Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Targeting disseminated estrogen-receptor-positive breast cancer cells in bone marrow


Estrogen receptor-positive (ER+) breast cancer can recur up to 20 years after initial diagnosis. Delayed recurrences arise from disseminated tumors cells (DTCs) in sites such as bone marrow that remain quiescent during endocrine therapy and subsequently proliferate to produce clinically detectable metastases. Identifying therapies that eliminate DTCs and/or effectively target cells transitioning to proliferation promises to reduce risk of recurrence. To tackle this problem, we utilized a 3D co-culture model incorporating ER+ breast cancer cells and bone marrow mesenchymal stem cells to represent DTCs in a bone marrow niche. 3D co-cultures maintained cancer cells in a quiescent, viable state as measured by both single-cell and population-scale imaging. Single-cell imaging methods for metabolism by fluorescence lifetime (FLIM) of NADH and signaling by kinases Akt and ERK revealed that breast cancer cells utilized oxidative phosphorylation and signaling by Akt to a greater extent both in 3D co-cultures and a mouse model of ER+ breast cancer cells in bone marrow. Using our 3D co-culture model, we discovered that combination therapies targeting oxidative phosphorylation via the thioredoxin reductase (TrxR) inhibitor, D9, and the Akt inhibitor, MK-2206, preferentially eliminated breast cancer cells without altering viability of bone marrow stromal cells. Treatment of mice with disseminated ER+ human breast cancer showed that D9 plus MK-2206 blocked formation of new metastases more effectively than tamoxifen. These data establish an integrated experimental system to investigate DTCs in bone marrow and identify combination therapy against metabolic and kinase targets as a promising approach to effectively target these cells and reduce risk of recurrence in breast cancer.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: ER+breast cancer cells in co-culture spheroids with bone marrow stromal cells exhibit cellular quiescence.
Fig. 2: ER+breast cancer cells show increased reliance on OXPHOS versus surrounding bone marrow stromal cells.
Fig. 3: ER+breast cancer cells activate Akt to a greater extent than ERK in co-culture spheroids with bone marrow stromal cells.
Fig. 4: Ex vivo imaging of cancer cells in bone marrow recapitulates metabolic and signaling profiles from 3D co-culture spheroids.
Fig. 5: Simultaneous treatment of co-culture spheroids with inhibitors of OXPHOS and Akt decreases growth of cancer cells while maintaining viability of stromal cells.
Fig. 6: In vivo dual targeting of OXPHOS and Akt signaling of MCF7 cancer cells injected into the femoral artery of mice.

Code availability

All custom MATLAB code including the image processing files require a material transfer agreement from the University of Michigan.


  1. 1.

    Pan H, Gray R, Braybrooke J, Davies C, Taylor C, McGale P, et al. 20-year risks of breast-cancer recurrence after stopping endocrine therapy at 5 years. N. Engl J Med. 2017;377:1836–46.

    PubMed  PubMed Central  Google Scholar 

  2. 2.

    Zhang Y, Schnabel CA, Schroeder BE, Jerevall P-L, Jankowitz RC, Fornander T, et al. Breast cancer index identifies early-stage estrogen receptor–positive breast cancer patients at risk for early- and late-distant recurrence. Clin Cancer Res. 2013;19:4196.

    CAS  PubMed  Google Scholar 

  3. 3.

    Zhang XHF, Giuliano M, Trivedi MV, Schiff R, Kent OC. Metastasis dormancy in estrogen receptor-positive breast cancer. Clin. Cancer Res. 2013.

  4. 4.

    Pantel K, Alix-Panabieres C. Bone marrow as a reservoir for disseminated tumor cells: a special source for liquid biopsy in cancer patients. Bonekey Rep. 2014;3:584.

    PubMed  PubMed Central  Google Scholar 

  5. 5.

    Chambers A, Groom A, MacDonald I. Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer. 2002;2:563–72.

    CAS  PubMed  Google Scholar 

  6. 6.

    Kennecke H, Yerushalmi R, Woods R, Cheang MCU, Voduc D, Speers CH, et al. Metastatic behavior of breast cancer subtypes. J Clin Oncol. 2010;28:3271–7.

    PubMed  Google Scholar 

  7. 7.

    Bartkowiak K, Riethdorf S, Pantel K. The interrelating dynamics of hypoxic tumor microenvironments and cancer cell phenotypes in cancer metastasis. Cancer Microenviron. 2012;5:59–72.

    CAS  PubMed  Google Scholar 

  8. 8.

    Luengo A, Gui DY, Vander Heiden MG. Targeting metabolism for cancer therapy. Cell Chem Biol. 2017;24:1161–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Gross S, Rahal R, Stransky N, Lengauer C, Hoeflich KP. Targeting cancer with kinase inhibitors. J Clin Investig. 2015;125:1780–9.

    PubMed  Google Scholar 

  10. 10.

    Kohno M, Pouyssegur J. Targeting the ERK signaling pathway in cancer therapy. Ann Med. 2006;38:200–11.

    CAS  PubMed  Google Scholar 

  11. 11.

    Martini M, De Santis MC, Braccini L, Gulluni F, Hirsch E. PI3K/AKT signaling pathway and cancer: an updated review. Ann Med. 2014;46:372–83.

    CAS  PubMed  Google Scholar 

  12. 12.

    Pradhan S, Sperduto JL, Farino CJ, Slater JH. Engineered in vitro models of tumor dormancy and reactivation. J Biol Eng. 2018;12:37.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Mehta G, Hsiao A, Ingram M, Luker G, Takayama S. Opportunities and challenges for use of tumor spheroids as models to test drug delivery and efficacy. J Control Release. 2012;164:192–204.

  14. 14.

    Widner DB, Park SH, Eber MR, Shiozawa Y. Interactions between disseminated tumor cells and bone marrow stromal cells regulate tumor dormancy. Curr Osteoporos Rep. 2018;16:596–602.

    PubMed  PubMed Central  Google Scholar 

  15. 15.

    Cavnar S, Rickelmann A, Meguiar K, Xiao A, Dosch J, Leung B, et al. Modeling selective elimination of quiescent cancer cells from bone marrow. Neoplasia 2015;17:625–33.

    PubMed  PubMed Central  Google Scholar 

  16. 16.

    Iwata M, Sandstrom R, Delrow J, Stamatoyannopoulos J, Torok-Storb B. Functionally and phenotypically distinct subpopulations of marrow stromal cells are fibroblast in origin and induce different fates in peripheral blood monocytes. Stem Cells Dev. 2014;23:729–40.

    CAS  PubMed  Google Scholar 

  17. 17.

    Sakaue-Sawano A, Kuorkawa H, Morimura T, Hanyu A, Hama H, Osawa H, et al. Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell 2008;132:487–98.

    CAS  Google Scholar 

  18. 18.

    Pozarowski P, Darzynkiewicz Z. Analysis of cell cycle by flow cytometry. Methods Mol Biol. 2004;281:301–11.

    CAS  PubMed  Google Scholar 

  19. 19.

    Humphries BA, Buschhaus JM, Chen YC, Haley HR, Qyli T, Chiang B, et al. Plasminogen Activator Inhibitor 1 (PAI1) promotes actin cytoskeleton reorganization and glycolytic metabolism in triple-negative breast cancer. Mol Cancer Res. 2019;17:1142–1154.

  20. 20.

    Stringari C, Nourse JL, Flanagan LA, Gratton E. Phasor fluorescence lifetime microscopy of free and protein-bound nadh reveals neural stem cell differentiation potential. PLOS ONE 2012;7:e48014.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Maryu G, Matsuda M, Aoki K. Multiplexed fluorescence imaging of ERK and Akt activities and cell-cycle progression. Cell Struct Funct. 2016;41:81–92.

    CAS  PubMed  Google Scholar 

  22. 22.

    Spinosa PC, Humphries BA, Lewin Mejia D, Buschhaus JM, Linderman JJ, Luker GD, et al. Short-term cellular memory tunes the signaling responses of the chemokine receptor CXCR4. Science Signaling. 2019;12:eaaw4204.

  23. 23.

    Regot S, Hughey JJ, Bajar BT, Carrasco S, Covert MW. High-sensitivity measurements of multiple kinase activities in live single cells. Cell 2014;157:1724–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Aka JA, Lin S-X. Comparison of functional proteomic analyses of human breast cancer cell lines T47D and MCF7. PloS one 2012;7:e31532-e.

    Google Scholar 

  25. 25.

    Wang H, Yu C, Gao X, Welte T, Muscarella A, Tian L, et al. The osteogenic niche promotes early-stage bone colonization of disseminated breast cancer cells. Cancer Cell 2015;27:193–210.

    PubMed  PubMed Central  Google Scholar 

  26. 26.

    Haley HR, Shen N, Qyli T, Buschhaus JM, Pirone ME, Luker KE, et al., editors. Enhanced bone metastases in skeletally immature mice. Tomography. 2018;4:84–93.

  27. 27.

    Walsh AJ, Poole KM, Duvall CL, Skala MC. Ex vivo optical metabolic measurements from cultured tissue reflect in vivo tissue status. J Biomed Opt. 2012;17:116015.

    PubMed  PubMed Central  Google Scholar 

  28. 28.

    Arnér ESJ, Holmgren A. Physiological functions of thioredoxin and thioredoxin reductase. Eur J Biochem. 2000;267:6102–9.

    PubMed  Google Scholar 

  29. 29.

    LeBleu VS, O’Connell JT, Gonzalez Herrera KN, Wikman H, Pantel K, Haigis Marcia C, et al. PGC-1α mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis. Nat Cell Biol. 2014;16:992.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Weinberg SE, Chandel NS. Targeting mitochondria metabolism for cancer therapy. Nat Chem Biol. 2014;11:9.

    Google Scholar 

  31. 31.

    Mustacich D, Powis G. Thioredoxin reductase. Biochemical J. 2000;346:1–8. Pt 1

    CAS  Google Scholar 

  32. 32.

    Scalcon V, Bindoli A, Rigobello M. Significance of the mitochondrial thioredoxin reductase in cancer cells: an update on role, targets and inhibitors. Free Radic. Biol. Med. 2018;127:62–79.

  33. 33.

    Zhang D, Xu Z, Yuan J, Zhao Y-X, Qiao Z-Y, Gao Y-J, et al. Synthesis and molecular recognition studies on small-molecule inhibitors for thioredoxin reductase. J Medicinal Chem. 2014;57:8132–9.

    CAS  Google Scholar 

  34. 34.

    Luo M, Shang L, Brooks MD, Jiagge E, Zhu Y, Buschhaus JM, et al. Targeting breast cancer stem cell state equilibrium through modulation of redox signaling. Cell Metab 2018;28:69–86.e6.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Yarosz EL, Chang C-H. The role of reactive oxygen species in regulating T cell-mediated immunity and disease. Immune Netw 2018;18:e14-e.

    Google Scholar 

  36. 36.

    Patel CH, Leone RD, Horton MR, Powell JD. Targeting metabolism to regulate immune responses in autoimmunity and cancer. Nat Rev Drug Discov. 2019;18:669–88.

    CAS  PubMed  Google Scholar 

  37. 37.

    Yin Z, Bai L, Li W, Zeng T, Tian H, Cui J. Targeting T cell metabolism in the tumor microenvironment: an anti-cancer therapeutic strategy. J Exp Clin Cancer Res. 2019;38:403.

    PubMed  PubMed Central  Google Scholar 

  38. 38.

    Sosa MS, Avivar-Valderas A, Bragado P, Wen H-C, Aguirre-Ghiso JA. ERK1/2 and p38α/β signaling in tumor cell quiescence: opportunities to control dormant residual disease. Clin Cancer Res. 2011;17:5850–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Shi J, Wang L, Zou C, Xia Y, Qin S, Keller E, et al. Tumor microenvironment promotes prostate cancer cell dissemination via the Akt/mTOR pathway. Oncotarget 2018;9:9206–18.

    PubMed  PubMed Central  Google Scholar 

  40. 40.

    Zhang XHF, Wang Q, Gerald W, Hudis CA, Norton L, Smid M, et al. Latent bone metastasis in breast cancer tied to Src-dependent survival signals. Cancer Cell 2009;16:67–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Grabinski N, Bartkowiak K, Grupp K, Brandt B, Pantel K, Jücker M. Distinct functional roles of Akt isoforms for proliferation, survival, migration and EGF-mediated signalling in lung cancer derived disseminated tumor cells. Cell Signal 2011;23:1952–60.

    CAS  PubMed  Google Scholar 

  42. 42.

    Jabbarzadeh Kaboli P, Salimian F, Aghapour S, Xiang S, Zhao Q, Li M, et al. Akt-targeted therapy as a promising strategy to overcome drug resistance in breast cancer—a comprehensive review from chemotherapy to immunotherapy. Pharmacol Res 2020;156:104806.

    CAS  PubMed  Google Scholar 

  43. 43.

    Abu-Eid R, Samara RN, Ozbun L, Abdalla MY, Berzofsky JA, Friedman KM, et al. Selective inhibition of regulatory T cells by targeting the PI3K-Akt pathway. Cancer Immunol Res. 2014;2:1080–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Ding W, Shanafelt TD, Lesnick CE, Erlichman C, Leis JF, Secreto C, et al. Akt inhibitor MK2206 selectively targets CLL B-cell receptor induced cytokines, mobilizes lymphocytes and synergizes with bendamustine to induce CLL apoptosis. Br J Haematol. 2014;164:146–50.

    CAS  PubMed  Google Scholar 

  45. 45.

    Xue G, Zippelius A, Wicki A, Mandalà M, Tang F, Massi D, et al. Integrated Akt/PKB signaling in immunomodulation and its potential role in cancer immunotherapy. J Natl Cancer Inst. 2015;107:djv171.

  46. 46.

    Tripathy D, Chien AJ, Hylton N, Buxton MB, Ewing CA, Wallace AM, et al. Adaptively randomized trial of neoadjuvant chemotherapy with or without the Akt inhibitor MK-2206: graduation results from the I-SPY 2 Trial. J Clin Oncol. 2015;33:524

  47. 47.

    Heinz S, Freyberger A, Lawrenz B, Schladt L, Schmuck G, Ellinger-Ziegelbauer H. Mechanistic investigations of the mitochondrial complex I inhibitor rotenone in the context of pharmacological and safety evaluation. Sci Rep. 2017;7:45465-.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Thakur S, Daley B, Gaskins K, Vasko VV, Boufraqech M, Patel D, et al. Metformin targets mitochondrial glycerophosphate dehydrogenase to control rate of oxidative phosphorylation and growth of thyroid cancer in vitro and in vivo. Clin Cancer Res. 2018;24:4030–43

  49. 49.

    Melzer C, Yang Y, Hass R. Interaction of MSC with tumor cells. Cell Commun Signal: Ccs 2016;14:20-.

    PubMed  Google Scholar 

  50. 50.

    Plava J, Cihova M, Burikova M, Matuskova M, Kucerova L, Miklikova S. Recent advances in understanding tumor stroma-mediated chemoresistance in breast cancer. Mol cancer 2019;18:67-.

    PubMed  PubMed Central  Google Scholar 

  51. 51.

    Vallabhaneni KC, Penfornis P, Dhule S, Guillonneau F, Adams KV,Yuan Mo Y, et al. Extracellular vesicles from bone marrow mesenchymal stem/stromal cells transport tumor regulatory microRNA, proteins, and metabolites. Oncotarget. 2015;6:4953–67

  52. 52.

    Zhong W, Tong Y, Li Y, Yuan J, Hu S, Hu T, et al. Mesenchymal stem cells in inflammatory microenvironment potently promote metastatic growth of cholangiocarcinoma via activating Akt/NF-κB signaling by paracrine CCL5. Oncotarget 2017;8:73693–704.

    PubMed  PubMed Central  Google Scholar 

  53. 53.

    Özdemir B, Sflomos G, Brisken C. The challenges of modeling hormone receptor-positive breast cancer in mice. Endocr-Relat Cancer. 2018;25:ERC-18.

    Google Scholar 

  54. 54.

    Ottewell PD, Wang N, Brown HK, Reeves KJ, Fowles CA, Croucher PI, et al. Zoledronic acid has differential antitumor activity in the pre- and postmenopausal bone microenvironment in vivo. Clin Cancer Res. 2014;20:2922–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Lu X, Mu E, Wei Y, Riethdorf S, Yang Q, Yuan M, et al. VCAM-1 promotes osteolytic expansion of indolent bone micrometastasis of breast cancer by engaging α4β1-positive osteoclast progenitors. Cancer cell 2011;20:701–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Ogba N, Manning NG, Bliesner BS, Ambler SK, Haughian JM, Pinto MP, et al. Luminal breast cancer metastases and tumor arousal from dormancy are promoted by direct actions of estradiol and progesterone on the malignant cells. Breast Cancer Res. 2014;16:489.

    PubMed  PubMed Central  Google Scholar 

  57. 57.

    Holen I, Walker M, Nutter F, Fowles A, Evans CA, Eaton CL, et al. Oestrogen receptor positive breast cancer metastasis to bone: inhibition by targeting the bone microenvironment in vivo. Clin Exp Metastasis. 2016;33:211–24.

    CAS  PubMed  Google Scholar 

  58. 58.

    Buschhaus JM, Luker KE, Luker GD. A Facile, In Vitro 384-Well Plate System to Model Disseminated Tumor Cells in the Bone Marrow Microenvironment. In: Lacorazza HD, editor. Cellular Quiescence: Methods and Protocols. New York: Springer New York; 2018. p. 201–13.

  59. 59.

    Cavnar S, Xiao A, Gibbons A, Rickelmann A, Neely T, Luker K, et al. Imaging sensitivity of quiescent cancer cells to metabolic perturbations in bone marrow spheroids. Tomography. 2016;2:146–57.

    PubMed  PubMed Central  Google Scholar 

  60. 60.

    Cavnar S, Salomonsson E, Luker K, Luker G, Takayama S. Transfer, imaging, and analysis plate for facile handling of 384 hanging drop 3D tissue spheroids. J Lab Autom. 2014;19:208–14.

    PubMed  Google Scholar 

  61. 61.

    Phansalkar N, More S, Sabale A, Joshi MS. Adaptive local thresholding for detection of nuclei in diversity stained cytology images. In Proc 2011 International Conference on Communications and Signal Processing. IEEE (Institute of Electrical and Electronics Engineers) 2011 p. 218–20.

  62. 62.

    Eckley SS, Buschhaus JM, Humphries BA, Robison TH, Luker KE, Luker GD. Short-term environmental conditioning generates cellular memory that enhances tumorigenic potential of triple-negative breast cancer cells. Tomography. 2019;5:346–357

  63. 63.

    Hirai H, Sootome H, Nakatsuru Y, Miyama K, Taguchi S, Tsujioka K, et al. MK-2206, an allosteric Akt inhibitor, enhances antitumor efficacy by standard chemotherapeutic agents or molecular targeted drugs in vitro and in vivo. Mol Cancer Ther. 2010;9:1956

  64. 64.

    Ma G, He J, Yu Y, Xu Y, Yu X, Martinez J, et al. Tamoxifen inhibits ER-negative breast cancer cell invasion and metastasis by accelerating Twist1 degradation. Int J Biol Sci. 2015;11:618–28.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references


We thank Ayşe J. Muñiz and Max Wicha for paper feedback. We thank Michael Pihalja for assistance with flow cytometry. We acknowledge funding from United States National Institutes of Health grants R01CA238042, R01CA196018, U01CA210152, R01CA238023, R33CA225549, R50CA221807, and R37CA222563. Brock Humphries, Ph.D., was supported by an American Cancer Society - Michigan Cancer Research Fund Postdoctoral Fellowship, PF-18-236-01-CCG. We acknowledge support to the University of Michigan Rogel Cancer Center through National Institutes of Health grant P30CA046592 for flow cytometry and animal imaging studies. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE 1256260 to Johanna Buschhaus.

Author information




JMB, KEL, and GDL conceptualized and designed the study. BAH and KEL provided reagents. JMB, SSE, SR, BAH, THR, HRH, ASB, and ACC performed experiments. JMB and KEL wrote MATLAB code. JMB, BAH, KEL, and GDL acquired funding. JMB, SR, and THR analyzed data. JMB and GDL wrote the paper. All authors reviewed the paper before submission.

Corresponding author

Correspondence to Gary D. Luker.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Buschhaus, J.M., Humphries, B.A., Eckley, S.S. et al. Targeting disseminated estrogen-receptor-positive breast cancer cells in bone marrow. Oncogene 39, 5649–5662 (2020).

Download citation

Further reading


Quick links