Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A gain-of-functional screen identifies the Hippo pathway as a central mediator of receptor tyrosine kinases during tumorigenesis

Abstract

The Hippo pathway has emerged as a key signaling pathway that regulates various biological functions. Dysregulation of the Hippo pathway has been implicated in a broad range of human cancer types. While a number of stimuli affecting the Hippo pathway have been reported, its upstream kinase and extracellular regulators remain largely unknown. Here we performed the first comprehensive gain-of-functional screen for receptor tyrosine kinases (RTKs) regulating the Hippo pathway using an RTK overexpression library and a Hippo signaling activity biosensor. Surprisingly, we found that the majority of RTKs could regulate the Hippo signaling activity. We further characterized several of these novel relationships [TAM family members (TYRO3, AXL, METRK), RET, and FGFR family members (FGFR1 and FGFR2)] and found that the Hippo effectors YAP/TAZ are central mediators of the tumorigenic phenotypes (e.g., increased cell proliferation, transformation, increased cell motility, and angiogenesis) induced by these RTKs and their extracellular ligands (Gas6, GDNF, and FGF) through either PI3K or MAPK signaling pathway. Significantly, we identify FGFR, RET, and MERTK as the first RTKs that can directly interact with and phosphorylate YAP/TAZ at multiple tyrosine residues independent of upstream Hippo signaling, thereby activating their functions in tumorigenesis. In conclusion, we have identified several novel kinases and extracellular stimuli regulating the Hippo pathway. Our findings also highlight the pivotal role of the Hippo pathway in mediating Gas6/GDNF/FGF-TAM/RET/FGFR-MAPK/PI3K signaling during tumorigenesis and provide a compelling rationale for targeting YAP/TAZ in RTK-driven cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Moroishi T, Hansen CG, Guan K-L. The emerging roles of YAP and TAZ in cancer. Nat Rev Cancer. 2015;15:73.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Taha Z, J Janse van Rensburg H, Yang X. The Hippo Pathway: Immunity and Cancer. Cancers. 2018;10:94.

    PubMed Central  Google Scholar 

  3. Johnson R, Halder G. The two faces of Hippo: targeting the Hippo pathway for regenerative medicine and cancer treatment. Nat Rev Drug Discov. 2014;13:63.

    CAS  PubMed  Google Scholar 

  4. Azad T, Ghahremani M, Yang X. The role of YAP and TAZ in angiogenesis and vascular mimicry. Cells. 2019;8:407.

    PubMed Central  Google Scholar 

  5. van Rensburg HJJ, Lai D, Azad T, Hao Y, Yang X. TAZ enhances mammary cell proliferation in 3D culture through transcriptional regulation of IRS1. Cell Signal. 2018;52:12–22.

    Google Scholar 

  6. Zhao Y, Montminy T, Azad T, Lightbody E, Hao Y, SenGupta S, et al. PI3K positively regulates YAP and TAZ in mammary tumorigenesis through multiple signaling pathways. Mol Cancer Res. 2018;16:1046–58.

    CAS  PubMed  Google Scholar 

  7. Justice RW, Zilian O, Woods DF, Noll M, Bryant PJ. The Drosophila tumor suppressor gene warts encodes a homolog of human myotonic dystrophy kinase and is required for the control of cell shape and proliferation. Genes Dev. 1995;9:534–46.

    CAS  PubMed  Google Scholar 

  8. Wu S, Huang J, Dong J, Pan D. Hippo encodes a Ste-20 family protein kinase that restricts cell proliferation and promotes apoptosis in conjunction with salvador and warts. Cell. 2003;114:445–56.

    CAS  PubMed  Google Scholar 

  9. Tapon N, Harvey KF, Bell DW, Wahrer DC, Schiripo TA, Haber DA, et al. Salvador promotes both cell cycle exit and apoptosis in Drosophila and is mutated in human cancer cell lines. Cell. 2002;110:467–78.

    CAS  PubMed  Google Scholar 

  10. Lai ZC, Wei X, Shimizu T, Ramos E, Rohrbaugh M, Nikolaidis N, et al. Control of cell proliferation and apoptosis by mob as tumor suppressor, mats. Cell. 2005;120:675–85.

    CAS  PubMed  Google Scholar 

  11. Hao Y, Chun A, Cheung K, Rashidi B, Yang X. Tumor suppressor LATS1 is a negative regulator of oncogene YAP. J Biol Chem. 2008;283:5496–509.

    CAS  PubMed  Google Scholar 

  12. Zhao B, Wei X, Li W, Udan RS, Yang Q, Kim J, et al. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev. 2007;21:2747–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang X, Milton CC, Humbert PO, Harvey KF. Transcriptional output of the Salvador/warts/hippo pathway is controlled in distinct fashions in Drosophila melanogaster and mammalian cell lines. Cancer Res. 2009;69:6033–41.

    CAS  PubMed  Google Scholar 

  14. Liu AM, Wong KF, Jiang X, Qiao Y, Luk JM. Regulators of mammalian Hippo pathway in cancer. Biochim et Biophys Acta. 2012;1826:357–64.

    CAS  Google Scholar 

  15. Saucedo LJ, Edgar BA. Filling out the Hippo pathway. Nat Rev Mol Cell Biol. 2007;8:613–21.

    CAS  PubMed  Google Scholar 

  16. Chen L, Chan SW, Zhang X, Walsh M, Lim CJ, Hong W, et al. Structural basis of YAP recognition by TEAD4 in the hippo pathway. Genes Dev. 2010;24:290–300.

    PubMed  PubMed Central  Google Scholar 

  17. Gumbiner BM, Kim NG. The Hippo-YAP signaling pathway and contact inhibition of growth. J Cell Sci. 2014;127:709–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Reddy B, Irvine KD. Regulation of Hippo signaling by EGFR-MAPK signaling through Ajuba family proteins. Dev Cell. 2013;24:459–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Schlessinger J. Receptor tyrosine kinases: legacy of the first two decades. Cold Spring Harb Perspect Biol. 2014;6:89–112.

    Google Scholar 

  20. Choura M, Rebaï A. Receptor tyrosine kinases: from biology to pathology. J Recept Signal Transduct. 2011;31:387–94.

    CAS  Google Scholar 

  21. Arteaga CL, Engelman JA. ERBB receptors: from oncogene discovery to basic science to mechanism-based cancer therapeutics. Cancer Cell. 2014;25:282–303.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Ullrich A, Schlessinger J. Signal transduction by receptors with tyrosine kinase activity. Cell. 1990;61:203–12.

    CAS  PubMed  Google Scholar 

  23. Robinson DR, Wu Y-M, Lin S-F. The protein tyrosine kinase family of the human genome. Oncogene. 2000;19:48–55.

    Google Scholar 

  24. Azad T, van Rensburg HJ, Lightbody ED, Neveu B, Champagne A, Ghaffari, et al. A LATS biosensor screen identifies VEGFR as a regulator of the Hippo pathway in angiogenesis. Nat Commun. 2018;9:10–61.

    Google Scholar 

  25. Azad T, Nouri K, van Rensburg Janse HJ, Hao Y, Yang X. Monitoring Hippo signaling pathway activity using a luciferase-based large tumor suppressor (LATS) biosensor. J Vis Exp. 2018;139:11–34.

    Google Scholar 

  26. Yang X, Boehm JS, Yang X, Salehi-Ashtiani K, Hao T, Shen Y, et al. A public genome-scale lentiviral expression library of human ORFs. Nat Methods. 2011;8:659–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang W, Li X, Huang J, Feng L, Dolinta KG, Chen J. Defining the protein–protein interaction network of the human Hippo pathway. Mol Cell Proteom. 2014;13:119–31.

    CAS  Google Scholar 

  28. Mohseni M, Sun J, Lau A, Curtis S, Goldsmith J, Fox VL, et al. A genetic screen identifies an LKB1-MARK signalling axis controlling the Hippo-YAP pathway. Nat Cell Biol. 2014;16:108–17.

    CAS  PubMed  Google Scholar 

  29. Vasudevan HN, Soriano P. Curr Top Dev Biol. 2016;117:393–404.

  30. Axelrod H, Pienta KJ. Axl as a mediator of cellular growth and survival. Oncotarget. 2014;5:8818–52.

    PubMed  PubMed Central  Google Scholar 

  31. Koorstra JBM, Karikari C, Feldmann G, Bisht S, Leal-Rojas P, Offerhaus GJA, et al. The Axl receptor tyrosine kinase confers an adverse prognostic influence in pancreatic cancer and represents a new therapeutic target. Cancer Biol Ther. 2009;8:618–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Hector A, Montgomery EA, Karikari C, Canto MI, Dunbar KB, Wang JS, et al. The Axl receptor tyrosine kinase is an adverse prognostic factor and a therapeutic target in esophageal adenocarcinoma. Cancer Biol Ther. 2010;10:1009–18.

    PubMed  Google Scholar 

  33. Mulligan LM. RET revisited: expanding the oncogenic portfolio. Nat Rev Cancer. 2014;14:173–86.

    CAS  PubMed  Google Scholar 

  34. Gainor JF, Shaw AT. Novel targets in non-small cell lung cancer: ROS1 and RET fusionsO. Oncologist. 2013;2:13–35.

    Google Scholar 

  35. Huang SM, Chen TS, Chiu CM, Chang LK, Liao KF, Tan HM, et al. GDNF increases cell motility in human colon cancer through VEGF–VEGFR1 interaction. Endocr Relat Cancer. 2014;21:73–84.

    CAS  PubMed  Google Scholar 

  36. Romei C, Ciampi R, Elisei R. A comprehensive overview of the role of the RET proto-oncogene in thyroid carcinoma. Nat Rev Endocrinol. 2016;12:192–202.

    CAS  PubMed  Google Scholar 

  37. Ishida M, Ichihara M, Mii S, Jijiwa M, Asai N, Enomoto A, et al. Sprouty2 regulates growth and differentiation of human neuroblastoma cells through RET tyrosine kinase. Cancer Sci. 2007;98:815–21.

    CAS  PubMed  Google Scholar 

  38. Hofstra RM, Landsvater RM, Ceccherini I, Stulp RP, Stelwagen T, Luo Y, et al. A mutation in the RET proto-oncogene associated with multiple endocrine neoplasia type 2B and sporadic medullary thyroid carcinoma. Nature. 1994;367:375–414.

    CAS  PubMed  Google Scholar 

  39. Cavallaro U, Christofori G. Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nat Rev Cancer. 2004;4:118–35.

    CAS  PubMed  Google Scholar 

  40. Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature. 2011;473:298–320.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Lemmon MA, Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell. 2010;141:1117–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Fan R, Kim N-G, Gumbiner BM. Regulation of Hippo pathway by mitogenic growth factors via phosphoinositide 3-kinase and phosphoinositide-dependent kinase-1. Proc Natl Acad Sci USA. 2013;110:2569–74.

    CAS  PubMed  Google Scholar 

  43. Romano D, Nguyen LK, Matallanas D, Halasz M, Doherty C, Kholodenko, et al. Protein interaction switches coordinate Raf-1 and MST2/Hippo signalling. Nat Cell Biol. 2014;16:673–701.

    CAS  PubMed  Google Scholar 

  44. Calses PC, Crawford JJ, Lill JR, Dey A. Hippo pathway in cancer: aberrant regulation and therapeutic opportunities. Trends Cancer. 2019;5:297–307.

    CAS  PubMed  Google Scholar 

  45. Haskins JW, Nguyen DX, Stern DF. Neuregulin 1–activated ERBB4 interacts with YAP to induce Hippo pathway target genes and promote cell migration. Sci Signal. 2014;7:116–26.

    Google Scholar 

  46. Keshet R, Reuven N, Shaul Y. c-Abl forces YAP to switch sides. Mol Cell Oncol. 2015;2:99–106.

    Google Scholar 

  47. Sugihara T, Werneburg NW, Hernandez MC, Yang L, Kabashima A, Hirsova P, et al. YAP tyrosine phosphorylation and nuclear localization in cholangiocarcinoma cells is regulated by LCK and independent of LATS activity. Mol Cancer Res. 2018;2:158–72.

    Google Scholar 

  48. Li, P, Silvis, MR, Honaker, Y, Lien, WH, Arron, ST, Vasioukhin, V. αE-catenin inhibits a Src–YAP1 oncogenic module that couples tyrosine kinases and the effector of Hippo signaling pathway. Genes Dev. 2016;30:798–811.

    CAS  Google Scholar 

  49. Levy D, Adamovich Y, Reuven N, Shaul Y. Yap1 phosphorylation by c-Abl is a critical step in selective activation of proapoptotic genes in response to DNA damage. Mol Cell. 2008;29:350–61.

    CAS  PubMed  Google Scholar 

  50. Yu F-X, Guan K-L. The Hippo pathway: regulators and regulations. Genes Dev. 2013;27:355–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Attisano L, Wrana JL. Signal integration in TGF-β, WNT, and Hippo pathways. F1000Prime Rep. 2013;5:17–26.

    PubMed  PubMed Central  Google Scholar 

  52. Yu FX, Zhao B, Panupinthu N, Jewell JL, Lian I, Wang LH, et al. Regulation of the Hippo-YAP pathway by G-protein-coupled receptor signaling. Cell. 2012;150:780–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Rizvi S, Yamada D, Hirsova P, Bronk SF, Werneburg NW, Krishnan A, et al. A hippo and fibroblast growth factor receptor autocrine pathway in cholangiocarcinoma. J Biol Chem. 2016;115:72–98.

    Google Scholar 

  54. Edwards DN, Ngwa VM, Wang S, Shiuan E, Brantley-Sieders DM, Kim LC, et al. The receptor tyrosine kinase EphA2 promotes glutamine metabolism in tumors by activating the transcriptional coactivators YAP and TAZ. Sci Signal. 2017;10:46–67.

    Google Scholar 

  55. Meng Z, Moroishi T, Mottier-Pavie V, Plouffe SW, Hansen CG, Hong AW, et al. MAP4K family kinases act in parallel to MST1/2 to activate LATS1/2 in the Hippo pathway. Nat Commun. 2015;6:57–83.

    Google Scholar 

  56. Moroishi T, Park HW, Qin B, Chen Q, Meng Z, Plouffe SW, et al. A YAP/TAZ-induced feedback mechanism regulates Hippo pathway homeostasis. Genes Dev. 2015;29:1271–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Xu MZ, Chan SW, Liu AM, Wong KF, Fan ST, Chen J, et al. AXL receptor kinase is a mediator of YAP-dependent oncogenic functions in hepatocellular carcinoma. Oncogene. 2011;30:1229.

    CAS  PubMed  Google Scholar 

  58. Tamm C, Böwer N, Annerén C. Regulation of mouse embryonic stem cell self-renewal by a Yes− YAP− TEAD2 signaling pathway downstream of LIF. J Cell Sci. 2011;124:1136–44.

    PubMed  Google Scholar 

  59. Jang EJ, Jeong H, Han KH, Kwon HM, Hong JH, Hwang ES, et al. TAZ suppresses NFAT5 activity through tyrosine phosphorylation. Mol Cell Biol. 2012;32:4925–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Chioni A-M, Grose R. FGFR1 cleavage and nuclear translocation regulates breast cancer cell behavior. J Cell Biol. 2012;197:801–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Lee YW, Terranova C, Birkaya B, Narla S, Kehoe D, Parikh A, et al. A novel nuclear FGF receptor-1 partnership with retinoid and Nur receptors during developmental gene programming of embryonic stem cells. J Cell Biochem. 2012;113:2920–36.

    CAS  PubMed  Google Scholar 

  62. Coleman SJ, Chioni AM, Ghallab M, Anderson RK, Lemoine NR, Kocher HM, et al. Nuclear translocation of FGFR1 and FGF2 in pancreatic stellate cells facilitates pancreatic cancer cell invasion. EMBO Mol Med. 2014;6:467–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Lian EY, Maritan SM, Cockburn JG, Kasaian K, Crupi MJ, Hurlbut D, et al. Differential roles of RET isoforms in medullary and papillary thyroid carcinomas. Endocr Relat Cancer. 2017;24:53–69.

    CAS  PubMed  Google Scholar 

  64. Gorelik R, Gautreau A. Quantitative and unbiased analysis of directional persistence in cell migration. Nat Protoc. 2014;9:1931–43.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from Canadian Institute of Health Research (CIHR#119325, 148629), Canadian Breast Cancer Foundation to XY and CIHR (CIHR#142303) to LMM. TA is supported by the Vanier Canada Graduate Scholarship and Ontario International Graduate Scholarship. HJJvR was supported by a Queen Elizabeth II Graduate Scholarship in Science and Technology. SMM was supported by a Master’s CIHR award. SMM, TM, PK, and TA are supported by studentships from the Terry Fox Research Institute Training Program in Transdisciplinary Cancer Research. We thank Dr David Lillicrap and Dr Paula James for providing the HUVEC, Telo-HEC, and BOEC cells; Dr Camargo for STBS-luc reporter plasmid; Mina Ghahremani for help in making figures; Dr Abdi Ghafari for Aortic ring angiogenesis assay; Elham Ghourbanpour and Dr Lillicrap for helping in Nucleofection transfection; Dr Guan for providing us with HEK293A-LATS knockout cells, and Carrie Wei for help in analyzing motility assay; and Dr Peter Greer for reading the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

TA, LMM and XY designed the study and individual experiments. TA, KN, HJJvR, SMM, LW, YH, JY and PK performed experiments with supervision from XY and LMM. XY and LMM provided resources/equipment and secured funding. TA and XY wrote the manuscript.

Corresponding author

Correspondence to Xiaolong Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azad, T., Nouri, K., Janse van Rensburg, H.J. et al. A gain-of-functional screen identifies the Hippo pathway as a central mediator of receptor tyrosine kinases during tumorigenesis. Oncogene 39, 334–355 (2020). https://doi.org/10.1038/s41388-019-0988-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-019-0988-y

This article is cited by

Search

Quick links