Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The homeostasis-maintaining metabolites from bacterial stress response to bacteriophage infection suppress tumor metastasis

Abstract

The antiviral metabolites from bacterial stress response to bacteriophage infection can maintain homeostasis of host cells, while metabolism disorder is a remarkable characteristic of tumorigenesis. In the aspect of metabolic homeostasis, therefore, the antiviral homeostasis-maintaining metabolites of bacteria may possess anti-tumor activity. However, this issue has not been addressed. Here we show that the homeostasis-challenged maintaining metabolites from deep-sea bacteriophage-challenged thermophile can suppress tumor metastasis. The results indicated that the metabolic profiles of the bacteriophage GVE2-infected and virus-free thermophile Geobacillus sp. E263 from a deep-sea hydrothermal vent were remarkably different. Thirteen metabolites were significantly elevated and two metabolites were downregulated in thermophile stress response to GVE2 infection. As an example, the upregulated L-norleucine was characterized. The data showed that L-norleucine had antiviral activity in thermophile. Furthermore, the in vitro and in vivo assays revealed that L-norleucine, as well as its derivative, significantly suppressed metastasis of gastric and breast cancer cells. L-norleucine interacted with hnRNPA2/B1 protein to inhibit the expressions of Twist1 and Snail, two inhibitors of E-cadherin, and promote the E-cadherin expression, leading to the inhibition of tumor metastasis. Therefore, our study presented that antiviral homeostasis-maintaining metabolites of microbes might be a promising source for anti-tumor drugs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Knight V, Sanglier JJ, DiTullio D, Braccili S, Bonner P, Waters J, et al. Diversifying microbial natural products for drug discovery. Appl Microbiol Biotechnol. 2003;62:446–58.

    Article  CAS  Google Scholar 

  2. Lam KS. New aspects of natural products in drug discovery. Trends Microbiol. 2007;15:279–89.

    Article  CAS  Google Scholar 

  3. Berdy J. Bioactive microbial metabolites. J Antibiot. 2005;58:1–26.

    Article  CAS  Google Scholar 

  4. Xiong ZQ, Wang JF, Hao YY, Wang Y. Recent advances in the discovery and development of marine microbial natural products. Mar Drugs. 2013;11:700–17.

    Article  CAS  Google Scholar 

  5. Gulder TA, Moore BS. Chasing the treasures of the sea-bacterial marine natural products. Curr Opin Microbiol. 2009;12:252–60.

    Article  CAS  Google Scholar 

  6. Li X, Qin L. Metagenomics-based drug discovery and marine microbial diversity. Trends Biotechnol. 2005;23:539–43.

    Article  CAS  Google Scholar 

  7. Salomon CE, Magarvey NA, Sherman DH. Merging the potential of microbial genetics with biological and chemical diversity: an even brighter future for marine natural product drug discovery. Nat Prod Rep. 2004;21:105–21.

    Article  CAS  Google Scholar 

  8. Nastrucci C, Cesario A, Russo P. Anticancer drug discovery from the marine environment. Recent Pat Anticancer Drug Discov. 2012;7:218–32.

    Article  CAS  Google Scholar 

  9. Pelaez F. The historical delivery of antibiotics from microbial natural products--can history repeat? Biochem Pharmacol. 2006;71:981–90.

    Article  CAS  Google Scholar 

  10. Simmons TL, Coates RC, Clark BR, Engene N, Gonzalez D, Esquenazi E, et al. Biosynthetic origin of natural products isolated from marine microorganism-invertebrate assemblages. Proc Natl Acad Sci USA. 2008;105:4587–94.

    Article  CAS  Google Scholar 

  11. Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism. Nat Rev Cancer. 2011;11:85–95.

    Article  CAS  Google Scholar 

  12. Bristow RG, Hill RP. Hypoxia and metabolism. Hypoxia, DNA repair and genetic instability. Nat Rev Cancer. 2008;8:180–92.

    Article  CAS  Google Scholar 

  13. Cairns R, Papandreou I, Denko N. Overcoming physiologic barriers to cancer treatment by molecularly targeting the tumor microenvironment. Mol Cancer Res. 2006;4:61–70.

    Article  CAS  Google Scholar 

  14. Lee SR, Yang KS, Kwon J, Lee C, Jeong W, Rhee SG. Reversible inactivation of the tumor suppressor PTEN by H2O2. J Biol Chem. 2002;277:20336–42.

    Article  CAS  Google Scholar 

  15. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324:1029–33.

    Article  Google Scholar 

  16. Yang C, Sudderth J, Dang T, Bachoo RM, McDonald JG, DeBerardinis RJ. Glioblastoma cells require glutamate dehydrogenase to survive impairments of glucose metabolism or Akt signaling. Cancer Res. 2009;69:7986–93.

    Article  CAS  Google Scholar 

  17. Majeed R, Hamid A. Therapeutic targeting of cancer cell metabolism: role of metabolic enzymes, oncogenes and tumor suppressor genes. J Cancer Sci Ther. 2012; 4.

  18. Ciavardelli D, Rossi C, Barcaroli D, Volpe S, Consalvo A, Zucchelli M, et al. Breast cancer stem cells rely on fermentative glycolysis and are sensitive to 2-deoxyglucose treatment. Cell Death Dis. 2014;5:e1336.

    Article  CAS  Google Scholar 

  19. Krall AS, Xu S, Graeber TG, Braas D, Christofk HR. Asparagine promotes cancer cell proliferation through use as an amino acid exchange factor. Nat Commun. 2016;7:11457.

    Article  CAS  Google Scholar 

  20. Shi F, Zhang J, Liu H, Wu L, Jiang H, Wu Q, et al. The dual PI3K/mTOR inhibitor dactolisib elicits anti-tumor activity in vitro and in vivo. Oncotarget. 2018;9:706.

    PubMed  Google Scholar 

  21. Ankrah NY, May AL, Middleton JL, Jones DR, Hadden MK, Gooding JR, et al. Phage infection of an environmentally relevant marine bacterium alters host metabolism and lysate composition. ISME J. 2014;8:1089–1100.

    Article  CAS  Google Scholar 

  22. Sanchez EL, Lagunoff M. Viral activation of cellular metabolism. Virology. 2015;479-480:609–18.

    Article  CAS  Google Scholar 

  23. Weitz JS, Wilhelm SW. Ocean viruses and their effects on microbial communities and biogeochemical cycles. F1000 Biol Rep. 2012;4:17.

    PubMed  PubMed Central  Google Scholar 

  24. Rohwer F, Thurber RV. Viruses manipulate the marine environment. Nature. 2009;459:207–12.

    Article  CAS  Google Scholar 

  25. He T, Zhang X. Characterization of bacterial communities in deep-sea hydrothermal vents from three oceanic regions. Mar Biotechnol. 2016;18:232–41.

    Article  CAS  Google Scholar 

  26. Martin W, Baross J, Kelley D, Russell MJ. Hydrothermal vents and the origin of life. Nat Rev Microbiol. 2008;6:805–14.

    Article  CAS  Google Scholar 

  27. Brana AF, Fiedler HP, Nava H, Gonzalez V, Sarmiento-Vizcaino A, Molina A, et al. Two Streptomyces species producing antibiotic, antitumor, and anti-inflammatory compounds are widespread among intertidal macroalgae and deep-sea coral reef invertebrates from the central Cantabrian Sea. Microb Ecol. 2015;69:512–24.

    Article  CAS  Google Scholar 

  28. Li D, Wang F, Cai S, Zeng X, Xiao X, Gu Q, et al. Two new bisorbicillinoids isolated from a deep-sea fungus, Phialocephala sp. FL30r. J Antibiot. 2007;60:317–20.

    Article  CAS  Google Scholar 

  29. Li DH, Cai SX, Tian L, Lin ZJ, Zhu TJ, Fang YC, et al. Two new metabolites with cytotoxicities from deep-sea fungus, Aspergillus sydowi YH11-2. Arch Pharmacal Res. 2007;30:1051–4.

    Article  CAS  Google Scholar 

  30. Li Y, Ye D, Chen X, Lu X, Shao Z, Zhang H, et al. Breviane spiroditerpenoids from an extreme-tolerant Penicillium sp. isolated from a deep sea sediment sample. J Nat Prod. 2009;72:912–6.

    Article  Google Scholar 

  31. Wei D, Zhang X. Proteomic analysis of interactions between a deep-sea thermophilic bacteriophage and its host at high temperature. J Virol. 2010;84:2365–73.

    Article  CAS  Google Scholar 

  32. Jin M, Xu C, Zhang X. The effect of tryptophol on the bacteriophage infection in high-temperature environment. Appl Microbiol Biotechnol. 2015;99:8101–11.

    Article  CAS  Google Scholar 

  33. Pettit RK. Small-molecule elicitation of microbial secondary metabolites. Microb Biotechnol. 2011;4:471–8.

    Article  CAS  Google Scholar 

  34. Liu B, Wu S, Song Q, Zhang X, Xie L. Two novel bacteriophages of thermophilic bacteria isolated from deep-sea hydrothermal fields. Curr Microbiol. 2006;53:163–6.

    Article  CAS  Google Scholar 

  35. Nishio M, Tsurudome M, Bando H, Komada H, Ito Y. Antiviral effect of 6-diazo-5-oxo-L-norleucine, antagonist of gamma-glutamyl transpeptidase, on replication of human parainfluenza virus type 2. J Gen Virol. 1990;71(Pt 1):61–7.

    Article  CAS  Google Scholar 

  36. Remes C, Paun A, Zarafu I, Tudose M, Caproiu MT, Ionita G, et al. Chemical and biological evaluation of some new antipyrine derivatives with particular properties. Bioorg Chem. 2012;41-42:6–12.

    Article  CAS  Google Scholar 

  37. Tauler J, Zudaire E, Liu H, Shih J, Mulshine JL. hnRNP A2/B1 modulates epithelial-mesenchymal transition in lung cancer cell lines. Cancer Res. 2010;70:7137–47.

    Article  CAS  Google Scholar 

  38. Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, et al. An integrated genomic analysis of human glioblastoma multiforme. Science. 2008;321:1807–12.

    Article  CAS  Google Scholar 

  39. Stratton MR, Campbell PJ, Futreal PA. The cancer genome. Nature. 2009;458:719–24.

    Article  CAS  Google Scholar 

  40. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr., Kinzler KW. Cancer genome landscapes. Science. 2013;339:1546–58.

    Article  CAS  Google Scholar 

  41. Hanaford AR, Eberhart CG, Raabe EH. Abstract 3090: targeting glutamine metabolism as a therapeutic strategy in MYC-driven medulloblastoma. Cancer Res. 2014;74:3090–90.

    Google Scholar 

  42. Katt WP, Cerione RA. Glutaminase regulation in cancer cells: a druggable chain of events. Drug Discov Today. 2014;19:450–7.

    Article  CAS  Google Scholar 

  43. Zhang J, Yang PL, Gray NS. Targeting cancer with small molecule kinase inhibitors. Nat Rev Cancer. 2009;9:28–39.

    Article  Google Scholar 

  44. Geuens T, Bouhy D, Timmerman V. The hnRNP family: insights into their role in health and disease. Hum Genet. 2016;15:851–67.

    Article  Google Scholar 

  45. Qu XH, Liu JL, Zhong XW, Li XI, Zhang QG. Insights into the roles of hnRNP A2/B1 and AXL in non-small cell lung cancer. Oncol Lett. 2015;10:1677–85.

    Article  CAS  Google Scholar 

  46. Loh TJ, Moon H, Cho S, Jang H, Liu YC, Tai H, et al. CD44 alternative splicing and hnRNP A1 expression are associated with the metastasis of breast cancer. Oncol Rep. 2015;34:1231–8.

    Article  CAS  Google Scholar 

  47. Jin M, Ye T, Zhang X. Roles of bacteriophage GVE2 endolysin in host lysis at high temperatures. Microbiology. 2013;159:1597–605.

    Article  CAS  Google Scholar 

  48. Sana TR, Roark JC, Li X, Waddell K, Fischer SM. Molecular formula and METLIN personal metabolite database matching applied to the identification of compounds generated by LC/TOF-MS. J Biomol Tech. 2008;19:258–66.

    PubMed  PubMed Central  Google Scholar 

  49. Ferronato MJ, Obiol DJ, Fermento ME, Gandini NA, Alonso EN, Salomón DG, et al. The alkynylphosphonate analogue of calcitriol EM1 has potent anti-metastatic effects in breast cancer. J Steroid Biochem. 2015;154:285–93.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Funding:

This work was supported by China Ocean Mineral Resources R & D Association (DY135-B-04) and National Program on the Key Basic Research Project (2015CB755903).

Author contributions

XZ conceived the idea, XZ, TH, MJ, and CX designed the experiments. TH, MJ, and CX did the experiments. FW and ZM synthesized the derivatives of L-norleucine. TH and XZ wrote the paper. All authors reviewed the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaobo Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval and consent to participate

All animal experiments were conducted in compliance with the Institutional Animal Care and Use Committee (IACUC) guidelines of Zhejiang University.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, T., Jin, M., Xu, C. et al. The homeostasis-maintaining metabolites from bacterial stress response to bacteriophage infection suppress tumor metastasis. Oncogene 37, 5766–5779 (2018). https://doi.org/10.1038/s41388-018-0376-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-018-0376-z

Search

Quick links