Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

miR-21a in exosomes from Lewis lung carcinoma cells accelerates tumor growth through targeting PDCD4 to enhance expansion of myeloid-derived suppressor cells

Abstract

In patients with lung cancer, myeloid-derived suppressor cells (MDSCs) have been reported to be significantly increased. Tumor-derived exosomes (TDEs) from various cancers played a critical role in MDSC induction. However, studies on the molecular mechanism underlying MDSC expansion induced by exosomes from lung cancer cells are still limited. In this study, we demonstrated that LLC-Exo accelerated tumor growth along with a significant accumulation of MDSCs in mouse tumor model. miRNA profiling showed that miR-21a was enriched in LLC-Exo. The depletion of miR-21a in LLC-Exo leads to the loss of their ability to induce MDSC expansion. Further results showed that miR-21a of LLC-Exo induced MDSC expansion via downregulation of the programmed cell death protein 4 (PDCD4) protein. The results of gain-and loss-of-function experiments validated that PDCD4 function as a critical inhibitor to negatively regulate expansion of MDSCs via inhibition Il-6 production in bone marrow cells. In addition, our data showed that exosomes derived from human lung cancer cell lines expressing miR-21a, also induced expansion of MDSCs in human CD14+ monocytes in vitro. Overall, our results demonstrated that miR-21a enriched in lung carcinoma cell-derived exosomes could promote functional expansion of MDSCs through targeting PDCD4.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: LLC-Exo promote tumor growth in mice.
Fig. 2: LLC-Exo promote expansion and activation of MDSCs.
Fig. 3: MiRNA-21a from LLC-Exo enhanced the expansion of MDSCs.
Fig. 4: MiR-21a down-regulates PDCD4 protein via binding to the 3′-UTR of PDCD4 mRNA.
Fig. 5: LLC-Exo promote expansion of MDSCs by targeting PDCD4.
Fig. 6: LLC-Exo promote MDSC expansion via activation of IL-6/pSTAT3 pathway.
Fig. 7: PDCD4 inhibits MDSCs expansion through down-regulating IL-6/pSTAT3 pathway activation.
Fig. 8: Exosomes derived from human lung cancer cell lines trigger expansion of human MDSCs.

References

  1. 1.

    Ostrand-Rosenberg S, Sinha P. Myeloid-derived suppressor cells: linking inflammation and cancer. J Immunol. 2009;182:4499–506.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Ostrand-Rosenberg S. Myeloid derived-suppressor cells: their role in cancer and obesity. Curr Opin Immunol. 2018;51:68–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Kamran N, Chandran M, Lowenstein PR, Castro MG. Immature myeloid cells in the tumor microenvironment: implications for immunotherapy. Clin Immunol. 2018;189:34–42.

    CAS  PubMed  Google Scholar 

  4. 4.

    Su Z, Ni P, Zhou C, Wang J. Myeloid-derived suppressor cells in cancers and inflammatory diseases: angel or demon? Scand J Immunol. 2016;84:255–61.

    CAS  PubMed  Google Scholar 

  5. 5.

    Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol. 2009;9:162–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Yuan XK, Zhao XK, Xia YC, Zhu X, Xiao P. Increased circulating immunosuppressive CD14(+)HLA-DR(-/low) cells correlate with clinical cancer stage and pathological grade in patients with bladder carcinoma. J Int Med Res. 2011;39:1381–91.

    CAS  PubMed  Google Scholar 

  7. 7.

    Brimnes MK, Vangsted AJ, Knudsen LM, Gimsing P, Gang AO, Johnsen HE, et al. Increased level of both CD4+FOXP3+ regulatory T cells and CD14+HLA-DR(-)/low myeloid-derived suppressor cells and decreased level of dendritic cells in patients with multiple myeloma. Scand J Immunol. 2010;72:540–7.

    CAS  PubMed  Google Scholar 

  8. 8.

    Diaz-Montero CM, Salem ML, Nishimura MI, Garrett-Mayer E, Cole DJ, Montero AJ. Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol Immunother. 2009;58:49–59.

    CAS  PubMed  Google Scholar 

  9. 9.

    Ochoa AC, Zea AH, Hernandez C, Rodriguez PC. Arginase, prostaglandins, and myeloid-derived suppressor cells in renal cell carcinoma. Clin Cancer Res. 2007;13:721s–726s.

    CAS  PubMed  Google Scholar 

  10. 10.

    Hoffmann SHL, Reck DI, Maurer A, Fehrenbacher B, Sceneay JE, Poxleitner M, et al. Visualization and quantification of in vivo homing kinetics of myeloid-derived suppressor cells in primary and metastatic cancer. Theranostics. 2019;9:5869–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    de Goeje PL, Bezemer K, Heuvers ME, Dingemans AC, Groen HJ, Smit EF, et al. Immunoglobulin-like transcript 3 is expressed by myeloid-derived suppressor cells and correlates with survival in patients with non-small cell lung cancer. Oncoimmunology. 2015;4:e1014242.

    PubMed  PubMed Central  Google Scholar 

  12. 12.

    Vetsika EK, Koinis F, Gioulbasani M, Aggouraki D, Koutoulaki A, Skalidaki E, et al. A circulating subpopulation of monocytic myeloid-derived suppressor cells as an independent prognostic/predictive factor in untreated non-small lung cancer patients. J Immunol Res. 2014;2014:659294.

    PubMed  PubMed Central  Google Scholar 

  13. 13.

    Heuvers ME, Muskens F, Bezemer K, Lambers M, Dingemans AM, Groen HJ, et al. Arginase-1 mRNA expression correlates with myeloid-derived suppressor cell levels in peripheral blood of NSCLC patients. Lung Cancer. 2013;81:468–74.

    PubMed  Google Scholar 

  14. 14.

    Huang A, Zhang B, Wang B, Zhang F, Fan KX, Guo YJ. Increased CD14(+)HLA-DR (-/low) myeloid-derived suppressor cells correlate with extrathoracic metastasis and poor response to chemotherapy in non-small cell lung cancer patients. Cancer Immunol Immunother. 2013;62:1439–51.

    CAS  PubMed  Google Scholar 

  15. 15.

    Song X, Krelin Y, Dvorkin T, Bjorkdahl O, Segal S, Dinarello CA, et al. CD11b+/Gr-1+ immature myeloid cells mediate suppression of T cells in mice bearing tumors of IL-1beta-secreting cells. J Immunol. 2005;175:8200–8.

    CAS  PubMed  Google Scholar 

  16. 16.

    Young MR, Wright MA. Myelopoiesis-associated immune suppressor cells in mice bearing metastatic Lewis lung carcinoma tumors: gamma interferon plus tumor necrosis factor alpha synergistically reduces immune suppressor and tumor growth-promoting activities of bone marrow cells and diminishes tumor recurrence and metastasis. Cancer Res. 1992;52:6335–40.

    CAS  PubMed  Google Scholar 

  17. 17.

    Almand B, Clark JI, Nikitina E, van Beynen J, English NR, Knight SC, et al. Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J Immunol. 2001;166:678–89.

    CAS  PubMed  Google Scholar 

  18. 18.

    Bunt SK, Yang L, Sinha P, Clements VK, Leips J, Ostrand-Rosenberg S. Reduced inflammation in the tumor microenvironment delays the accumulation of myeloid-derived suppressor cells and limits tumor progression. Cancer Res. 2007;67:10019–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Kusmartsev S, Gabrilovich DI. Immature myeloid cells and cancer-associated immune suppression. Cancer Immunol Immunother. 2002;51:293–8.

    CAS  PubMed  Google Scholar 

  20. 20.

    Wu CT, Hsieh CC, Lin CC, Chen WC, Hong JH, Chen MF. Significance of IL-6 in the transition of hormone-resistant prostate cancer and the induction of myeloid-derived suppressor cells. J Mol Med. 2012;90:1343–55.

    CAS  PubMed  Google Scholar 

  21. 21.

    Niu HQ, Zhao WP, Zhao XC, Luo J, Qin KL, Chen KL, et al. Combination of 4-hydroperoxy cyclophosphamide and methotrexate inhibits IL-6/sIL-6R-induced RANKL expression in fibroblast-like synoviocytes via suppression of the JAK2/STAT3 and p38MAPK signaling pathway. Int Immunopharmacol. 2018;61:45–53.

    CAS  PubMed  Google Scholar 

  22. 22.

    Chen W, Jiang J, Xia W, Huang J. Tumor-related exosomes contribute to tumor-promoting microenvironment: an immunological perspective. J Immunol Res. 2017;2017:1073947.

    PubMed  PubMed Central  Google Scholar 

  23. 23.

    Liu Y, Gu Y, Cao X. The exosomes in tumor immunity. Oncoimmunology 2015;4:e1027472.

    PubMed  PubMed Central  Google Scholar 

  24. 24.

    Liu Y, Xiang X, Zhuang X, Zhang S, Liu C, Cheng Z, et al. Contribution of MyD88 to the tumor exosome-mediated induction of myeloid derived suppressor cells. Am J Pathol. 2010;176:2490–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Guo X, Qiu W, Liu Q, Qian M, Wang S, Zhang Z, et al. Immunosuppressive effects of hypoxia-induced glioma exosomes through myeloid-derived suppressor cells via the miR-10a/Rora and miR-21/Pten Pathways. Oncogene 2018;37:4239–59.

    CAS  PubMed  Google Scholar 

  26. 26.

    Guo X, Qiu W, Wang J, Liu Q, Qian M, Wang S, et al. Glioma exosomes mediate the expansion and function of myeloid-derived suppressor cells through microRNA-29a/Hbp1 and microRNA-92a/Prkar1a pathways. Int J Cancer. 2018;144:3111–26.

    Google Scholar 

  27. 27.

    Huber V, Vallacchi V, Fleming V, Hu X, Cova A, Dugo M, et al. Tumor-derived microRNAs induce myeloid suppressor cells and predict immunotherapy resistance in melanoma. J Clin Investig. 2018;128:5505–16.

    PubMed  Google Scholar 

  28. 28.

    Weber R, Umansky V. Fighting infant infections with myeloid-derived suppressor cells. J Clin Investig. 2019;129:4080–2.

    PubMed  Google Scholar 

  29. 29.

    Thery C. Exosomes: secreted vesicles and intercellular communications. F1000 Biol Rep. 2011;3:15.

    PubMed  PubMed Central  Google Scholar 

  30. 30.

    Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9:654–9.

    CAS  PubMed  Google Scholar 

  31. 31.

    He L, Zhu W, Chen Q, Yuan Y, Wang Y, Wang J, et al. Ovarian cancer cell-secreted exosomal miR-205 promotes metastasis by inducing angiogenesis. Theranostics 2019;9:8206–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Xiang X, Poliakov A, Liu C, Liu Y, Deng ZB, Wang J, et al. Induction of myeloid-derived suppressor cells by tumor exosomes. Int J Cancer. 2009;124:2621–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Whiteside TL. Exosomes carrying immunoinhibitory proteins and their role in cancer. Clin Exp Immunol. 2017;189:259–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Chalmin F, Ladoire S, Mignot G, Vincent J, Bruchard M, Remy-Martin JP, et al. Membrane-associated Hsp72 from tumor-derived exosomes mediates STAT3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells. J Clin Investig. 2010;120:457–71.

    CAS  PubMed  Google Scholar 

  35. 35.

    Ingenito F, Roscigno G, Affinito A, Nuzzo S, Scognamiglio I, Quintavalle C, et al. The Role of Exo-miRNAs in cancer: a focus on therapeutic and diagnostic applications. Int J Mol Sci. 2019;20:4687.

    PubMed Central  Google Scholar 

  36. 36.

    Zhang K, Dong C, Chen M, Yang T, Wang X, Gao Y, et al. Extracellular vesicle-mediated delivery of miR-101 inhibits lung metastasis in osteosarcoma. Theranostics. 2020;10:411–25.

    PubMed  PubMed Central  Google Scholar 

  37. 37.

    Frydrychowicz M, Kolecka-Bednarczyk A, Madejczyk M, Yasar S, Dworacki G. Exosomes—structure, biogenesis and biological role in non-small-cell lung cancer. Scand J Immunol. 2015;81:2–10.

    CAS  PubMed  Google Scholar 

  38. 38.

    Zhou L, Lv T, Zhang Q, Zhu Q, Zhan P, Zhu S, et al. The biology, function and clinical implications of exosomes in lung cancer. Cancer Lett. 2017;407:84–92.

    CAS  PubMed  Google Scholar 

  39. 39.

    Liu S, Zhan Y, Luo J, Feng J, Lu J, Zheng H, et al. Roles of exosomes in the carcinogenesis and clinical therapy of non-small cell lung cancer. Biomed Pharmacother. 2019;111:338–46.

    CAS  PubMed  Google Scholar 

  40. 40.

    Yang Y, Meng H, Peng Q, Yang X, Gan R, Zhao L, et al. Downregulation of microRNA-21 expression restrains non-small cell lung cancer cell proliferation and migration through upregulation of programmed cell death 4. Cancer Gene Ther. 2015;22:23–9.

    CAS  PubMed  Google Scholar 

  41. 41.

    Li L, Zhang J, Diao W, Wang D, Wei Y, Zhang CY, et al. MicroRNA-155 and MicroRNA-21 promote the expansion of functional myeloid-derived suppressor cells. J Immunol. 2014;192:1034–43.

    CAS  PubMed  Google Scholar 

  42. 42.

    Lankat-Buttgereit B, Goke R. The tumour suppressor Pdcd4: recent advances in the elucidation of function and regulation. Biol Cell. 2009;101:309–17.

    CAS  PubMed  Google Scholar 

  43. 43.

    Kortylewski M, Kujawski M, Wang T, Wei S, Zhang S, Pilon-Thomas S, et al. Inhibiting Stat3 signaling in the hematopoietic system elicits multicomponent antitumor immunity. Nat Med. 2005;11:1314–21.

    CAS  PubMed  Google Scholar 

  44. 44.

    Gabrilovich D, Ishida T, Oyama T, Ran S, Kravtsov V, Nadaf S, et al. Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo. Blood. 1998;92:4150–66.

    CAS  PubMed  Google Scholar 

  45. 45.

    Wu L, Deng Z, Peng Y, Han L, Liu J, Wang L, et al. Ascites-derived IL-6 and IL-10 synergistically expand CD14(+)HLA-DR(-/low) myeloid-derived suppressor cells in ovarian cancer patients. Oncotarget. 2017;8:76843–56.

    PubMed  PubMed Central  Google Scholar 

  46. 46.

    Menetrier-Caux C, Montmain G, Dieu MC, Bain C, Favrot MC, Caux C, et al. Inhibition of the differentiation of dendritic cells from CD34(+) progenitors by tumor cells: role of interleukin-6 and macrophage colony-stimulating factor. Blood. 1998;92:4778–91.

    CAS  PubMed  Google Scholar 

  47. 47.

    Zhang Z, Zha Y, Hu W, Huang Z, Gao Z, Zang Y, et al. The autoregulatory feedback loop of microRNA-21/programmed cell death protein 4/activation protein-1 (MiR-21/PDCD4/AP-1) as a driving force for hepatic fibrosis development. J Biol Chem. 2013;288:37082–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Dikshit B, Irshad K, Madan E, Aggarwal N, Sarkar C, Chandra PS, et al. FAT1 acts as an upstream regulator of oncogenic and inflammatory pathways, via PDCD4, in glioma cells. Oncogene. 2013;32:3798–808.

    CAS  PubMed  Google Scholar 

  49. 49.

    Schulz I, Engel C, Niestroj AJ, Kehlen A, Rahfeld JU, Kleinschmidt M, et al. A non-canonical function of eukaryotic elongation factor 1A1: regulation of interleukin-6 expression. Biochim Biophys Acta. 2014;1843:965–75.

    CAS  PubMed  Google Scholar 

  50. 50.

    Galicia-Vazquez G, Di Marco S, Lian XJ, Ma JF, Gallouzi IE, Pelletier J. Regulation of eukaryotic initiation factor 4AII by MyoD during murine myogenic cell differentiation. PLoS ONE. 2014;9:e87237.

    PubMed  PubMed Central  Google Scholar 

  51. 51.

    Cramer Z, Sadek J, Vazquez GG, Di Marco S, Pause A, Pelletier J, et al. eIF4A inhibition prevents the onset of cytokine-induced muscle wasting by blocking the STAT3 and iNOS pathways. Sci Rep. 2018;8:8414.

    PubMed  PubMed Central  Google Scholar 

  52. 52.

    Tian X, Shen H, Li Z, Wang T, Wang S. Tumor-derived exosomes, myeloid-derived suppressor cells, and tumor microenvironment. J Hematol Oncol. 2019;12:84.

    PubMed  PubMed Central  Google Scholar 

  53. 53.

    Hingorani SR. Intercepting cancer communiques: exosomes as heralds of malignancy. Cancer Cell. 2015;28:151–3.

    CAS  PubMed  Google Scholar 

  54. 54.

    Steinbichler TB, Dudas J, Riechelmann H, Skvortsova II. The role of exosomes in cancer metastasis. Semin Cancer Biol. 2017;44:170–81.

    CAS  PubMed  Google Scholar 

  55. 55.

    Sundararajan V, Sarkar FH, Ramasamy TS. The multifaceted role of exosomes in cancer progression: diagnostic and therapeutic implications [corrected]. Cell Oncol. 2018;41:223–52.

    CAS  Google Scholar 

  56. 56.

    Weston WW, Ganey T, Temple HT. The relationship between exosomes and cancer: implications for diagnostics and therapeutics. BioDrugs. 2019;33:137–58.

    CAS  PubMed  Google Scholar 

  57. 57.

    Xie Y, Dang W, Zhang S, Yue W, Yang L, Zhai X, et al. The role of exosomal noncoding RNAs in cancer. Mol Cancer. 2019;18:37.

    PubMed  PubMed Central  Google Scholar 

  58. 58.

    Kannan A, Wells RB, Sivakumar S, Komatsu S, Singh KP, Samten B, et al. Mitochondrial reprogramming regulates breast cancer progression. Clin Cancer Res. 2016;22:3348–60.

    CAS  PubMed  Google Scholar 

  59. 59.

    Berrondo C, Flax J, Kucherov V, Siebert A, Osinski T, Rosenberg A, et al. Expression of the long non-coding RNA HOTAIR correlates with disease progression in bladder cancer and is contained in bladder cancer patient urinary exosomes. PLoS ONE. 2016;11:e0147236.

    PubMed  PubMed Central  Google Scholar 

  60. 60.

    Ruiz-Martinez M, Navarro A, Marrades RM, Vinolas N, Santasusagna S, Munoz C, et al. YKT6 expression, exosome release, and survival in non-small cell lung cancer. Oncotarget. 2016;7:51515–24.

    PubMed  PubMed Central  Google Scholar 

  61. 61.

    Andre F, Schartz NE, Movassagh M, Flament C, Pautier P, Morice P, et al. Malignant effusions and immunogenic tumour-derived exosomes. Lancet. 2002;360:295–305.

    CAS  PubMed  Google Scholar 

  62. 62.

    Muller L, Mitsuhashi M, Simms P, Gooding WE, Whiteside TL. Tumor-derived exosomes regulate expression of immune function-related genes in human T cell subsets. Sci Rep. 2016;6:20254.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Ashiru O, Boutet P, Fernandez-Messina L, Aguera-Gonzalez S, Skepper JN, Vales-Gomez M, et al. Natural killer cell cytotoxicity is suppressed by exposure to the human NKG2D ligand MICA*008 that is shed by tumor cells in exosomes. Cancer Res. 2010;70:481–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Zhou M, Chen J, Zhou L, Chen W, Ding G, Cao L. Pancreatic cancer derived exosomes regulate the expression of TLR4 in dendritic cells via miR-203. Cell Immunol. 2014;292:65–9.

    CAS  PubMed  Google Scholar 

  65. 65.

    Wieckowski EU, Visus C, Szajnik M, Szczepanski MJ, Storkus WJ, Whiteside TL. Tumor-derived microvesicles promote regulatory T cell expansion and induce apoptosis in tumor-reactive activated CD8+ T lymphocytes. J Immunol. 2009;183:3720–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Chow A, Zhou W, Liu L, Fong MY, Champer J, Van Haute D, et al. Macrophage immunomodulation by breast cancer-derived exosomes requires Toll-like receptor 2-mediated activation of NF-kappaB. Sci Rep. 2014;4:5750.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Li Y, An J, Huang S, He J, Zhang J. Esophageal cancer-derived microvesicles induce regulatory B cells. Cell Biochem Funct. 2015;33:308–13.

    CAS  PubMed  Google Scholar 

  68. 68.

    Wang Q, Yang HS. The role of Pdcd4 in tumour suppression and protein translation. Biol Cell. 2018;110:169–77.

    CAS  Google Scholar 

  69. 69.

    van den Bosch MW, Palsson-Mcdermott E, Johnson DS, O’Neill LA. LPS induces the degradation of programmed cell death protein 4 (PDCD4) to release Twist2, activating c-Maf transcription to promote interleukin-10 production. J Biol Chem. 2014;289:22980–90.

    PubMed  PubMed Central  Google Scholar 

  70. 70.

    Cohen TS, Prince AS. Bacterial pathogens activate a common inflammatory pathway through IFNlambda regulation of PDCD4. PLoS Pathog. 2013;9:e1003682.

    PubMed  PubMed Central  Google Scholar 

  71. 71.

    Mao XH, Chen M, Wang Y, Cui PG, Liu SB, Xu ZY. MicroRNA-21 regulates the ERK/NF-kappaB signaling pathway to affect the proliferation, migration, and apoptosis of human melanoma A375 cells by targeting SPRY1, PDCD4, and PTEN. Mol Carcinog. 2017;56:886–94.

    CAS  PubMed  Google Scholar 

  72. 72.

    Zhu J, Liu B, Wang Z, Wang D, Ni H, Zhang L, et al. Exosomes from nicotine-stimulated macrophages accelerate atherosclerosis through miR-21-3p/PTEN-mediated VSMC migration and proliferation. Theranostics. 2019;9:6901–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Asangani IA, Rasheed SA, Nikolova DA, Leupold JH, Colburn NH, Post S, et al. MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene. 2008;27:2128–36.

    CAS  PubMed  Google Scholar 

  74. 74.

    Das A, Ganesh K, Khanna S, Sen CK, Roy S. Engulfment of apoptotic cells by macrophages: a role of microRNA-21 in the resolution of wound inflammation. J Immunol. 2014;192:1120–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Thery C, Amigorena S, Raposo G, Clayton A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol. 2006;30:3.22.1–29.

    Google Scholar 

  76. 76.

    Jiang S, Li C, Olive V, Lykken E, Feng F, Sevilla J, et al. Molecular dissection of the miR-17-92 cluster’s critical dual roles in promoting Th1 responses and preventing inducible Treg differentiation. Blood. 2011;118:5487–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Spaggiari GM, Abdelrazik H, Becchetti F, Moretta L. MSCs inhibit monocyte-derived DC maturation and function by selectively interfering with the generation of immature DCs: central role of MSC-derived prostaglandin E2. Blood. 2009;113:6576–83.

    CAS  PubMed  Google Scholar 

  78. 78.

    Bronte V, Brandau S, Chen SH, Colombo MP, Frey AB, Greten TF, et al. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat Commun. 2016;7:12150.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Cooks T, Pateras IS, Jenkins LM, Patel KM, Robles AI, Morris J, et al. Mutant p53 cancers reprogram macrophages to tumor supporting macrophages via exosomal miR-1246. Nat Commun. 2018;9:771.

    PubMed  PubMed Central  Google Scholar 

  80. 80.

    Nasri M, Karimi A, Allahbakhshian Farsani M. Production, purification and titration of a lentivirus-based vector for gene delivery purposes. Cytotechnology. 2014;66:1031–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Cheng Y, Ma J, Liu Y, Gao Q, Yan Y, Wang H, et al. Chicken TBK1 interacts with STING and is involved in IFN-beta signaling regulation. Dev Comp Immunol. 2017;77:200–9.

    CAS  PubMed  Google Scholar 

  82. 82.

    Li J, Wang C, Feng G, Zhang L, Chen G, Sun H, et al. Rbm14 maintains the integrity of genomic DNA during early mouse embryogenesis via mediating alternative splicing. Cell Prolif. 2020;53:e12724.

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Natural Science Foundation of Shenzhen (KQJSCX20180328094239048) of Shan Jiang, National Key Research and Development Program of China (2016YFA0502201) of Ying, Wan and Scientific Research Foundation for Introduced High-level Personnel in Chongqing Medical University of Bin Xiao (41021300160256).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Bin Xiao or Ying Wan or Shan Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Li, F., Tang, Y. et al. miR-21a in exosomes from Lewis lung carcinoma cells accelerates tumor growth through targeting PDCD4 to enhance expansion of myeloid-derived suppressor cells. Oncogene 39, 6354–6369 (2020). https://doi.org/10.1038/s41388-020-01406-9

Download citation

Further reading

Search

Quick links