nopp140. Mol Cell Biol. 1996;16:4257–63.

    Article  CAS  Google Scholar 

  29. Wang X, DeFrances MC, Dai Y, Pediaditakis P, Johnson C, Bell A, et al. A mechanism of cell survival: sequestration of Fas by the HGF receptor Met. Mol Cell. 2002;9:411–21.

    Article  CAS  Google Scholar 

  30. Chen ZH, Yu YP, Zuo ZH, Nelson JB, Michalopoulos GK, Monga S, et al. Targeting genomic rearrangements in tumor cells through Cas9-mediated insertion of a suicide gene. Nat Biotechnol. 2017;35:543–50.

    Article  CAS  Google Scholar 

  31. Yu YP, Liu P, Nelson J, Hamilton RL, Bhargava R, Michalopoulos G, et al. Identification of recurrent fusion genes across multiple cancer types. Sci Rep. 2019;9:1074.

    Article  Google Scholar 

  32. Yan-Ping, Y., Allan, T., Silvia L., Michael, N., David G., George, M. et al. Detection of fusion transcripts in the serum samples of patients with hepatocellular carcinoma. Oncotarget 2019; in press.

  33. Zuo ZH, Yu YP, Martin A, Luo JH. Cellular stress response 1 down-regulates the expression of epidermal growth factor receptor and platelet-derived growth factor receptor through inactivation of splicing factor 3A3. Mol Carcinog. 2017;56:315–24.

    Article  CAS  Google Scholar 

  34. Chen ZH, Yu YP, Michalopoulos G, Nelson J, Luo JH. The DNA replication licensing factor miniature chromosome maintenance 7 is essential for RNA splicing of epidermal growth factor receptor, c-Met, and platelet-derived growth factor receptor. J Biol Chem. 2015;290:1404–11.

    Article  Google Scholar 

  35. Yu YP, Michalopoulos A, Ding Y, Tseng G, Luo JH. High fidelity copy number analysis of formalin-fixed and paraffin-embedded tissues using Affymetrix Cytoscan HD chip. PLoS ONE. 2014;9:e92820.

    Article  Google Scholar 

  36. Yu YP, Tsung A, Liu S, Nalesnick M, Geller D, Michalopoulos G, et al. Detection of fusion transcripts in the serum samples of patients with hepatocellular carcinoma. Oncotarget. 2019;10:3352–60.

    Article  Google Scholar 

  37. He DM, Ren BG, Liu S, Tan LZ, Cieply K, Tseng G, et al. Oncogenic activity of amplified miniature chromosome maintenance 8 in human malignancies. Oncogene. 2017;36:3629–39.

    Article  CAS  Google Scholar 

  38. Yu YP, Ding Y, Chen Z, Liu S, Michalopoulos A, Chen R, et al. Novel fusion transcripts associate with progressive prostate cancer. Am J Pathol. 2014;184:2840–9.

    Article  CAS  Google Scholar 

  39. Han YC, Zheng ZL, Zuo ZH, Yu YP, Chen R, Tseng GC, et al. Metallothionein 1 h tumour suppressor activity in prostate cancer is mediated by euchromatin methyltransferase 1. J Pathol. 2013;230:184–93.

    Article  CAS  Google Scholar 

  40. Yu G, Tseng GC, Yu YP, Gavel T, Nelson J, Wells A, et al. CSR1 suppresses tumor growth and metastasis of prostate cancer. Am J Pathol. 2006;168:597–607.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Cell Biology Imaging Center of Univeristy of Pittsburgh for the support of cell imaging analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian-Hua Luo or Yan-Ping Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, JH., Liu, S., Tao, J. et al. Pten-NOLC1 fusion promotes cancers involving MET and EGFR signalings. Oncogene 40, 1064–1076 (2021). https://doi.org/10.1038/s41388-020-01582-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-01582-8

This article is cited by

Search

Quick links