Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Current understanding of CREPT and p15RS, carboxy-terminal domain (CTD)-interacting proteins, in human cancers

Abstract

CREPT and p15RS, also named RPRD1B and RPRD1A, are RPRD (regulation of nuclear pre-mRNA-domain-containing) proteins containing C-terminal domain (CTD)-interacting domain (CID), which mediates the binding to the CTD of Rpb1, the largest subunit of RNA polymerase II (RNAPII). CREPT and p15RS are highly conserved, with a common yeast orthologue Rtt103. Intriguingly, human CREPT and p15RS possess opposite functions in the regulation of cell proliferation and tumorigenesis. While p15RS inhibits cell proliferation, CREPT promotes cell cycle and tumor growth. Aberrant expression of both CREPT and p15RS was found in numerous types of cancers. At the molecular level, both CREPT and p15RS were reported to regulate gene transcription by interacting with RNAPII. However, CREPT also exerts a key function in the processes linked to DNA damage repairs. In this review, we summarized the recent studies regarding the biological roles of CREPT and p15RS, as well as the molecular mechanisms underlying their activities. Fully revealing the mechanisms of CREPT and p15RS functions will not only provide new insights into understanding gene transcription and maintenance of DNA stability in tumors, but also promote new approach development for tumor diagnosis and therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A phylogenic tree of the CREPT/p15RS family proteins.
Fig. 2: Sequence alignments of Rtt103, Rhn1, Cids-1, p15RS/RPRD1A, and CREPT/RPRD1B.
Fig. 3: The inhibitory role of p15RS in transcription regulation.
Fig. 4: The models of CREPT in transcription regulation.
Fig. 5: The structures of Rtt103, p15RS, and CREPT.
Fig. 6: The regulation of DNA damage repair by Rtt103 and CREPT.

Similar content being viewed by others

References

  1. Lunde BM, Reichow SL, Kim M, Suh H, Leeper TC, Yang F, et al. Cooperative interaction of transcription termination factors with the RNA polymerase II C-terminal domain. Nat Struct Mol Biol. 2010;17:1195–201.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Ali I, Ruiz DG, Ni Z, Johnson JR, Zhang H, Li PC, et al. Crosstalk between RNA Pol II C-Terminal domain acetylation and phosphorylation via RPRD proteins. Mol Cell. 2019;74:1164–74.

  3. Chapman RD, Heidemann M, Hintermair C, Eick D. Molecular evolution of the RNA polymerase II CTD. Trends Genet. 2008;24:289–96.

    CAS  PubMed  Google Scholar 

  4. Barilla D, Lee BA, Proudfoot NJ. Cleavage/polyadenylation factor IA associates with the carboxyl-terminal domain of RNA polymerase II in Saccharomyces cerevisiae. Proc Natl Acad Sci USA. 2001;98:445–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Kim M, Krogan NJ, Vasiljeva L, Rando OJ, Nedea E, Greenblatt JF, et al. The yeast Rat1 exonuclease promotes transcription termination by RNA polymerase II. Nature. 2004;432:517–22.

    CAS  PubMed  Google Scholar 

  6. Yuryev A, Patturajan M, Litingtung Y, Joshi RV, Gentile C, Gebara M, et al. The C-terminal domain of the largest subunit of RNA polymerase II interacts with a novel set of serine/arginine-rich proteins. Proc Natl Acad Sci USA. 1996;93:6975–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Patturajan M, Wei X, Berezney R, Corden JL. A nuclear matrix protein interacts with the phosphorylated C-terminal domain of RNA polymerase II. Mol Cell Biol. 1998;18:2406–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Doerks T, Copley RR, Schultz J, Ponting CP, Bork P. Systematic identification of novel protein domain families associated with nuclear functions. Genome Res. 2002;12:47–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Liu J, Liu H, Zhang X, Gao P, Wang J, Hu Z. Identification and characterization of P15RS, a novel P15(INK4b) related gene on G1/S progression. Biochem Biophys Res Commun. 2002;299:880–5.

    CAS  PubMed  Google Scholar 

  10. Guhua JXY, Chang Z. Cloning and expession of a novel p15(ink4b) related gene CCRG in kidney carcinomas. J Chin Pathol. 2003;19:1300–4.

  11. Lu D, Wu Y, Wang Y, Ren F, Wang D, Su F, et al. CREPT accelerates tumorigenesis by regulating the transcription of cell-cycle-related genes. Cancer Cell. 2012;21:92–104.

    CAS  PubMed  Google Scholar 

  12. Ni Z, Olsen JB, Guo X, Zhong G, Ruan ED, Marcon E, et al. Control of the RNA polymerase II phosphorylation state in promoter regions by CTD interaction domain-containing proteins RPRD1A and RPRD1B. Transcription. 2011;2:237–42.

    PubMed  PubMed Central  Google Scholar 

  13. Sugiyama T, Sugioka-Sugiyama R, Hada K, Niwa R. Rhn1, a nuclear protein, is required for suppression of meiotic mRNAs in mitotically dividing fission yeast. PLoS ONE. 2012;7:e42962.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Tong AH, Evangelista M, Parsons AB, Xu H, Bader GD, Page N, et al. Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science. 2001;294:2364–8.

    CAS  PubMed  Google Scholar 

  15. Mei K, Jin Z, Ren F, Wang Y, Chang Z, Wang X. Structural basis for the recognition of RNA polymerase II C-terminal domain by CREPT and p15RS. Sci China Life Sci. 2014;57:97–106.

    CAS  PubMed  Google Scholar 

  16. Xiao-Yong Zhang WZ, Gao P, Chang Z-J, Sun Y-N, Liu H-T. Protein localizatoin of a novel gene p15RS in cell cycle of BGC-823 cells. Prog Biochem Biophys. 2005;32:771–6.

    Google Scholar 

  17. Wu Y, Zhang Y, Zhang H, Yang X, Wang Y, Ren F, et al. p15RS attenuates Wnt/{beta}-catenin signaling by disrupting {beta}-catenin.TCF4 Interaction. J Biol Chem. 2010;285:34621–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Ingham RJ, Colwill K, Howard C, Dettwiler S, Lim CS, Yu J, et al. WW domains provide a platform for the assembly of multiprotein networks. Mol Cell Biol. 2005;25:7092–106.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Srividya I, Tirupataiah S, Mishra K. Yeast transcription termination factor Rtt103 functions in DNA damage response. PLoS ONE. 2012;7:e31288.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Morales JC, Richard P, Rommel A, Fattah FJ, Motea EA, Patidar PL, et al. Kub5-Hera, the human Rtt103 homolog, plays dual functional roles in transcription termination and DNA repair. Nucleic Acids Res. 2014;42:4996–5006.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Strausberg RL, Feingold EA, Grouse LH, Derge JG, Klausner RD, Collins FS, et al. Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proc Natl Acad Sci USA. 2002;99:16899–903.

    PubMed  Google Scholar 

  22. Zhang Y, Liu C, Duan X, Ren F, Li S, Jin Z, et al. CREPT/RPRD1B, a recently identified novel protein highly expressed in tumors, enhances the beta-catenin.TCF4 transcriptional activity in response to Wnt signaling. J Biol Chem. 2014;289:22589–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu C, Zhang Y, Li J, Wang Y, Ren F, Zhou Y, et al. p15RS/RPRD1A (p15INK4b-related sequence/regulation of nuclear pre-mRNA domain-containing protein 1A) interacts with HDAC2 in inhibition of the Wnt/beta-catenin signaling pathway. J Biol Chem. 2015;290:9701–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Tucker JF, Ohle C, Schermann G, Bendrin K, Zhang W, Fischer T, et al. A novel epigenetic silencing pathway involving the highly conserved 5’-3’ exoribonuclease Dhp1/Rat1/Xrn2 in Schizosaccharomyces pombe. PLoS Genet. 2016;12:e1005873.

    PubMed  PubMed Central  Google Scholar 

  25. Ding L, Yang L, He Y, Zhu B, Ren F, Fan X, et al. CREPT/RPRD1B associates with Aurora B to regulate Cyclin B1 expression for accelerating the G2/M transition in gastric cancer. Cell Death Dis. 2018;9:1172.

    PubMed  PubMed Central  Google Scholar 

  26. Sterner DE, Lee JM, Hardin SE, Greenleaf AL. The yeast carboxyl-terminal repeat domain kinase CTDK-I is a divergent cyclin-cyclin-dependent kinase complex. Mol Cell Biol. 1995;15:5716–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Harlen KM, Churchman LS. The code and beyond: transcription regulation by the RNA polymerase II carboxy-terminal domain. Nat Rev Mol Cell Biol. 2017;18:263–73.

    CAS  PubMed  Google Scholar 

  28. Jin K, Chen H, Zuo Q, Huang C, Zhao R, Yu X, et al. CREPT and p15RS regulate cell proliferation and cycling in chicken DF-1 cells through the Wnt/beta-catenin pathway. J Cell Biochem. 2018;119:1083–92.

    CAS  PubMed  Google Scholar 

  29. Zhang X, Cao Q, Liu X, Liu S, Wang J, Sun S, et al. Cellular and molecular evidence for malignancy-inhibitory functions of p15RS. Cell Cycle. 2012;11:1988–98.

    CAS  PubMed  Google Scholar 

  30. Ren L, Chen H, Song J, Chen X, Lin C, Zhang X, et al. MiR-454-3p-mediated Wnt/beta-catenin signaling antagonists suppression promotes breast cancer metastasis. Theranostics. 2019;9:449–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Clevers H. Wnt/beta-catenin signaling in development and disease. Cell. 2006;127:469–80.

    CAS  PubMed  Google Scholar 

  32. Fan X, Zhao J, Ren F, Wang Y, Feng Y, Ding L, et al. Dimerization of p15RS mediated by a leucine zipper-like motif is critical for its inhibitory role on Wnt signaling. J Biol Chem. 2018;293:7618–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang Y, Wang S, Kang W, Liu C, Dong Y, Ren F, et al. CREPT facilitates colorectal cancer growth through inducing Wnt/beta-catenin pathway by enhancing p300-mediated beta-catenin acetylation. Oncogene. 2018;37:3485–3500.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Motea EA, Fattah FJ, Xiao L, Girard L, Rommel A, Morales JC, et al. Kub5-Hera (RPRD1B) deficiency promotes “BRCAness” and vulnerability to PARP inhibition in BRCA-proficient breast cancers. Clin Cancer Res. 2018;24:6459–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang Y, Qiu H, Hu W, Li S, Yu J. RPRD1B promotes tumor growth by accelerating the cell cycle in endometrial cancer. Oncol Rep. 2014;31:1389–95.

    CAS  PubMed  Google Scholar 

  36. Vasiljeva L, Buratowski S. Nrd1 interacts with the nuclear exosome for 3’ processing of RNA polymerase II transcripts. Mol Cell. 2006;21:239–48.

    CAS  PubMed  Google Scholar 

  37. Buratowski S. Connections between mRNA 3’ end processing and transcription termination. Curr Opin Cell Biol. 2005;17:257–61.

    CAS  PubMed  Google Scholar 

  38. Weintraub AS, Li CH, Zamudio AV, Sigova AA, Hannett NM, Day DS, et al. YY1 Is a structural regulator of enhancer-promoter loops. Cell. 2017;171:1573–88 e1528.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Hsin JP, Manley JL. The RNA polymerase II CTD coordinates transcription and RNA processing. Genes Dev. 2012;26:2119–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Ni Z, Xu C, Guo X, Hunter GO, Kuznetsova OV, Tempel W, et al. RPRD1A and RPRD1B are human RNA polymerase II C-terminal domain scaffolds for Ser5 dephosphorylation. Nat Struct Mol Biol. 2014;21:686–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Jasnovidova O, Klumpler T, Kubicek K, Kalynych S, Plevka P, Stefl R. Structure and dynamics of the RNAPII CTDsome with Rtt103. Proc Natl Acad Sci USA. 2017;114:11133–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Meinhart A, Cramer P. Recognition of RNA polymerase II carboxy-terminal domain by 3’-RNA-processing factors. Nature. 2004;430:223–6.

    CAS  PubMed  Google Scholar 

  43. Noble CG, Hollingworth D, Martin SR, Ennis-Adeniran V, Smerdon SJ, Kelly G, et al. Key features of the interaction between Pcf11 CID and RNA polymerase II CTD. Nat Struct Mol Biol. 2005;12:144–51.

    CAS  PubMed  Google Scholar 

  44. Jasnovidova O, Krejcikova M, Kubicek K, Stefl R. Structural insight into recognition of phosphorylated threonine-4 of RNA polymerase II C-terminal domain by Rtt103p. EMBO Rep. 2017;18:906–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Egloff S, Zaborowska J, Laitem C, Kiss T, Murphy S. Ser7 phosphorylation of the CTD recruits the RPAP2 Ser5 phosphatase to snRNA genes. Mol Cell. 2012;45:111–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Schroder S, Herker E, Itzen F, He D, Thomas S, Gilchrist DA, et al. Acetylation of RNA polymerase II regulates growth-factor-induced gene transcription in mammalian cells. Mol Cell. 2013;52:314–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Zheng G, Li W, Zuo B, Guo Z, Xi W, Wei M, et al. High expression of CREPT promotes tumor growth and is correlated with poor prognosis in colorectal cancer. Biochem Biophys Res Commun. 2016;480:436–42.

    CAS  PubMed  Google Scholar 

  48. Sun M, Si G, Sun HS, Si FC. Inhibition of CREPT restrains gastric cancer growth by regulation of cycle arrest, migration and apoptosis via ROS-regulated p53 pathway. Biochem Biophys Res Commun. 2018;496:1183–90.

    CAS  PubMed  Google Scholar 

  49. Li J, Smith AR, Marquez RT, Li J, Li K, Lan L, et al. MicroRNA-383 acts as a tumor suppressor in colorectal cancer by modulating CREPT/RPRD1B expression. Mol Carcinog. 2018;57:1408–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Ma J, Ren Y, Zhang L, Kong X, Wang T, Shi Y, et al. Knocking-down of CREPT prohibits the progression of oral squamous cell carcinoma and suppresses cyclin D1 and c-Myc expression. PLoS ONE. 2017;12:e0174309.

    PubMed  PubMed Central  Google Scholar 

  51. Collin P, Jeronimo C, Poitras C, Robert F. RNA polymerase II CTD Tyrosine 1 is required for efficient termination by the Nrd1-Nab3-Sen1 pathway. Mol Cell. 2019;73:655–69 e657.

    CAS  PubMed  Google Scholar 

  52. Marechal A, Li JM, Ji XY, Wu CS, Yazinski SA, Nguyen HD, et al. PRP19 transforms into a sensor of RPA-ssDNA after DNA damage and drives ATR activation via a ubiquitin-mediated circuitry. Mol Cell. 2014;53:235–46.

    CAS  PubMed  Google Scholar 

  53. Stirling PC, Chan YA, Minaker SW, Aristizabal MJ, Barrett I, Sipahimalani P, et al. R-loop-mediated genome instability in mRNA cleavage and polyadenylation mutants. Genes Dev. 2012;26:163–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Patidar PL, Motea EA, Fattah FJ, Zhou Y, Morales JC, Xie Y, et al. The Kub5-Hera/RPRD1B interactome: a novel role in preserving genetic stability by regulating DNA mismatch repair. Nucleic Acids Res. 2016;44:1718–31.

    PubMed  PubMed Central  Google Scholar 

  55. Aguilera A, García-Muse T. R loops: from transcription byproducts to threats to genome stability. Mol Cell. 2012;46:115–24.

    CAS  PubMed  Google Scholar 

  56. Belotserkovskii BP, Neil AJ, Saleh SS, Shin JHS, Mirkin SM, Hanawalt PC. Transcription blockage by homopurine DNA sequences: role of sequence composition and single-strand breaks. Nucleic Acids Res. 2013;41:1817–28.

    CAS  PubMed  Google Scholar 

  57. She Y, Liang J, Chen L, Qiu Y, Liu N, Zhao X, et al. CREPT expression correlates with poor prognosis in patients with retroperitoneal leiomyosarcoma. Int J Clin Exp Pathol. 2014;7:6596–605.

    PubMed  PubMed Central  Google Scholar 

  58. Li W, Zheng G, Xia J, Yang G, Sun J, Wang X, et al. Cell cycle-related and expression-elevated protein in tumor overexpression is associated with proliferation behaviors and poor prognosis in non-small-cell lung cancer. Cancer Sci. 2018;109:1012–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Liu T, Li WM, Wang WP, Sun Y, Ni YF, Xing H, et al. Inhibiting CREPT reduces the proliferation and migration of non-small cell lung cancer cells by down-regulating cell cycle related protein. Am J Transl Res. 2016;8:2097–113.

    PubMed  PubMed Central  Google Scholar 

  60. Jung HM, Choi SJ, Kim JK. Expression profiles of SV40-immortalization-associated genes upregulated in various human cancers. J Cell Biochem. 2009;106:703–13.

    CAS  PubMed  Google Scholar 

  61. Kuang YS, Wang Y, Ding LD, Yang L, Wang Y, Liu SH, et al. Overexpression of CREPT confers colorectal cancer sensitivity to fluorouracil. World J Gastroenterol. 2018;24:475–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Wei M, Cao Y, Jia D, Zhao H, Zhang L. CREPT promotes glioma cell proliferation and invasion by activating Wnt/beta-catenin pathway and is a novel target of microRNA-596. Biochimie. 2019;162:116–24.

    CAS  PubMed  Google Scholar 

  63. Zhang Z, Shao L, Wang Y, Luo X. MicroRNA-501-3p restricts prostate cancer growth through regulating cell cycle-related and expression-elevated protein in tumor/cyclin D1 signaling. Biochem Biophys Res Commun. 2019;509:746–52.

    CAS  PubMed  Google Scholar 

  64. Yu S, Huang H, Wang S, Xu H, Xue Y, Huang Y, et al. CREPT is a novel predictor of the response to adjuvant therapy or concurrent chemoradiotherapy in esophageal squamous cell carcinoma. Int J Clin Exp Pathol. 2019;12:3301.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Kamieniarz-Gdula K, Gdula MR, Panser K, Nojima T, Monks J, Wisniewski JR, et al. Selective Roles of Vertebrate PCF11 in Premature and Full-Length Transcript Termination. Mol Cell. 2019;74:158–72 e159.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Wen N, Bian L, Gong J, Meng Y. Overexpression of cell-cycle related and expression-elevated protein in tumor (CREPT) in malignant cervical cancer. J Int Med Res. 2020;48:300060519895089.

    CAS  PubMed  Google Scholar 

  67. Liang Z, Feng Q, Xu L, Li S, Zhou L. CREPT regulated by miR-138 promotes breast cancer progression. Biochem Biophys Res Commun. 2017;493:263–9.

    CAS  PubMed  Google Scholar 

  68. Jiang J, Yang X, He X, Ma W, Wang J, Zhou Q, et al. MicroRNA-449b-5p suppresses the growth and invasion of breast cancer cells via inhibiting CREPT-mediated Wnt/beta-catenin signaling. Chem Biol Interact. 2019;302:74–82.

    CAS  PubMed  Google Scholar 

  69. Long L, He JZ, Chen Y, Xu XE, Liao LD, Xie YM, et al. Riboflavin depletion promotes tumorigenesis in HEK293T and NIH3T3 cells by sustaining cell proliferation and regulating cell cycle-related gene transcription. J Nutr. 2018;148:834–43.

    PubMed  Google Scholar 

  70. Komor MA, de Wit M, van den Berg J, Martens de Kemp SR, Delis‐van Diemen PM, Bolijn AS, et al. Molecular characterization of colorectal adenomas reveals POFUT1 as a candidate driver of tumor progression. Int J Cancer. 2020;146:92.

    Google Scholar 

  71. Ma D, Zou Y, Chu Y, Liu Z, Liu G, Chu J, et al. A cell-permeable peptide-based PROTAC against the oncoprotein CREPT proficiently inhibits pancreatic cancer. Theranostics. 2020;10:3708–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Park JS, Young Yoon S, Kim JM, Yeom YI, Kim YS, Kim NS. Identification of novel genes associated with the response to 5-FU treatment in gastric cancer cell lines using a cDNA microarray. Cancer Lett. 2004;214:19–33.

    CAS  PubMed  Google Scholar 

  73. Dolan ME, El Charif O, Wheeler HE, Gamazon ER, Ardeshir-Rouhani-Fard S, Monahan P, et al. Clinical and genome-wide analysis of cisplatin-induced peripheral neuropathy in survivors of adult-onset cancer. Clin Cancer Res. 2017;23:5757–68.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Robert N. Eisenman, from Fred Hutchinson Cancer Research Center, for his kindly reading of the manuscript.

Funding

This work was supported by grants from the Chinese National Major Scientific Research Program (2016YFA0500301), and grants from the National Natural Science Foundation of China (81830092, 81230044).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhijie Chang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Ma, D. & Chang, Z. Current understanding of CREPT and p15RS, carboxy-terminal domain (CTD)-interacting proteins, in human cancers. Oncogene 40, 705–716 (2021). https://doi.org/10.1038/s41388-020-01544-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-01544-0

This article is cited by

Search

Quick links