Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The E3 ligase C-CBL inhibits cancer cell migration by neddylating the proto-oncogene c-Src

Abstract

Neddylation is a cellular process that covalently conjugates substrate proteins with the small ubiquitin-like molecule NEDD8. As neddylation is required for fast turnover of proteins in proliferating cancer cells, the neddylation process is currently regarded as a potential target for cancer therapy. However, little is known about the role of neddylation in cancer invasion and metastasis. Unexpectedly, we here found that the neddylation blockade stimulates migration of lung cancer and glioblastoma cells. Mechanistically, C-CBL acts as the E3 ligase for neddylation of the proto-oncogene c-Src. After neddylation, c-Src is poly-ubiquitinated and degraded through the proteasome, which inhibits the PI3K–AKT pathway responsible for cell migration. In human lung cancer tissues, the downregulation of C-CBL was associated with c-Src/AKT, cancer metastasis, and poor survival in patients. Therefore, C-CBL is likely to play a tumor suppressive role by antagonizing a robust oncogenic signaling driven by c-Src. This study provides new insight about the role of neddylation in cancer metastasis. It also implies that the metastasis risk should be carefully evaluated before the clinical application of neddylation inhibitors as anticancer regimens.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Duncan K, Schäfer G, Vava A, Parker MI, Zerbini LF. Targeting neddylation in cancer therapy. Future Oncol. 2012;8:1461–70.

    Article  CAS  Google Scholar 

  2. Xirodimas DP, Saville MK, Bourdon JC, Hay RT, Lane DP. Mdm2-mediated NEDD8 conjugation of p53 inhibits its transcriptional activity. Cell. 2004;118:83–97.

    Article  CAS  Google Scholar 

  3. Ohh M, Kaelin WG Jr. VHL and kidney cancer. Methods Mol Biol. 2003;222:167–83.

    CAS  PubMed  Google Scholar 

  4. Stickle NH, Chung J, Klco JM, Hill RP, Kaelin WG Jr, Ohh M. pVHL modification by NEDD8 is required for fibronectin matrix assembly and suppression of tumor development. Mol Cell Biol. 2004;24:3251–61.

    Article  CAS  Google Scholar 

  5. Noguchi K, Okumura F, Takahashi N, Kataoka A, Kamiyama T, Todo S, et al. TRIM40 promotes neddylation of IKKγ and is downregulated in gastrointestinal cancers. Carcinogenesis. 2011;32:995–1004.

    Article  CAS  Google Scholar 

  6. Sarkaria I, O-charoenrat P, Talbot SG, Reddy PG, Ngai I, Maghami E, et al. Squamous cell carcinoma related oncogene/DCUN1D1 is highly conserved and activated by amplification in squamous cell carcinomas. Cancer Res. 2006;66:9437–44.

    Article  CAS  Google Scholar 

  7. Embade N, Fernández-Ramos D, Varela-Rey M, Beraza N, Sini M, Gutiérrez de Juan V, et al. Murine double minute 2 regulates Hu antigen R stability in human liver and colon cancer through NEDDylation. Hepatology. 2012;55:1237–48.

    Article  CAS  Google Scholar 

  8. Salon C, Brambilla E, Brambilla C, Lantuejoul S, Gazzeri S, Eymin B. Altered pattern of Cul-1 protein expression and neddylation in human lung tumours: relationships with CAND1 and cyclin E protein levels. J Pathol. 2007;213:303–10.

    Article  CAS  Google Scholar 

  9. Abidi N, Xirodimas DP. Regulation of cancer-related pathways by protein NEDDylation and strategies for the use of NEDD8 inhibitors in the clinic. Endocr Relat Cancer. 2015;22:T55–70.

    Article  CAS  Google Scholar 

  10. Soucy TA, Smith PG, Milhollen MA, Berger AJ, Gavin JM, Adhikari S, et al. An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer. Nature. 2009;458:732–6.

    Article  CAS  Google Scholar 

  11. Luo Z, Yu G, Lee HW, Li L, Wang L, Yang D, et al. The Nedd8-activating enzyme inhibitor MLN4924 induces autophagy and apoptosis to suppress liver cancer cell growth. Cancer Res. 2012;72:3360–71.

    Article  CAS  Google Scholar 

  12. Nawrocki ST, Kelly KR, Smith PG, Espitia CM, Possemato A, Beausoleil SA, et al. Disrupting protein NEDDylation with MLN4924 is a novel strategy to target cisplatin resistance in ovarian cancer. Clin Cancer Res. 2013;19:3577–90.

    Article  CAS  Google Scholar 

  13. Milhollen MA, Traore T, Adams-Duffy J, Thomas MP, Berger AJ, Dang L, et al. MLN4924, a NEDD8-activating enzyme inhibitor, is active in diffuse large B-cell lymphoma models: rationale for treatment of NF-{kappa}B-dependent lymphoma. Blood. 2010;116:1515–23.

    Article  CAS  Google Scholar 

  14. Wang X, Li L, Liang Y, Li C, Zhao H, Ye D, et al. Targeting the neddylation pathway to suppress the growth of prostate cancer cells: therapeutic implication for the men’s cancer. Biomed Res Int. 2014;2014:974309.

    PubMed  PubMed Central  Google Scholar 

  15. Zhou X, Tan M, Nyati MK, Zhao Y, Wang G, Sun Y. Blockage of neddylation modification stimulates tumor sphere formation in vitro and stem cell differentiation and wound healing in vivo. Proc Natl Acad Sci USA. 2016;113:E2935–2944.

    Article  CAS  Google Scholar 

  16. Korrodi-Grego´rio L, Soto-Cerrato V, Vitorino R, Fardilha M, Pe´rez-Toma´s R. From proteomic analysis to potential therapeutic targets: functional profile of two lung cancer cell lines, A549 and SW900, widely studied in preclinical research. PLoS ONE. 2016;11:e0165973.

    Article  Google Scholar 

  17. Hanke JH, Gardner JP, Dow RL, Changelian PS, Brissette WH, Weringer EJ, Pollok BA, Connelly PA. Discovery of a novel, potent, and Src family-selective tyrosine kinase inhibitor. Study of Lck- and FynTdependent T cell activation. J Biol Chem. 1996;271:695–701.

    Article  CAS  Google Scholar 

  18. Zhang L, Teng Y, Zhang Y, Liu J, Xu L, Qu J, et al. C-Src-mediated RANKL-induced breast cancer cell migration by activation of the ERK and Akt pathway. Oncol Lett. 2012;3:395–400.

    Article  CAS  Google Scholar 

  19. Cheng CY, Kuo CT, Lin CC, Hsieh HL, Yang CM. IL-1beta induces expression of matrix metalloproteinase-9 and cell migration via a c-Src-dependent, growth factor receptor transactivation in A549 cells. Br J Pharmacol. 2010;160:1595–610.

    Article  CAS  Google Scholar 

  20. Kuo L, Chang HC, Leu TH, Maa MC, Hung WC. Src oncogene activates MMP-2 expression via the ERK/Sp1 pathway. J Cell Physiol. 2006;207:729–34.

    Article  CAS  Google Scholar 

  21. Wu X, Yang L, Zheng Z, Li Z, Shi J, Li Y, et al. Src promotes cutaneous wound healing by regulating MMP-2 through the ERK pathway. Int J Mol Med. 2016;37:639–48.

    Article  CAS  Google Scholar 

  22. Oved S, Mosesson Y, Zwang Y, Santonico E, Shtiegman K, Marmor MD, et al. Conjugation to Nedd8 instigates ubiquitylation and down-regulation of activated receptor tyrosine kinases. J Biol Chem. 2006;281:21640–51.

    Article  CAS  Google Scholar 

  23. Sandilands E, Serrels B, McEwan DG, Morton JP, Macagno JP, McLeod K, et al. Autophagic targeting of Src promotes cancer cell survival following reduced FAK signalling. Nat Cell Biol. 2012;14:51–60.

    Article  CAS  Google Scholar 

  24. Gong L, Yeh ET. Identification of the activating and conjugating enzymes of the NEDD8 conjugation pathway. J Biol Chem. 1999;274:12036–42.

    Article  CAS  Google Scholar 

  25. Bennett EJ, Rush J, Gygi SP, Harper JW. Dynamics of cullin-RING ubiquitin ligase network revealed by systematic quantitative proteomics. Cell. 2010;143:951–65.

    Article  CAS  Google Scholar 

  26. Xie P, Zhang M, He S, Lu K, Chen Y, Xing G, et al. The covalent modifier Nedd8 is critical for the activation of Smurf1 ubiquitin ligase in tumorigenesis. Nat Commun. 2014;5:3733.

    Article  CAS  Google Scholar 

  27. Aoki I, Higuchi M, Gotoh Y. NEDDylation controls the target specificity of E2F1 and apoptosis induction. Oncogene. 2013;32:3954–64.

    Article  CAS  Google Scholar 

  28. Ryu JH, Li SH, Park HS, Park JW, Lee B, Chun YS. Hypoxia-inducible factor α subunit stabilization by NEDD8 conjugation is reactive oxygen species-dependent. J Biol Chem. 2011;286:6963–70.

    Article  CAS  Google Scholar 

  29. Park HS, Ju UI, Park JW, Song JY, Shin DH, Lee KH, et al. PPARγ neddylation essential for adipogenesis is a potential target for treating obesity. Cell Death Differ. 2016;23:1296–311.

    Article  CAS  Google Scholar 

  30. Tan YH, Krishnaswamy S, Nandi S, Kanteti R, Vora S, Onel K, et al. CBL is frequently altered in lung cancers: its relationship to mutations in MET and EGFR tyrosine kinases. PLoS One. 2010;5:e8972.

    Article  Google Scholar 

  31. Lo FY, Tan YH, Cheng HC, Salgia R, Wang YC. An E3 ubiquitin ligase: C-CBL: a new therapeutic target of lung cancer. Cancer. 2011;117:5344–50.

    Article  CAS  Google Scholar 

  32. Sanada M, Suzuki T, Shih LY, Otsu M, Kato M, Yamazaki S, et al. Gain-of-function of mutated C-CBL tumour suppressor in myeloid neoplasms. Nature. 2009;460:904–8.

    Article  CAS  Google Scholar 

  33. Katzav S, Schmitz ML. Mutations of C-CBL in myeloid malignancies. Oncotarget. 2015;6:10689–96.

    PubMed  PubMed Central  Google Scholar 

  34. Truitt L, Freywald T, DeCoteau J, Sharfe N, Freywald A. The EphB6 receptor cooperates with C-CBL to regulate the behavior of breast cancer cells. Cancer Res. 2010;70:1141–53.

    Article  CAS  Google Scholar 

  35. Seong MW, Park JH, Yoo HM, Yang SW, Oh KH, Ka SH, et al. C-CBL regulates αPix-mediated cell migration and invasion. Biochem Biophys Res Commun. 2014;455:153–8.

    Article  CAS  Google Scholar 

  36. Soucy TA, Dick LR, Smith PG, Milhollen MA, Brownell JE. The NEDD8 conjugation pathway and its relevance in cancer biology and therapy. Genes Cancer. 2010;1:708–16.

    Article  CAS  Google Scholar 

  37. Kuo KL, Ho IL, Shi CS, Wu JT, Lin WC, Tsai YC, et al. MLN4924, a novel protein neddylation inhibitor, suppresses proliferation and migration of human urothelial carcinoma: In vitro and in vivo studies. Cancer Lett. 2015;363:127–36.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

G-WL, JBP, SHS, and JS received a scholarship from the BK21-plus education program of the National Research Foundation of Korea.

Funding

This work was supported by a Korean Health Technology R&D grant (HI15C2695), and National Research Foundation grants from the Korean government (2016R1AB4013377, 2012R1A5A2A44671346).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang-Sook Chun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

These authors contributed equally: Gun-Woo Lee, Jun Bum Park.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, GW., Park, J.B., Park, S.Y. et al. The E3 ligase C-CBL inhibits cancer cell migration by neddylating the proto-oncogene c-Src. Oncogene 37, 5552–5568 (2018). https://doi.org/10.1038/s41388-018-0354-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-018-0354-5

This article is cited by

Search

Quick links