Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Isocitrate dehydrogenase 1 mutation enhances 24(S)-hydroxycholesterol production and alters cholesterol homeostasis in glioma

Abstract

Isocitrate dehydrogenase (IDH) mutation is the most important initiating event in gliomagenesis, and the increasing evidence shows that IDH mutation is associated with the metabolic reprogramming in the tumor. Dysregulated cholesterol metabolism is a hallmark of tumor cells, but the cholesterol homeostasis in IDH-mutated glioma is still unknown. In this study, we found that astrocyte-specific mutant IDH1(R132H) knockin reduced the cholesterol contents and damaged the structure of myelin in mouse brains. In U87 and U251 cells, the expression of mutant IDH1 consistently reduced the cholesterol levels. Furthermore, we found that IDH1 mutation enhanced the production of 24(S)-hydroxycholesterol (24-OHC), which is not only the metabolite of cholesterol elimination, but also functions as an endogenous ligand for the liver X receptors (LXRs). In IDH1-mutant glioma cells, the elevated 24-OHC activated LXRs, which consequently accelerated the low-density lipoprotein receptor (LDLR) degradation by upregulating the inducible degrader of the LDLR (IDOL). The reduced LDLR expressions in IDH1-mutant glioma cells abated the uptakes of low-density lipoprotein (LDL) to decrease the cholesterol influx. In addition, the activated LXRs also promoted the cholesterol efflux by elevating the ATP-binding cassette transporter A1 (ABCA1), ABCG1, and apolipoprotein E (ApoE) in both IDH1-mutant astrocytes and glioma cells. As a feedback, the reduced cholesterol levels stimulated the cholesterol biosynthesis, which made IDH1-mutated glioma cells more sensitive to atorvastatin, an inhibitor of 3-hydroxy-3-methylglutaryl-CoA reductase. The altered cholesterol homeostasis regulated by mutant IDH provides a pivotal therapeutical strategy for the IDH-mutated gliomas.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: IDH1 mutation lowered cholesterol contents in the mouse brain and glioma cells.
Fig. 2: IDH1 mutation promoted the production of 24-OHC in glioma cells.
Fig. 3: IDH1 mutation accelerated LDLR degradation in glioma cells.
Fig. 4: IDH1 mutation impeded the LDL uptake in glioma cells.
Fig. 5: IDH1 mutation promoted cholesterol efflux in both primary astrocytes and glioma cells.
Fig. 6: IDH1 mutation stimulated cholesterol biosynthesis in astrocytes and glioma cells.

Similar content being viewed by others

References

  1. Venur VA, Peereboom DM, Ahluwalia MS. Current medical treatment of glioblastoma. Cancer Treat Res. 2015;163:103–15.

    PubMed  Google Scholar 

  2. Brennan CW, Verhaak RG, McKenna A, Campos B, Noushmehr H, Salama SR, et al. The somatic genomic landscape of glioblastoma. Cell. 2013;155:462–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Lawrence MS, Stojanov P, Mermel CH, Robinson JT, Garraway LA, Golub TR, et al. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature. 2014;505:495–501.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Strickland M, Stoll EA. Metabolic reprogramming in glioma. Front Cell Dev Biol. 2017;5:43.

    PubMed  PubMed Central  Google Scholar 

  5. Bovenga F, Sabba C, Moschetta A. Uncoupling nuclear receptor LXR and cholesterol metabolism in cancer. Cell Metab. 2015;21:517–26.

    CAS  PubMed  Google Scholar 

  6. Silvente-Poirot S, Poirot M. Cancer. Cholesterol and cancer, in the balance. Science. 2014;343:1445–6.

    PubMed  Google Scholar 

  7. Clendening JW, Penn LZ. Targeting tumor cell metabolism with statins. Oncogene. 2012;31:4967–78.

    CAS  PubMed  Google Scholar 

  8. Iannelli F, Lombardi R, Milone MR, Pucci B, De Rienzo S, Budillon A, et al. Targeting mevalonate pathway in cancer treatment: repurposing of statins. Recent Pat Anticancer Drug Discov. 2018;13:184–200.

    CAS  PubMed  Google Scholar 

  9. Zhu Z, Zhang P, Li N, Kiang KMY, Cheng SY, Wong VK, et al. Lovastatin enhances cytotoxicity of temozolomide via impairing autophagic flux in glioblastoma cells. Biomed Res Int. 2019;2019:2710693.

    PubMed  PubMed Central  Google Scholar 

  10. Korade Z, Kenworthy AK. Lipid rafts, cholesterol, and the brain. Neuropharmacology. 2008;55:1265–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Mauch DH, Nagler K, Schumacher S, Goritz C, Muller EC, Otto A, et al. CNS synaptogenesis promoted by glia-derived cholesterol. Science 2001;294:1354–7.

    CAS  PubMed  Google Scholar 

  12. Bjorkhem I, Meaney S. Brain cholesterol: long secret life behind a barrier. Arterioscler Thromb Vasc Biol. 2004;24:806–15.

    PubMed  Google Scholar 

  13. Dietschy JM, Turley SD. Thematic review series: brain lipids. Cholesterol metabolism in the central nervous system during early development and in the mature animal. J Lipid Res. 2004;45:1375–97.

    CAS  PubMed  Google Scholar 

  14. An Z, Weiss WA. Cholesterol: an Achilles’ heel for glioblastoma? Cancer Cell. 2016;30:653–4.

    CAS  PubMed  Google Scholar 

  15. Guo D, Reinitz F, Youssef M, Hong C, Nathanson D, Akhavan D, et al. An LXR agonist promotes glioblastoma cell death through inhibition of an EGFR/AKT/SREBP-1/LDLR-dependent pathway. Cancer Discov. 2011;1:442–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, et al. IDH1 and IDH2 mutations in gliomas. N. Engl J Med. 2009;360:765–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Lu C, Ward PS, Kapoor GS, Rohle D, Turcan S, Abdel-Wahab O, et al. IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature 2012;483:474–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Turcan S, Rohle D, Goenka A, Walsh LA, Fang F, Yilmaz E, et al. IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature 2012;483:479–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Lokody I. Metabolism: reprogramming metabolic flux in glioma. Nat Rev Cancer. 2014;14:706–7.

    CAS  PubMed  Google Scholar 

  20. Leonardi R, Subramanian C, Jackowski S, Rock CO. Cancer-associated isocitrate dehydrogenase mutations inactivate NADPH-dependent reductive carboxylation. J Biol Chem. 2012;287:14615–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Bogdanovic E. IDH1, lipid metabolism and cancer: Shedding new light on old ideas. Biochim Biophys Acta. 2015;1850:1781–5.

    CAS  PubMed  Google Scholar 

  22. Saher G, Brugger B, Lappe-Siefke C, Mobius W, Tozawa R, Wehr MC, et al. High cholesterol level is essential for myelin membrane growth. Nat Neurosci. 2005;8:468–75.

    CAS  PubMed  Google Scholar 

  23. Bjorkhem I, Lutjohann D, Diczfalusy U, Stahle L, Ahlborg G, Wahren J. Cholesterol homeostasis in human brain: turnover of 24S-hydroxycholesterol and evidence for a cerebral origin of most of this oxysterol in the circulation. J Lipid Res. 1998;39:1594–600.

    CAS  PubMed  Google Scholar 

  24. Venkateswaran A, Laffitte BA, Joseph SB, Mak PA, Wilpitz DC, Edwards PA, et al. Control of cellular cholesterol efflux by the nuclear oxysterol receptor LXR alpha. Proc Natl Acad Sci USA. 2000;97:12097–102.

    CAS  PubMed  Google Scholar 

  25. Lutjohann D, Breuer O, Ahlborg G, Nennesmo I, Siden A, Diczfalusy U, et al. Cholesterol homeostasis in human brain: evidence for an age-dependent flux of 24S-hydroxycholesterol from the brain into the circulation. Proc Natl Acad Sci USA. 1996;93:9799–804.

    CAS  PubMed  Google Scholar 

  26. Bjorkhem I. Crossing the barrier: oxysterols as cholesterol transporters and metabolic modulators in the brain. J Intern Med. 2006;260:493–508.

    CAS  PubMed  Google Scholar 

  27. Bjorkhem I, Lutjohann D, Breuer O, Sakinis A, Wennmalm A. Importance of a novel oxidative mechanism for elimination of brain cholesterol. Turnover of cholesterol and 24(S)-hydroxycholesterol in rat brain as measured with 18O2 techniques in vivo and in vitro. J Biol Chem. 1997;272:30178–84.

    CAS  PubMed  Google Scholar 

  28. Lund EG, Guileyardo JM, Russell DW. cDNA cloning of cholesterol 24-hydroxylase, a mediator of cholesterol homeostasis in the brain. Proc Natl Acad Sci USA. 1999;96:7238–43.

    CAS  PubMed  Google Scholar 

  29. Lund EG, Xie C, Kotti T, Turley SD, Dietschy JM, Russell DW. Knockout of the cholesterol 24-hydroxylase gene in mice reveals a brain-specific mechanism of cholesterol turnover. J Biol Chem. 2003;278:22980–8.

    CAS  PubMed  Google Scholar 

  30. Brown MS, Goldstein JL. A receptor-mediated pathway for cholesterol homeostasis. Science. 1986;232:34–47.

    CAS  PubMed  Google Scholar 

  31. Zelcer N, Hong C, Boyadjian R, Tontonoz P. LXR regulates cholesterol uptake through Idol-dependent ubiquitination of the LDL receptor. Science. 2009;325:100–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Villa GR, Hulce JJ, Zanca C, Bi J, Ikegami S, Cahill GL, et al. An LXR-cholesterol axis creates a metabolic co-dependency for brain cancers. Cancer Cell. 2016;30:683–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Fujiyoshi M, Ohtsuki S, Hori S, Tachikawa M, Terasaki T. 24S-hydroxycholesterol induces cholesterol release from choroid plexus epithelial cells in an apical- and apoE isoform-dependent manner concomitantly with the induction of ABCA1 and ABCG1 expression. J Neurochem. 2007;100:968–78.

    CAS  PubMed  Google Scholar 

  34. Ferris JS, McCoy L, Neugut AI, Wrensch M, Lai R. HMG CoA reductase inhibitors, NSAIDs and risk of glioma. Int J Cancer. 2012;131:E1031–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Viswanath P, Ronen SM. Metabolic reprogramming of pyruvate dehydrogenase is essential for the proliferation of glioma cells expressing mutant IDH1. Mol Cell Oncol. 2016;3:e1077922.

    PubMed  Google Scholar 

  36. Izquierdo-Garcia JL, Viswanath P, Eriksson P, Cai L, Radoul M, Chaumeil MM, et al. IDH1 mutation induces reprogramming of pyruvate metabolism. Cancer Res. 2015;75:2999–3009.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Peterse EFP, Niessen B, Addie RD, de Jong Y, Cleven AHG, Kruisselbrink AB, et al. Targeting glutaminolysis in chondrosarcoma in context of the IDH1/2 mutation. Br J Cancer. 2018;118:1074–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Tateishi K, Wakimoto H, Iafrate AJ, Tanaka S, Loebel F, Lelic N, et al. Extreme vulnerability of IDH1 mutant cancers to NAD+ depletion. Cancer Cell. 2015;28:773–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Dietschy JM. Central nervous system: cholesterol turnover, brain development and neurodegeneration. Biol Chem. 2009;390:287–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Dietschy JM, Turley SD. Cholesterol metabolism in the brain. Curr Opin Lipid. 2001;12:105–12.

    CAS  Google Scholar 

  41. Repa JJ, Turley SD, Lobaccaro JA, Medina J, Li L, Lustig K, et al. Regulation of absorption and ABC1-mediated efflux of cholesterol by RXR heterodimers. Science. 2000;289:1524–9.

    CAS  PubMed  Google Scholar 

  42. Guillaumond F, Bidaut G, Ouaissi M, Servais S, Gouirand V, Olivares O, et al. Cholesterol uptake disruption, in association with chemotherapy, is a promising combined metabolic therapy for pancreatic adenocarcinoma. Proc Natl Acad Sci USA. 2015;112:2473–8.

    CAS  PubMed  Google Scholar 

  43. Gallagher EJ, Zelenko Z, Neel BA, Antoniou IM, Rajan L, Kase N, et al. Elevated tumor LDLR expression accelerates LDL cholesterol-mediated breast cancer growth in mouse models of hyperlipidemia. Oncogene. 2017;36:6462–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. de Nigris F, Cacciatore F, Mancini FP, Vitale DF, Mansueto G, D’Armiento FP, et al. Epigenetic hallmarks of fetal early atherosclerotic lesions in humans. JAMA Cardiol. 2018;3:1184–91.

    PubMed  PubMed Central  Google Scholar 

  45. Adaikalakoteswari A, Finer S, Voyias PD, McCarthy CM, Vatish M, Moore J, et al. Vitamin B12 insufficiency induces cholesterol biosynthesis by limiting s-adenosylmethionine and modulating the methylation of SREBF1 and LDLR genes. Clin Epigenet. 2015;7:14.

    Google Scholar 

  46. Goldstein JL, DeBose-Boyd RA, Brown MS. Protein sensors for membrane sterols. Cell. 2006;124:35–46.

    CAS  PubMed  Google Scholar 

  47. Miyata S, Urabe M, Gomi A, Nagai M, Yamaguchi T, Tsukahara T, et al. An R132H mutation in isocitrate dehydrogenase 1 enhances p21 expression and inhibits phosphorylation of retinoblastoma protein in glioma cells. Neurol Med Chir. 2013;53:645–54.

    Google Scholar 

  48. Sasaki M, Knobbe CB, Munger JC, Lind EF, Brenner D, Brustle A, et al. IDH1(R132H) mutation increases murine haematopoietic progenitors and alters epigenetics. Nature. 2012;488:656–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang J, Gao X, Yuan Y, Sun C, Zhao Y, Xiao L, et al. Perilipin 5 alleviates HCV NS5A-induced lipotoxic injuries in liver. Lipids Health Dis. 2019;18:87.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The research work was supported by the National Natural Science Foundation of China (81972342, 81772659 to JY, 81670792 to LZ), State Key Laboratory of Cancer Biology of China (CBSKL2017Z20 to YG), and Natural Science Basic Research Plan in Shaanxi Province (2020JZ-29 to JY, 2020JQ-462 to XG).

Author information

Authors and Affiliations

Authors

Contributions

RY designed, oversaw all and performed most of experiments, and wrote the manuscript; YZ conceived and performed the experiments; YYang, XG, YYuan, LX, YG, JZ, CS, and HY provided research materials and methods; YG, JQ, JL, and FZ provided clinical supports; LZ and JY developed the concept of the study, and edited the manuscript. All authors read and approved the final paper.

Corresponding authors

Correspondence to Lijun Zhang or Jing Ye.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, R., Zhao, Y., Gu, Y. et al. Isocitrate dehydrogenase 1 mutation enhances 24(S)-hydroxycholesterol production and alters cholesterol homeostasis in glioma. Oncogene 39, 6340–6353 (2020). https://doi.org/10.1038/s41388-020-01439-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-01439-0

This article is cited by

Search

Quick links