Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Synthetic lethality between MyD88 loss and mutations in Wnt/β-catenin pathway in intestinal tumor epithelial cells

Abstract

Although the Wnt/β-catenin pathway plays a central role in the carcinogenesis and maintenance of colorectal cancer (CRC), attempts to target the pathway itself have not been very successful. MyD88, an adaptor protein of the TLR/IL-1β signaling, has been implicated in the integrity of the intestines as well as in their tumorigenesis. In this study, we aimed to clarify the mechanisms by which epithelial MyD88 contributes to intestinal tumor formation and to address whether MyD88 can be a therapeutic target of CRC. Conditional knockout of MyD88 in intestinal epithelial cells (IECs) reduced tumor formation in Apc+/Δ716 mice, accompanied by decreased proliferation and enhanced apoptosis of tumor epithelial cells. Mechanistically, the MyD88 loss caused inactivation of the JNK-mTORC1, NF-κB, and Wnt/β-catenin pathways in tumor cells. Induction of MyD88 knockout in the intestinal tumor-derived organoids, but not in the normal IEC-derived organoids, induced apoptosis and reduced their growth. Treatment with the MyD88 inhibitor ST2825 also suppressed the growth of the intestinal tumor-derived organoids. Knockdown of MYD88 in human CRC cell lines with mutations in APC or CTNNB1 induced apoptosis and reduced their proliferation as well. These results indicate that MyD88 loss is synthetic lethal with mutational activation of the Wnt/β-catenin signaling in intestinal tumor epithelial cells. Inhibition of MyD88 signaling can thus be a novel therapeutic strategy for familial adenomatous polyposis (FAP) as well as for colorectal cancer harboring mutations in the Wnt/β-catenin signaling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: MyD88 deletion in IECs decreases the number of intestinal polyps in ApcΔ716 mice.
Fig. 2: Loss of MyD88 reduces tumor cell proliferation and induces apoptosis in ApcΔ716 mice.
Fig. 3: Loss of MyD88 suppresses JNK-mTORC1 pathway and reduces HIF-1α protein level in ApcΔ716 polyps.
Fig. 4: IL-1β activates JNK-mTORC1 axis in polyp-derived organoids.
Fig. 5: Loss of MyD88 induces apoptosis in Apc-mutated IECs.
Fig. 6: Loss of MyD88 reduces p65 and suppresses Wnt signaling in ApcΔ716 polyps.
Fig. 7: Loss of MyD88 reduces proliferation and survival of human colorectal cancer cells with Wnt pathway mutations.

Similar content being viewed by others

References

  1. Fearon ER. Molecular genetics of colorectal cancer. Annu Rev Pathol. 2011;6:479–507.

    Article  CAS  Google Scholar 

  2. Fodde R, Smits R, Clevers H. APC, signal transduction and genetic instability in colorectal cancer. Nat Rev Cancer. 2001;1:55–67.

    Article  CAS  Google Scholar 

  3. Fearnhead NS, Britton MP, Bodmer WF. The ABC of APC. Hum Mol Genet. 2001;10:721–33.

    Article  CAS  Google Scholar 

  4. Scholer-Dahirel A, Schlabach MR, Loo A, Bagdasarian L, Meyer R, Guo R, et al. Maintenance of adenomatous polyposis coli (APC)-mutant colorectal cancer is dependent on Wnt/β-catenin signaling. Proc Natl Acad Sci USA. 2011;108:17135–40.

    Article  CAS  Google Scholar 

  5. Kahn M. Can we safely target the WNT pathway? Nat Rev Drug Discov. 2014;13:513–32.

    Article  CAS  Google Scholar 

  6. Nusse R, Clevers H. Wnt/β-Catenin Signaling. Dis, Emerg Therapeutic Modalities. 2017;169:985–99.

    CAS  Google Scholar 

  7. Oshima M, Oshima H, Kitagawa K, Kobayashi M, Itakura C, Taketo M. Loss of Apc heterozygosity and abnormal tissue building in nascent intestinal polyps in mice carrying a truncated Apc gene. Proc Natl Acad Sci. 1995;92:4482–6.

    Article  CAS  Google Scholar 

  8. Takeda K, Kaisho T, Akira S. Toll-like receptors. Annu Rev Immunol. 2003;21:335–76.

    Article  CAS  Google Scholar 

  9. Ngo VN, Young RM, Schmitz R, Jhavar S, Xiao W, Lim K-h, et al. Oncogenically active MYD88 mutations in human lymphoma. Nature. 2011;470:115–9.

    Article  CAS  Google Scholar 

  10. Treon SP, Xu L, Yang G, Zhou Y, Liu X, Cao Y, et al. MYD88 L265P somatic mutation in Waldenström’s macroglobulinemia. N Engl J Med. 2012;367:826–33.

    Article  CAS  Google Scholar 

  11. Wang EL, Qian ZR, Nakasono M, Tanahashi T, Yoshimoto K, Bando Y, et al. High expression of Toll-like receptor 4/myeloid differentiation factor 88 signals correlates with poor prognosis in colorectal cancer. Br J Cancer. 2010;102:908–15.

    Article  CAS  Google Scholar 

  12. Rakoff-Nahoum S, Medzhitov R. Regulation of spontaneous intestinal tumorigenesis through the adaptor protein MyD88. Science. 2007;317:124–7.

    Article  CAS  Google Scholar 

  13. Lee SH, Hu L-L, Gonzalez-Navajas J, Seo GS, Shen C, Brick J, et al. ERK activation drives intestinal tumorigenesis in Apc(min/+) mice. Nat Med. 2010;16:665–70.

    Article  CAS  Google Scholar 

  14. Fa Scheeren, Kuo AH, van Weele LJ, Cai S, Glykofridis I, Sikandar SS, et al. A cell-intrinsic role for TLR2-MYD88 in intestinal and breast epithelia and oncogenesis. Nat Cell Biol. 2014;16:1238–48.

    Article  Google Scholar 

  15. Fujishita T, Aoki M, Taketo MM. JNK signaling promotes intestinal tumorigenesis through activation of mTOR complex 1 in Apc(Δ716) mice. Gastroenterology. 2011;140:1556–63.e6.

    Article  CAS  Google Scholar 

  16. Fujishita T, Aoki K, Ha Lane, Aoki M, Taketo MM. Inhibition of the mTORC1 pathway suppresses intestinal polyp formation and reduces mortality in ApcDelta716 mice. Proc Natl Acad Sci USA. 2008;105:13544–49.

    Article  CAS  Google Scholar 

  17. Fujishita T, Aoki M, Taketo MM. The role of mTORC1 pathway in intestinal tumorigenesis. Cell cycle. 2009;8:3684–7.

    Article  CAS  Google Scholar 

  18. Fujishita T, Kojima Y, Kajino-Sakamoto R, Taketo MM, Aoki M. Tumor microenvironment confers mTOR inhibitor resistance in invasive intestinal adenocarcinoma. Oncogene. 2017;36:6480–9.

    Article  CAS  Google Scholar 

  19. Steinhusen U, Badock V, Bauer A, Behrens J, Wittman-Liebold B, Dörken B, et al. Apoptosis-induced cleavage of β-catenin by caspase-3 results in proteolytic fragments with reduced transactivation potential. J Biol Chem. 2000;275:16345–3.

    Article  CAS  Google Scholar 

  20. Dhar R, Persaud SD, Mireles JR, Basu A. Proteolytic cleavage of p70 ribosomal S6 kinase by caspase-3 during DNA damage-induced apoptosis. Biochemistry. 2009;48:1474–80.

    Article  CAS  Google Scholar 

  21. Brugarolas JB, Vazquez F, Reddy A, Sellers WR, Kaelin WG. TSC2 regulates VEGF through mTOR-dependent and -independent pathways. Cancer Cell. 2003;4:147–58.

    Article  CAS  Google Scholar 

  22. Treins C, Giorgetti-Peraldi S, Murdaca J, Semenza GL, Van, Obberghen E. Insulin stimulates hypoxia-inducible factor 1 through a phosphatidylinositol 3-kinase/target of rapamycin-dependent signaling pathway. J Biol Chem. 2002;277:27975–81.

    Article  CAS  Google Scholar 

  23. Zundel W, Schindler C, Haas-Kogan D, Koong A, Kaper F, Chen E, et al. Loss of PTEN facilitates HIF-1-mediated gene expression. Genes Dev. 2000;14:391–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Vadde R, Vemula S, Jinka R, Merchant N, Bramhachari PV, Nagaraju GP. Role of hypoxia-inducible factors (HIF) in the maintenance of stemness and malignancy of colorectal cancer. Crit Rev Oncol/Hematol. 2017;113:22–7.

    Article  Google Scholar 

  25. Xue X, Ramakrishnan SK, Shah YM. Activation of HIF-1α does not increase intestinal tumorigenesis. Am J Physiol Gastrointest liver Physiol. 2014;307:G187–G195.

    Article  CAS  Google Scholar 

  26. Rohwer N, Jumpertz S, Erdem M, Egners A, Warzecha KT, Fragoulis A, et al. Non-canonical HIF-1 stabilization contributes to intestinal tumorigenesis. Oncogene. 2019;38:5670–85.

    Article  CAS  Google Scholar 

  27. Anastas JN, Moon RT. WNT signalling pathways as therapeutic targets in cancer. Nat Rev Cancer. 2013;13:11–26.

    Article  CAS  Google Scholar 

  28. Novellasdemunt L, Antas P, Li VSW. Targeting Wnt signaling in colorectal cancer. A Review in the Theme: Cell Signaling: Proteins, Pathways and Mechanisms. Am J Physiol - Cell Physiol. 2015;309:C511–C521.

    Article  CAS  Google Scholar 

  29. Holtorf A, Conrad A, Holzmann B, Janssen KP. Cell-type specific MyD88 signaling is required for intestinal tumor initiation and progression to malignancy. OncoImmunology. 2018;7:1–10.

    Article  Google Scholar 

  30. Taniguchi K, Karin M. NF-B, inflammation, immunity and cancer: coming of age. Nat Rev Immunol. 2018;18:309–24.

    Article  CAS  Google Scholar 

  31. Colomer C, Margalef P, Gonzalez J, Vert A, Bigas A, Espinosa L. IKKalpha is required in the intestinal epithelial cells for tumour stemness. Br J Cancer. 2018;118:839–46.

    Article  CAS  Google Scholar 

  32. Schwitalla S, Fingerle AA, Cammareri P, Nebelsiek T, Göktuna SI, Ziegler PK, et al. Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell-like properties. Cell. 2013;152:25–38.

    Article  CAS  Google Scholar 

  33. Fujishita T, Kajino-Sakamoto R, Kojima Y, Taketo MM, Aoki M. Antitumor activity of the MEK inhibitor trametinib on intestinal polyp formation in Apc(Δ716) mice involves stromal COX-2. Cancer Sci. 2015;106:692–99.

    Article  CAS  Google Scholar 

  34. Weber ANR, Cardona Gloria Y, Çınar Ö, Reinhardt HC, Pezzutto A, Wolz O-O. Oncogenic MYD88 mutations in lymphoma: novel insights and therapeutic possibilities. Cancer Immunol, Immunother. 2018;67:1797–1807.

    Article  CAS  Google Scholar 

  35. Takaku K, Oshima M, Miyoshi H, Matsui M, Seldin MF, Taketo MM. Intestinal tumorigenesis in compound mutant mice of both Dpc4 (Smad4) and Apc genes. Cell. 1998;92:645–56.

    Article  CAS  Google Scholar 

  36. Hou B, Reizis B, DeFranco AL. Toll-like receptors activate innate and adaptive immunity by using dendritic cell-intrinsic and -extrinsic mechanisms. Immunity. 2008;29:272–82.

    Article  CAS  Google Scholar 

  37. Marjou FE, K-pP Janssen, BH-jJ Chang, Li M, Chan L, Louvard D, et al. Tissue-specific and inducible Cre-mediated recombination in the gut epithelium. Genesis. 2004;39:186–93.

    Article  Google Scholar 

  38. Miyoshi H, Stappenbeck TS. In vitro expansion and genetic modification of gastrointestinal stem cells in spheroid culture. Nat Protoc. 2013;8:2471–82.

    Article  CAS  Google Scholar 

  39. Sato T, Stange DE, Ferrante M, Vries RG, Van Es JH, Van den Brink S, et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology. 2011;141:1762–72.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr Thaddeus S. Stappenbeck and Dr Hiroyuki Miyoshi for kindly giving us L-WRN cells, Yumiko Ito for technical assistance, and Dr Ayako Demachi-Okamura for technical advice.

Funding

This work was supported by JSPS Grant-in-Aid for Scientific Research (JP18K07254) to RKS and JSPS Grant-in-Aid for Scientific Research on Innovative Areas (JP26111001) to MA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Aoki.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kajino-Sakamoto, R., Fujishita, T., Taketo, M.M. et al. Synthetic lethality between MyD88 loss and mutations in Wnt/β-catenin pathway in intestinal tumor epithelial cells. Oncogene 40, 408–420 (2021). https://doi.org/10.1038/s41388-020-01541-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-01541-3

This article is cited by

Search

Quick links