Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Overexpression of cellular telomerase RNA enhances virus-induced cancer formation

Abstract

The telomerase RNA subunit (TR) is overexpressed in many tumors; however, the contribution of TR in cancer formation remains elusive. The most frequent clinically diagnosed cancer in the animal kingdom is caused by the highly oncogenic herpesvirus Marek’s disease virus (MDV). MDV encodes a TR (vTR) that plays an important role in virus-induced tumorigenesis and shares 88% sequence identity with its cellular homologue. To determine if the cellular TR possesses pro-oncogenic activity, we replaced vTR with the cellular homologue in the virus genome. Insertion of cellular TR resulted in a strong overexpression in virus infected cells, while virus replication was not affected. Strikingly, cellular TR promoted tumor formation as efficient as vTR, while tumorigenesis was severely impaired in the absence of vTR. Our data provide the first evidence that overexpression of cellular TR can contribute to tumor formation in vivo using this natural virus-host model for herpesvirus-induced oncogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Blackburn EH. Telomere states and cell fates. Nature. 2000;408:53–6.

    Article  CAS  Google Scholar 

  2. Collins K. Physiological assembly and activity of human telomerase complexes. Mech Ageing Dev. 2008;129:91–8.

    Article  CAS  Google Scholar 

  3. Autexier C, Lue NF. The structure and function of telomerase reverse transcriptase. Annu Rev Biochem. 2006;75:493–517.

    Article  CAS  Google Scholar 

  4. Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL, et al. Specific association of human telomerase activity with immortal cells and cancer. Science. 1994;266:2011–5.

    Article  CAS  Google Scholar 

  5. Martin-Rivera L, Blasco MA. Identification of functional domains and dominant negative mutations in vertebrate telomerase RNA using an in vivo reconstitution system. J Biol Chem. 2001;276:5856–65.

    Article  CAS  Google Scholar 

  6. Chen JL, Blasco MA, Greider CW. Secondary structure of vertebrate telomerase RNA. Cell. 2000;100:503–14.

    Article  CAS  Google Scholar 

  7. Cao Y, Bryan TM, Reddel RR. Increased copy number of the TERT and TERC telomerase subunit genes in cancer cells. Cancer Sci. 2008;99:1092–9.

    Article  CAS  Google Scholar 

  8. Baena-Del Valle JA, Zheng Q, Esopi DM, Rubenstein M, Hubbard GK, Moncaliano MC, et al. MYC drives overexpression of telomerase RNA (hTR/TERC) in prostate cancer. J Pathol. 2018;244:11–24.

    Article  CAS  Google Scholar 

  9. Penzo M, Ludovini V, Trere D, Siggillino A, Vannucci J, Bellezza G, et al. Dyskerin and TERC expression may condition survival in lung cancer patients. Oncotarget. 2015;6:21755–60.

    Article  Google Scholar 

  10. Li L, Jiang W, Zeng SY, Li L. Prospective study of hTERC gene detection by fluorescence in situ hybridization (FISH) in cervical intraepithelial neoplasia 1 natural prognosis. Eur J Gynaecol Oncol. 2014;35:289–91.

    CAS  PubMed  Google Scholar 

  11. Nowak T, Januszkiewicz D, Zawada M, Pernak M, Lewandowski K, Rembowska J, et al. Amplification of hTERT and hTERC genes in leukemic cells with high expression and activity of telomerase. Oncol Rep. 2006;16:301–5.

    CAS  PubMed  Google Scholar 

  12. Gazzaniga FS, Blackburn EH. An antiapoptotic role for telomerase RNA in human immune cells independent of telomere integrity or telomerase enzymatic activity. Blood. 2014;124:3675–84.

    Article  CAS  Google Scholar 

  13. Rumin Wen JL, Li Wang, Yang Wenfa, Mao Lijun, Zheng Junnian. Attenuation of telomerase activity by siRNA targeted telomerase RNA leads to apoptosis and inhibition of proliferation in human renal carcinoma cells. Chinese. J Clin Oncol. 2006;3:326–31.

    Google Scholar 

  14. Osterrieder N, Kamil JP, Schumacher D, Tischer BK, Trapp S. Marek’s disease virus: from miasma to model. Nat Rev Microbiol. 2006;4:283–94.

    Article  CAS  Google Scholar 

  15. Trapp S, Parcells MS, Kamil JP, Schumacher D, Tischer BK, Kumar PM, et al. A virus-encoded telomerase RNA promotes malignant T cell lymphomagenesis. J Exp Med. 2006;203:1307–17.

    Article  CAS  Google Scholar 

  16. Fragnet L, Blasco MA, Klapper W, Rasschaert D. The RNA subunit of telomerase is encoded by Marek’s disease virus. J Virol. 2003;77:5985–96.

    Article  CAS  Google Scholar 

  17. Fragnet L, Kut E, Rasschaert D. Comparative functional study of the viral telomerase RNA based on natural mutations. J Biol Chem. 2005;280:23502–15.

    Article  CAS  Google Scholar 

  18. Shkreli M, Dambrine G, Soubieux D, Kut E, Rasschaert D. Involvement of the oncoprotein c-Myc in viral telomerase RNA gene regulation during Marek’s disease virus-induced lymphomagenesis. J Virol. 2007;81:4848–57.

    Article  CAS  Google Scholar 

  19. Chbab N, Egerer A, Veiga I, Jarosinski KW, Osterrieder N. Viral control of vTR expression is critical for efficient formation and dissemination of lymphoma induced by Marek’s disease virus (MDV). Vet Res. 2010;41:56.

    Article  Google Scholar 

  20. Mason M, Schuller A, Skordalakes E. Telomerase structure function. Curr Opin Struct Biol. 2011;21:92–100.

    Article  CAS  Google Scholar 

  21. Wyatt HDM, West SC, Beattie TL. InTERTpreting telomerase structure and function. Nucleic Acids Res. 2010;38:5609–22.

    Article  CAS  Google Scholar 

  22. Kaufer BB, Trapp S, Jarosinski KW, Osterrieder N. Herpesvirus telomerase RNA(vTR)-dependent lymphoma formation does not require interaction of vTR with telomerase reverse transcriptase (TERT). PLoS Pathog. 2010;6:e1001073.

    Article  Google Scholar 

  23. Kheimar A, Kaufer BB. Epstein-Barr virus-encoded RNAs (EBERs) complement the loss of Herpesvirus telomerase RNA (vTR) in virus-induced tumor formation. Sci Rep. 2018;8:209.

    Article  Google Scholar 

  24. Akıncılar SC, Low KC, Liu CY, Yan TD, Oji A, Ikawa M, et al. Quantitative assessment of telomerase components in cancer cell lines. FEBS Lett. 2015;589:974–84.

    Article  Google Scholar 

  25. Koh CM, Khattar E, Leow SC, Liu CY, Muller J, Ang WX, et al. Telomerase regulates MYC-driven oncogenesis independent of its reverse transcriptase activity. J Clin Invest. 2015;125:2109–22.

    Article  Google Scholar 

  26. Khattar E, Kumar P, Liu CY, Akincilar SC, Raju A, Lakshmanan M, et al. Telomerase reverse transcriptase promotes cancer cell proliferation by augmenting tRNA expression. J Clin Invest. 2016;126:4045–60.

    Article  Google Scholar 

  27. Murre C. Ribosomal proteins and the control of alphabeta T lineage development. Immunity. 2007;26:751–2.

    Article  CAS  Google Scholar 

  28. Anderson SJ, Lauritsen JP, Hartman MG, Foushee AM, Lefebvre JM, Shinton SA, et al. Ablation of ribosomal protein L22 selectively impairs alphabeta T cell development by activation of a p53-dependent checkpoint. Immunity. 2007;26:759–72.

    Article  CAS  Google Scholar 

  29. Rao S, Cai KQ, Stadanlick JE, Greenberg-Kushnir N, Solanki-Patel N, Lee SY, et al. Ribosomal protein Rpl22 controls the dissemination of T-cell lymphoma. Cancer Res. 2016;76:3387–96.

    Article  CAS  Google Scholar 

  30. Rao S, Lee SY, Gutierrez A, Perrigoue J, Thapa RJ, Tu Z, et al. Inactivation of ribosomal protein L22 promotes transformation by induction of the stemness factor, Lin28B. Blood. 2012;120:3764–73.

    Article  CAS  Google Scholar 

  31. Le S, Sternglanz R, Greider CW. Identification of two RNA-binding proteins associated with human telomerase RNA. Mol Biol Cell. 2000;11:999–1010.

    Article  CAS  Google Scholar 

  32. Ghosh A, Saginc G, Leow SC, Khattar E, Shin EM, Yan TD, et al. Telomerase directly regulates NF-kappaB-dependent transcription. Nat Cell Biol. 2012;14:1270–81.

    Article  CAS  Google Scholar 

  33. Tischer BK, Smith GA, Osterrieder N. En passant mutagenesis: a two step markerless red recombination system. Methods Mol Biol. 2010;634:421–30.

    Article  CAS  Google Scholar 

  34. Engel AT, Selvaraj RK, Kamil JP, Osterrieder N, Kaufer BB. Marek’s disease viral interleukin-8 (vIL-8)promotes lymphoma formation through targeted recruitment of B-cells and CD4+ CD25+ T-cells. J Virol.2012;86:8536–8545.

    Article  CAS  Google Scholar 

  35. Tischer BK, Kaufer BB. Viral bacterial artificial chromosomes: generation, mutagenesis, and removal of mini-F sequences. J Biomed Biotechnol. 2012;2012:472537.

    Article  Google Scholar 

  36. Tischer BK, von Einem J, Kaufer B, Osterrieder N. Two-step red-mediated recombination for versatile high-efficiency markerless DNA manipulation in Escherichia coli. Biotechniques. 2006;40:191–7.

    Article  CAS  Google Scholar 

  37. Jarosinski KW, Margulis NG, Kamil JP, Spatz SJ, Nair VK, Osterrieder N. Horizontal transmission of Marek’s disease virus requires US2, the UL13 protein kinase, and gC. J Virol. 2007;81:10575–87.

    Article  CAS  Google Scholar 

  38. Schumacher D, Tischer BK, Trapp S, Osterrieder N. The protein encoded by the US3 orthologue of Marek’s disease virus is required for efficient de-envelopment of perinuclear virions and involved in actin stress fiber breakdown. J Virol. 2005;79:3987–97.

    Article  CAS  Google Scholar 

  39. Jarosinski K, Kattenhorn L, Kaufer B, Ploegh H, Osterrieder N. A herpesvirus ubiquitin-specific protease is critical for efficient T cell lymphoma formation. Proc Natl Acad Sci USA. 2007;104:20025–30.

    Article  CAS  Google Scholar 

  40. Jarosinski KW, Osterrieder N, Nair VK, Schat KA. Attenuation of Marek’s disease virus by deletion of open reading frame RLORF4 but not RLORF5a. J Virol. 2005;79:11647–59.

    Article  CAS  Google Scholar 

  41. Kaufer BB, Jarosinski KW, Osterrieder N. Herpesvirus telomeric repeats facilitate genomic integration into host telomeres and mobilization of viral DNA during reactivation. J Exp Med. 2011;208:605–15.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Ann Reum for the technical assistance and Dr. Laura Pieper for her statistical consultation.

Funding:

DFG grant (KA 3492/3–1), Ministry of High Education Egypt (MOHE), and Studienstiftung des deutschen Volkes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benedikt B. Kaufer.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kheimar, A., Trimpert, J., Groenke, N. et al. Overexpression of cellular telomerase RNA enhances virus-induced cancer formation. Oncogene 38, 1778–1786 (2019). https://doi.org/10.1038/s41388-018-0544-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-018-0544-1

This article is cited by

Search

Quick links