Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An miR-340-5p-macrophage feedback loop modulates the progression and tumor microenvironment of glioblastoma multiforme

Abstract

MicroRNAs (miRNAs) have been shown to be involved in the progression and tumor microenvironment of glioblastoma multiforme (GBM). Our previous research has indicated that miR-340-5p has an antitumor effect in vitro. However, the role of miR-340-5p in GBM has not been fully elucidated. Here, we show that downregulation of miR-340-5p in GBM is correlated with tumor size, recurrence, and poor survival. Moreover, we found that miR-340-5p levels are correlated with the density of tumor-associated macrophages (TAMs) and M2-polarized TAMs in GBM. Biofunctional investigations revealed that downregulation of miR-340-5p promoted TAM recruitment and M2-TAMs polarization in vitro and in vivo. In addition, we found that upregulation of miR-340-5p inhibited tumor growth and was associated with good prognosis in vivo. Through gene expression profiles and bioinformatics analysis, we showed that miR-340-5p directly targets POSTN, which recruited TAMs through integrin αvβ3. Downregulation of miR-340-5p in GBM did not induce the differentiation of TAMs into polarized M2 cells but was able to promote the M2 polarization of TAMs through directly targeting LTBP-1. Furthermore, we found that M2-TAMs promoted tumorigenesis and were associated with a poor prognosis in vivo. In an in vitro study, we demonstrated that M2-TAMs inhibited miR-340-5p expression in GBM cells by upregulation of TGFβ-1, which increased HMGA-2 expression in GBM. A ChIP assay confirmed that HMGA-2 transcriptionally suppressed miR-340-5p expression. Patients with low-miR-340-5p expression, high CD163, high POSTN, high LIBP1 levels, and high HMGA-2 had a poor prognosis with shorter overall survival, confirming data from the TCGA database. These findings suggest that an miR-340-5p-macrophage feedback loop modulates the progression and tumor microenvironment of GBM and may represent a prognostic biomarker and therapeutic strategy for GBM.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Simon T, Pinioti S, Schellenberger P, Rajeeve V, Wendler F, Cutillas PR, et al. Shedding of bevacizumab in tumour cells-derived extracellular vesicles as a new therapeutic escape mechanism in glioblastoma. Mol Cancer. 2018;17:132.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Rape A, Ananthanarayanan B, Kumar S. Engineering strategies to mimic the glioblastoma microenvironment. Adv Drug Deliv Rev. 2014;79-80:172–83.

    Article  CAS  PubMed  Google Scholar 

  3. Luo H, Chen Z, Wang S, Zhang R, Qiu W, Zhao L, et al. C-Myc-miR-29c-REV3L signalling pathway drives the acquisition of temozolomide resistance in glioblastoma. Brain. 2015;138:3654–72.

    Article  PubMed  Google Scholar 

  4. Kim VN. MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol. 2005;6:376–85.

    Article  CAS  PubMed  Google Scholar 

  5. He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet. 2004;5:522–31.

    Article  CAS  PubMed  Google Scholar 

  6. Cui T, Bell EH, McElroy J, Becker AP, Gulati PM, Geurts M, et al. MiR-4516 predicts poor prognosis and functions as a novel oncogene via targeting PTPN14 in human glioblastoma. Oncogene. 2019;38:2923–36.

    Article  CAS  PubMed  Google Scholar 

  7. Xiong Q, Wu S, Wang J, Zeng X, Chen J, Wei M, et al. Hepatitis B virus promotes cancer cell migration by downregulating miR-340-5p expression to induce STAT3 overexpression. Cell Biosci. 2017;7:16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Huang D, Qiu S, Ge R, He L, Li M, Li Y, et al. MiR-340 suppresses glioblastoma multiforme. Oncotarget. 2015;6:9257–70.

    PubMed  PubMed Central  Google Scholar 

  9. Fiore D, Donnarumma E, Roscigno G, Iaboni M, Russo V, Affinito A, et al. MiR-340 predicts glioblastoma survival and modulates key cancer hallmarks through down-regulation of NRAS. Oncotarget. 2016;7:19531–47.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Qian BZ, Pollard JW. Macrophage diversity enhances tumor progression and metastasis. Cell. 2010;141:39–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ngambenjawong C, Gustafson HH, Pun SH. Progress in tumor-associated macrophage (TAM)-targeted therapeutics. Adv Drug Deliv Rev. 2017;114:206–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen XW, Yu TJ, Zhang J, Li Y, Chen HL, Yang GF, et al. CYP4A in tumor-associated macrophages promotes pre-metastatic niche formation and metastasis. Oncogene. 2017;36:5045–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pyonteck SM, Akkari L, Schuhmacher AJ, Bowman RL, Sevenich L, Quail DF, et al. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat Med. 2013;19:1264–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Garris C, Pittet MJ. Therapeutically reeducating macrophages to treat GBM. Nat Med. 2013;19:1207–8.

    Article  CAS  PubMed  Google Scholar 

  15. Hambardzumyan D, Gutmann DH, Kettenmann H. The role of microglia and macrophages in glioma maintenance and progression. Nat Neurosci. 2016;19:20–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen D, Xie J, Fiskesund R, Dong W, Liang X, Lv J, et al. Chloroquine modulates antitumor immune response by resetting tumor-associated macrophages toward M1 phenotype. Nat Commun. 2018;9:873.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Zheng F, Liao YJ, Cai MY, Liu YH, Liu TH, Chen SP, et al. The putative tumour suppressor microRNA-124 modulates hepatocellular carcinoma cell aggressiveness by repressing ROCK2 and EZH2. Gut. 2012;61:278–89.

    Article  CAS  PubMed  Google Scholar 

  18. Fernandez S, Risolino M, Mandia N, Talotta F, Soini Y, Incoronato M, et al. MiR-340 inhibits tumor cell proliferation and induces apoptosis by targeting multiple negative regulators of P27 in non-small cell lung cancer. Oncogene. 2015;34:3240–50.

    Article  CAS  PubMed  Google Scholar 

  19. Wu ZS, Wu Q, Wang CQ, Wang XN, Huang J, Zhao JJ, et al. MiR-340 inhibition of breast cancer cell migration and invasion through targeting of oncoprotein c-Met. Cancer-Am Cancer Soc. 2011;117:2842–52.

    CAS  Google Scholar 

  20. Yamashita D, Kondo T, Ohue S, Takahashi H, Ishikawa M, Matoba R, et al. MiR340 suppresses the stem-like cell function of glioma-initiating cells by targeting tissue plasminogen activator. Cancer Res. 2015;75:1123–33.

    Article  CAS  PubMed  Google Scholar 

  21. Lathia JD, Heddleston JM, Venere M, Rich JN. Deadly teamwork: neural cancer stem cells and the tumor microenvironment. Cell Stem Cell. 2011;8:482–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Saha D, Martuza RL, Rabkin SD. Macrophage polarization contributes to glioblastoma eradication by combination immunovirotherapy and immune checkpoint blockade. Cancer Cell. 2017;32:253–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gordon SR, Maute RL, Dulken BW, Hutter G, George BM, McCracken MN, et al. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature. 2017;545:495–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shi Y, Ping YF, Zhou W, He ZC, Chen C, Bian BS, et al. Tumour-associated macrophages secrete pleiotrophin to promote PTPRZ1 signalling in glioblastoma stem cells for tumour growth. Nat Commun. 2017;8:15080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mellman I, Coukos G, Dranoff G. Cancer immunotherapy comes of age. Nature. 2011;480:480–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Qian Y, Qiao S, Dai Y, Xu G, Dai B, Lu L, et al. Molecular-targeted immunotherapeutic strategy for melanoma via dual-targeting nanoparticles delivering small interfering RNA to tumor-associated macrophages. ACS Nano. 2017;11:9536–49.

    Article  CAS  PubMed  Google Scholar 

  27. Heusinkveld M, van der Burg SH. Identification and manipulation of tumor associated macrophages in human cancers. J Transl Med. 2011;9:216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ponomarev ED, Veremeyko T, Weiner HL. MicroRNAs are universal regulators of differentiation, activation, and polarization of microglia and macrophages in normal and diseased CNS. Glia. 2013;61:91–103.

    Article  PubMed  Google Scholar 

  29. Baer C, Squadrito ML, Laoui D, Thompson D, Hansen SK, Kiialainen A, et al. Suppression of microRNA activity amplifies IFN-gamma-induced macrophage activation and promotes anti-tumour immunity. Nat Cell Biol. 2016;18:790–802.

    Article  CAS  PubMed  Google Scholar 

  30. Fabbri M, Paone A, Calore F, Galli R, Gaudio E, Santhanam R, et al. MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. Proc Natl Acad Sci USA. 2012;109:E2110–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Squadrito ML, Etzrodt M, De Palma M, Pittet MJ. MicroRNA-mediated control of macrophages and its implications for cancer. Trends Immunol. 2013;34:350–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Platten M, Kretz A, Naumann U, Aulwurm S, Egashira K, Isenmann S, et al. Monocyte chemoattractant protein-1 increases microglial infiltration and aggressiveness of gliomas. Ann Neurol. 2003;54:388–92.

    Article  CAS  PubMed  Google Scholar 

  33. Okada M, Saio M, Kito Y, Ohe N, Yano H, Yoshimura S, et al. Tumor-associated macrophage/microglia infiltration in human gliomas is correlated with MCP-3, but not MCP-1. Int J Oncol. 2009;34:1621–7.

    CAS  PubMed  Google Scholar 

  34. Da FA, Badie B. Microglia and macrophages in malignant gliomas: recent discoveries and implications for promising therapies. Clin Dev Immunol. 2013;2013:264124.

    Google Scholar 

  35. Held-Feindt J, Hattermann K, Muerkoster SS, Wedderkopp H, Knerlich-Lukoschus F, Ungefroren H, et al. CX3CR1 promotes recruitment of human glioma-infiltrating microglia/macrophages (GIMs). Exp Cell Res. 2010;316:1553–66.

    Article  CAS  PubMed  Google Scholar 

  36. Wang SC, Hong JH, Hsueh C, Chiang CS. Tumor-secreted SDF-1 promotes glioma invasiveness and tam tropism toward hypoxia in a murine astrocytoma model. Lab Investig. 2012;92:151–62.

    Article  CAS  PubMed  Google Scholar 

  37. Lee J, Dang X, Borboa A, Coimbra R, Baird A, Eliceiri BP. Thrombin-processed Ecrg4 recruits myeloid cells and induces antitumorigenic inflammation. Neuro Oncol. 2015;17:685–96.

    Article  CAS  PubMed  Google Scholar 

  38. Forstreuter F, Lucius R, Mentlein R. Vascular endothelial growth factor induces chemotaxis and proliferation of microglial cells. J Neuroimmunol. 2002;132:93–8.

    Article  CAS  PubMed  Google Scholar 

  39. Mikheev AM, Mikheeva SA, Trister AD, Tokita MJ, Emerson SN, Parada CA, et al. Periostin is a novel therapeutic target that predicts and regulates glioma malignancy. Neuro Oncol. 2015;17:372–82.

    Article  CAS  PubMed  Google Scholar 

  40. Zhou W, Ke SQ, Huang Z, Flavahan W, Fang X, Paul J, et al. Periostin secreted by glioblastoma stem cells recruits M2 tumour-associated macrophages and promotes malignant growth. Nat Cell Biol. 2015;17:170–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhuang X, Zhang H, Li X, Li X, Cong M, Peng F, et al. Differential effects on lung and bone metastasis of breast cancer by Wnt signalling inhibitor DKK1. Nat Cell Biol. 2017;19:1274–85.

    Article  CAS  PubMed  Google Scholar 

  42. Chen H, Cai W, Chu E, Tang J, Wong CC, Wong SH, et al. Hepatic cyclooxygenase-2 overexpression induced spontaneous hepatocellular carcinoma formation in mice. Oncogene. 2017;36:4415–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chi JQ, Teng M, Yu ZH, Xu H, Su JW, Zhao P, et al. Marek's disease virus-encoded analog of microRNA-155 activates the oncogene c-Myc by targeting LTBP1 and suppressing the TGF-beta signaling pathway. Virology. 2015;476:72–84.

    Article  CAS  PubMed  Google Scholar 

  44. Gargiulo G, Cesaroni M, Serresi M, de Vries N, Hulsman D, Bruggeman SW, et al. In vivo RNAi screen for BMI1 targets identifies TGF-beta/BMP-ER stress pathways as key regulators of neural- and malignant glioma-stem cell homeostasis. Cancer Cell. 2013;23:660–76.

    Article  CAS  PubMed  Google Scholar 

  45. Komohara Y, Ohnishi K, Kuratsu J, Takeya M. Possible involvement of the M2 anti-inflammatory macrophage phenotype in growth of human gliomas. J Pathol. 2008;216:15–24.

    Article  CAS  PubMed  Google Scholar 

  46. Wu A, Wei J, Kong LY, Wang Y, Priebe W, Qiao W, et al. Glioma cancer stem cells induce immunosuppressive macrophages/microglia. Neuro Oncol. 2010;12:1113–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Thuault S, Valcourt U, Petersen M, Manfioletti G, Heldin CH, Moustakas A. Transforming growth factor-beta employs HMGA2 to elicit epithelial–mesenchymal transition. J Cell Biol. 2006;174:175–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Liu B, Pang B, Hou X, Fan H, Liang N, Zheng S, et al. Expression of high-mobility group AT-hook protein 2 and its prognostic significance in malignant gliomas. Hum Pathol. 2014;45:1752–8.

    Article  CAS  PubMed  Google Scholar 

  49. Schwarm FP, Uhle F, Schanzer A, Acker T, Stein M, Reinges MH, et al. High-mobility group AT-hook protein 2 expression and its prognostic significance in MGMT methylated and unmethylated glioblastoma. Int J Oncol. 2016;48:1485–92.

    Article  CAS  PubMed  Google Scholar 

  50. Chiou GY, Chien CS, Wang ML, Chen MT, Yang YP, Yu YL, et al. Epigenetic regulation of the miR142-3p/interleukin-6 circuit in glioblastoma. Mol Cell. 2013;52:693–706.

    Article  CAS  PubMed  Google Scholar 

  51. Roth P, Silginer M, Goodman SL, Hasenbach K, Thies S, Maurer G, et al. Integrin control of the transforming growth factor-beta pathway in glioblastoma. Brain. 2013;136:564–76.

    Article  PubMed  Google Scholar 

  52. Li H, Xu D, Toh BH, Liu JP. TGF-beta and cancer: is Smad3 a repressor of hTERT gene? Cell Res. 2006;16:169–73.

    Article  CAS  PubMed  Google Scholar 

  53. Rong X, Huang B, Qiu S, Li X, He L, Peng Y. Tumor-associated macrophages induce vasculogenic mimicry of glioblastoma multiforme through cyclooxygenase-2 activation. Oncotarget. 2016;7:83976–86.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank and acknowledge the patients for tumor tissue donation. We also thank SWQ and BH for their scientific support in some experiments. This work was supported by the National Natural Science Foundation of China (No. 81572481 to YP, 81502167 to XMR and 81502552 to LH), the key point program of Science & Technique plan for production, study, and research of Guangzhou city (201508020058). Grant KLB09001 from the Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen University and Grant [2013]163 from Key Laboratory of Malignant Tumor Molecular Mechanism and Translational Medicine of Guangzhou Bureau of Science and Information Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Peng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Li, X., Zhang, Y. et al. An miR-340-5p-macrophage feedback loop modulates the progression and tumor microenvironment of glioblastoma multiforme. Oncogene 38, 7399–7415 (2019). https://doi.org/10.1038/s41388-019-0952-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-019-0952-x

This article is cited by

Search

Quick links