Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Androgen receptor modulates metastatic routes of VHL wild-type clear cell renal cell carcinoma in an oxygen-dependent manner

Abstract

Recent studies indicated that the androgen receptor (AR) plays important roles in modulating metastasis of VHL-mutant clear cell renal cell carcinoma (ccRCC). However, the precise mechanisms of AR roles in VHL wild-type (VHL-wt) ccRCC, remain unclear. Here we found that AR interacted with VHL to modulate the metastasis of VHL-wt ccRCC via an oxygen-dependent manner. Mechanism dissection revealed that AR could transcriptionally suppress the miR-185-5p expression in the presence of functional VHL-wt protein under a normoxic condition, which might then result in increasing the expression of VEGF-A and VEGF-C via targeting the 3′UTR of mRNAs at a post-transcriptional level. In contrast, under a hypoxic condition, AR could increase miR-185-5p expression to suppress VEGF-C expression, yet this miR-185-5p effect on VEGF-A was reversed via AR’s positive regulation on the HIF2α-increased VEGF-A expression that resulted in increasing VEGF-A in the VHL-wt RCC cells. These distinct AR functions under different oxygen conditions may involve the VHL-impacted ubiquitination and nuclear localization of AR. The differential regulation of VEGF-A vs VEGF-C by AR may then result in differential impacts on the ccRCC metastatic destinations of VHL-wt ccRCC cells under different oxygen conditions. These finer mechanisms may help in the development of a novel therapy to better suppress the ccRCC progression under different oxygenization conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Clinical association of the AR expression with VEGF-A and VEGF-C expression in VHL-wt ccRCC under normoxia vs hypoxia.
Fig. 2: AR regulated VEGF-A and VEGF-C expression in the VHL-wt ccRCC cells via an oxygen-dependent manner.
Fig. 3: The miR185-5p was a potential candidate post-transcriptionally targeting VEGF-A and VEGF-C in ccRCC VHL-wt cells.
Fig. 4: AR modulated VEGF-A and VEGF-C by transcriptional regulation of the miR185-5p expression via oxygen-dependent manner in VHL-wt ccRCC cells.
Fig. 5: VHL interacts with and suppresses AR transactivation via interruption of AR nuclear translocation.
Fig. 6: AR promoted hematogenous yet suppressed lymphatic-metastasis of late-stage VHL-wt ccRCC in vivo.
Fig. 7: AR promoted angiogenesis yet suppressed lymphangiogenesis by regulation of VEGF-A and VEGE-C under hypoxic conditions in late-stage VHL-wt ccRCC.
Fig. 8: Schematic illustration of VHL and AR roles in regulating of HIF/VEGF-A or VEGF-C signaling under normaxia vs hypoxia condition.

Similar content being viewed by others

References

  1. Tomasetti C, Vogelstein B. Cancer etiology. Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science. 2015;347:78–81.

    Article  CAS  Google Scholar 

  2. Oudard S, George D, Medioni J, Motzer R. Treatment options in renal cell carcinoma: past, present and future. Ann Oncol. 2007;18 Suppl 10 :x25–31.

    Article  Google Scholar 

  3. Bukowski RM. Natural history and therapy of metastatic renal cell carcinoma: the role of interleukin-2. Cancer. 1997;80:1198–220.

    Article  CAS  Google Scholar 

  4. Kim WY, Kaelin WG. Role of VHL gene mutation in human cancer. J Clin Oncol. 2004;22:4991–5004.

    Article  CAS  Google Scholar 

  5. Arjumand W, Sultana S. Role of VHL gene mutation in human renal cell carcinoma. Tumour Biol. 2012;33:9–16.

    Article  CAS  Google Scholar 

  6. Gossage L, Eisen T. Alterations in VHL as potential biomarkers in renal-cell carcinoma. Nat Rev Clin Oncol. 2010;7:277–88.

    Article  CAS  Google Scholar 

  7. Linehan WM, Srinivasan R, Schmidt LS. The genetic basis of kidney cancer: a metabolic disease. Nat Rev Urol. 2010;7:277–85.

    Article  CAS  Google Scholar 

  8. He D, Li L, Zhu G, Liang L, Guan Z, Chang L, et al. ASC-J9 suppresses renal cell carcinoma progression by targeting an androgen receptor-dependent HIF2alpha/VEGF signaling pathway. Cancer Res. 2014;74:4420–30.

    Article  CAS  Google Scholar 

  9. Zhai W, Sun Y, Jiang M, Wang M, Gasiewicz TA, Zheng J, et al. Differential regulation of LncRNA-SARCC suppresses VHL-mutant RCC cell proliferation yet promotes VHL-normal RCC cell proliferation via modulating androgen receptor/HIF-2alpha/C-MYC axis under hypoxia. Oncogene. 2016;35:4866–80.

    Article  CAS  Google Scholar 

  10. Huang QB, Ma X, Li HZ, Ai Q, Liu SW, Zhang Y, et al. Endothelial delta-like 4 (DLL4) promotes renal cell carcinoma hematogenous metastasis. Oncotarget. 2014;5:3066–75.

    Article  Google Scholar 

  11. Chen S, Chen K, Zhang Q, Cheng H, Zhou R. Regulation of the transcriptional activation of the androgen receptor by the UXT-binding protein VHL. Biochemical J. 2013;456:55–66.

    Article  CAS  Google Scholar 

  12. Wang J, Zhang W, Ji W, Liu X, Ouyang G, Xiao W. The von hippel-lindau protein suppresses androgen receptor activity. Mol Endocrinol. 2014;28:239–48.

    Article  Google Scholar 

  13. Huang Q, Sun Y, Ma X, Gao Y, Li X, Niu Y, et al. Androgen receptor increases hematogenous metastasis yet decreases lymphatic metastasis of renal cell carcinoma. Nat Commun. 2017;8:918.

    Article  Google Scholar 

  14. Harris AL. Hypoxia-a key regulatory factor in tumour growth. Nat Rev Cancer. 2002;2:38–47.

    Article  CAS  Google Scholar 

  15. Yang OC, Maxwell PH, Pollard PJ. Renal cell carcinoma: translational aspects of metabolism and therapeutic consequences. Kidney Int. 2013;84:667–81.

    Article  CAS  Google Scholar 

  16. Qu B, Han X, Tang Y, Shen N. A novel vector-based method for exclusive overexpression of star-form microRNAs. PLoS ONE. 2012;7:e41504.

    Article  CAS  Google Scholar 

  17. Majmundar AJ, Wong WJ, Simon MC. Hypoxia-inducible factors and the response to hypoxic stress. Mol Cell. 2010;40:294–309.

    Article  CAS  Google Scholar 

  18. Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature. 1999;399:271–5.

    Article  CAS  Google Scholar 

  19. Pugh CW, Ratcliffe PJ. Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med. 2003;9:677–84.

    Article  CAS  Google Scholar 

  20. Chen Y, Sun Y, Rao Q, Xu H, Li L, Chang C. Androgen receptor (AR) suppresses miRNA-145 to promote renal cell carcinoma (RCC) progression independent of VHL status. Oncotarget. 2015;6:31203–15.

    Article  Google Scholar 

  21. Shen C, Kaelin WG Jr. The VHL/HIF axis in clear cell renal carcinoma. Semin Cancer Biol. 2013;23:18–25.

    Article  CAS  Google Scholar 

  22. Kim W, Kaelin WG Jr. The von Hippel-Lindau tumor suppressor protein: new insights into oxygen sensing and cancer. Curr Opin Genet Dev. 2003;13:55–60.

    Article  CAS  Google Scholar 

  23. Sayeed A, Alam N, Trerotola M, Languino LR. Insulin-like growth factor 1 stimulation of androgen receptor activity requires beta(1A) integrins. J Cell Physiol. 2012;227:751–8.

    Article  CAS  Google Scholar 

  24. Coffey K, Robson CN. Regulation of the androgen receptor by post-translational modifications. J Endocrinol. 2012;215:221–37.

    Article  CAS  Google Scholar 

  25. Chymkowitch P, Le May N, Charneau P, Compe E, Egly JM. The phosphorylation of the androgen receptor by TFIIH directs the ubiquitin/proteasome process. EMBO J. 2011;30:468–79.

    Article  CAS  Google Scholar 

  26. Xu K, Shimelis H, Linn DE, Jiang R, Yang X, Sun F, et al. Regulation of androgen receptor transcriptional activity and specificity by RNF6-induced ubiquitination. Cancer Cell. 2009;15:270–82.

    Article  CAS  Google Scholar 

  27. Qi J, Tripathi M, Mishra R, Sahgal N, Fazli L, Ettinger S, et al. The E3 ubiquitin ligase Siah2 contributes to castration-resistant prostate cancer by regulation of androgen receptor transcriptional activity. Cancer Cell. 2013;23:332–46.

    Article  CAS  Google Scholar 

  28. Bosson AD, Zamudio JR, Sharp PA. Endogenous miRNA and target concentrations determine susceptibility to potential ceRNA competition. Mol Cell. 2014;56:347–59.

    Article  CAS  Google Scholar 

  29. Petrova V, Annicchiarico-Petruzzelli M, Melino G, Amelio I. The hypoxic tumour microenvironment. Oncogenesis. 2018;7:10.

    Article  Google Scholar 

  30. Baran N, Konopleva M. Molecular pathways: hypoxia-activated prodrugs in cancer therapy. Clin Cancer Res. 2017;23:2382–90.

    Article  CAS  Google Scholar 

  31. Wong SC, Cheng W, Hamilton H, Nicholas AL, Wakefield DH, Almeida A, et al. HIF2alpha-targeted RNAi therapeutic inhibits clear cell renal cell carcinoma. Mol Cancer Ther. 2018;17:140–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by George Whipple Professorship Endowment, and Beijing Natural Science Foundation (No. 7194319), and National Nature Science Foundation (No. 81972389).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xu Zhang or Chawnshang Chang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Q., Sun, Y., Zhai, W. et al. Androgen receptor modulates metastatic routes of VHL wild-type clear cell renal cell carcinoma in an oxygen-dependent manner. Oncogene 39, 6677–6691 (2020). https://doi.org/10.1038/s41388-020-01455-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-01455-0

Search

Quick links