Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecular mechanism of the TP53-MDM2-AR-AKT signalling network regulation by USP12

Abstract

The TP53-MDM2-AR-AKT signalling network plays a critical role in the development and progression of prostate cancer. However, the molecular mechanisms regulating this signalling network are not completely defined. By conducting transcriptome analysis, denaturing immunoprecipitations and immunopathology, we demonstrate that the TP53-MDM2-AR-AKT cross-talk is regulated by the deubiquitinating enzyme USP12 in prostate cancer. Our findings explain why USP12 is one of the 12 most commonly overexpressed cancer-associated genes located near an amplified super-enhancer. We find that USP12 deubiquitinates MDM2 and AR, which in turn controls the levels of the TP53 tumour suppressor and AR oncogene in prostate cancer. Consequently, USP12 levels are predictive not only of cancer development but also of patient’s therapy resistance, relapse and survival. Therefore, our findings suggest that USP12 could serve as a promising therapeutic target in currently incurable castrate-resistant prostate cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Brown CJ, Lain S, Verma CS, Fersht AR, Lane DP. Awakening guardian angels: drugging the p53 pathway. Nat Rev Cancer. 2009;9:862–73.

    Article  PubMed  CAS  Google Scholar 

  2. Poletto M, Legrand AJ, Fletcher SC, Dianov GL. p53 coordinates base excision repair to prevent genomic instability. Nucleic Acids Res. 2016;44:3165–75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Fuchs SY, Adler V, Buschmann T, Wu X, Ronai Z. Mdm2 association with p53 targets its ubiquitination. Oncogene. 1998;17:2543–7.

    Article  PubMed  CAS  Google Scholar 

  4. Lin HK, Wang L, Hu YC, Altuwaijri S, Chang C. Phosphorylation-dependent ubiquitylation and degradation of androgen receptor by Akt require Mdm2 E3 ligase. EMBO J. 2002;21:4037–48.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Burska UL, Harle VJ, Coffey K, Darby S, Ramsey H, O’Neill D, et al. Deubiquitinating enzyme USP12 is a novel co-activator of the Androgen Receptor. J Biol Chem. 2013;288:32641–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Sowa ME, Bennett EJ, Gygi SP, Harper JW. Defining the human deubiquitinating enzyme interaction landscape. Cell. 2009;138:389–403.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. McClurg UL, Harle VJ, Nabbi A, Batalha-Pereira A, Walker S, Coffey K, et al. Ubiquitin-specific protease 12 interacting partners UAF-1 and WDR20 are potential therapeutic targets in prostate cancer. Oncotarget. 2015;6:37724–26.

    PubMed  PubMed Central  Google Scholar 

  8. McClurg UL, Summerscales EE, Harle VJ, Gaughan L, Robson CN. Deubiquitinating enzyme USP12 regulates the interaction between the androgen receptor and the AKT pathway. Oncotarget. 2014;5:7081–92.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Brognard J, Sierecki E, Gao T, Newton AC. PHLPP and a second isoform, PHLPP2, differentially attenuate the amplitude of Akt signaling by regulating distinct Akt isoforms. Mol Cell. 2007;25:917–31.

    Article  PubMed  CAS  Google Scholar 

  10. Lin HK, Yeh S, Kang HY, Chang C. Akt suppresses androgen-induced apoptosis by phosphorylating and inhibiting androgen receptor. Proc Natl Acad Sci USA. 2001;98:7200–5.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Mayo LD, Donner DB. A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proc Natl Acad Sci USA. 2001;98:11598–603.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Feng J, Tamaskovic R, Yang Z, Brazil DP, Merlo A, Hess D, et al. Stabilization of Mdm2 via decreased ubiquitination is mediated by protein kinase B/Akt-dependent phosphorylation. J Biol Chem. 2004;279:35510–7.

    Article  PubMed  CAS  Google Scholar 

  13. Edwards J, Krishna NS, Witton CJ, Bartlett JM. Gene amplifications associated with the development of hormone-resistant prostate cancer. Clin Cancer Res. 2003;9:5271–81.

    PubMed  CAS  Google Scholar 

  14. Marques RB, Aghai A, de Ridder CM, Stuurman D, Hoeben S, Boer A, et al. High efficacy of combination therapy using PI3K/AKT inhibitors with androgen deprivation in prostate cancer preclinical models. Eur Urol. 2014;67:1177–85.

    Article  PubMed  CAS  Google Scholar 

  15. Feldman BJ, Feldman D. The development of androgen-independent prostate cancer. Nat Rev Cancer. 2001;1:34–45.

    Article  PubMed  CAS  Google Scholar 

  16. Kee Y, Yang K, Cohn MA, Haas W, Gygi SP, D’Andrea AD. WDR20 regulates activity of the USP12 x UAF1 deubiquitinating enzyme complex. J Biol Chem. 2010;285:11252–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Mirza A, Wu Q, Wang L, McClanahan T, Bishop WR, Gheyas F, et al. Global transcriptional program of p53 target genes during the process of apoptosis and cell cycle progression. Oncogene. 2003;22:3645–54.

    Article  PubMed  CAS  Google Scholar 

  18. Riley T, Sontag E, Chen P, Levine A. Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol. 2008;9:402–12.

    Article  PubMed  CAS  Google Scholar 

  19. Tannock IF, de Wit R, Berry WR, Horti J, Pluzanska A, Chi KN, et al. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. New Engl J Med. 2004;351:1502–12.

    Article  PubMed  CAS  Google Scholar 

  20. Joshi S, Watkins J, Gazinska P, Brown JP, Gillett CE, Grigoriadis A, et al. Digital imaging in the immunohistochemical evaluation of the proliferation markers Ki67, MCM2 and Geminin, in early breast cancer, and their putative prognostic value. BMC Cancer. 2015;15:546.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Willder JM, Heng SJ, McCall P, Adams CE, Tannahill C, Fyffe G, et al. Androgen receptor phosphorylation at serine 515 by Cdk1 predicts biochemical relapse in prostate cancer patients. Br J Cancer. 2013;108:139–48.

    Article  PubMed  CAS  Google Scholar 

  22. Lohiya V, Aragon-Ching JB, Sonpavde G. Role of chemotherapy and mechanisms of resistance to chemotherapy in metastatic castration-resistant prostate cancer. Clin Med Insights Oncol. 2016;10:57–66. Suppl 1

    PubMed  PubMed Central  CAS  Google Scholar 

  23. Attard G, Antonarakis ES. Prostate cancer: AR aberrations and resistance to abiraterone or enzalutamide. Nat Rev Urol. 2016;13:697–8.

    Article  PubMed  CAS  Google Scholar 

  24. Antonarakis ES, Lu C, Wang H, Luber B, Nakazawa M, Roeser JC, et al. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N Engl J Med. 2014;371:1028–38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. McClurg UL, Robson CN. Deubiquitinating enzymes as oncotargets. Oncotarget. 2015;6:9657–68.

    PubMed  PubMed Central  Google Scholar 

  26. Xiong X, Li X, Wen YA, Gao T. Pleckstrin Homology (PH) domain leucine-rich repeat protein phosphatase controls cell polarity by negatively regulating the activity of atypical protein kinase C. J Biol Chem. 2016;291:25167–78.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Murai J, Yang K, Dejsuphong D, Hirota K, Takeda S, D’Andrea AD. The USP1/UAF1 complex promotes double-strand break repair through homologous recombination. Mol Cell Biol. 2011;31:2462–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Sourisseau T, Helissey C, Lefebvre C, Ponsonnailles F, Malka-Mahieu H, Olaussen KA, et al. Translational regulation of the mRNA encoding the ubiquitin peptidase USP1 involved in the DNA damage response as a determinant of Cisplatin resistance. Cell Cycle. 2016;15:295–302.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Zhiqiang Z, Qinghui Y, Yongqiang Z, Jian Z, Xin Z, Haiying M, et al. USP1 regulates AKT phosphorylation by modulating the stability of PHLPP1 in lung cancer cells. J Cancer Res Clin Oncol. 2012;138:1231–8.

    Article  PubMed  CAS  Google Scholar 

  30. Chen J, Dexheimer TS, Ai Y, Liang Q, Villamil MA, Inglese J, et al. Selective and cell-active inhibitors of the USP1/ UAF1 deubiquitinase complex reverse cisplatin resistance in non-small cell lung cancer cells. Chem Biol. 2011;18:1390–400.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Dexheimer TS, Rosenthal AS, Liang Q, Chen J, Villamil MA, Kerns EH, et al.Discovery of ML323 as a Novel Inhibitor of the USP1/UAF1 Deubiquitinase Complex. Probe Reports from the NIH Molecular Libraries Program. Bethesda, MD: NIH Molecular Libraries Programme; 2010.

    Google Scholar 

  32. Dexheimer TS, Rosenthal AS, Luci DK, Liang Q, Villamil MA, Chen J, et al. Synthesis and structure-activity relationship studies of N-benzyl-2-phenylpyrimidin-4-amine derivatives as potent USP1/UAF1 deubiquitinase inhibitors with anticancer activity against nonsmall cell lung cancer. J Med Chem. 2014;57:8099–110.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Mistry H, Hsieh G, Buhrlage SJ, Huang M, Park E, Cuny GD, et al. Small-molecule inhibitors of USP1 target ID1 degradation in leukemic cells. Mol Cancer Ther. 2013;12:2651–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Liu J, Zhu H, Zhong N, Jiang Z, Xu L, Deng Y, et al. Gene silencing of USP1 by lentivirus effectively inhibits proliferation and invasion of human osteosarcoma cells. Int J Oncol. 2016;49:2549–57.

    Article  PubMed  CAS  Google Scholar 

  35. Lee JK, Chang N, Yoon Y, Yang H, Cho H, Kim E, et al. USP1 targeting impedes GBM growth by inhibiting stem cell maintenance and radioresistance. Neuro Oncol. 2016;18:37–47.

    Article  PubMed  CAS  Google Scholar 

  36. Beltran H, Prandi D, Mosquera JM, Benelli M, Puca L, Cyrta J, et al. Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer. Nat Med. 2016;22:298–305.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Zhang X, Choi PS, Francis JM, Imielinski M, Watanabe H, Cherniack AD, et al. Identification of focally amplified lineage-specific super-enhancers in human epithelial cancers. Nat Genet. 2016;48:176–82.

    Article  PubMed  CAS  Google Scholar 

  38. Wahi D, Jamal S, Goyal S, Singh A, Jain R, Rana P, et al. Cheminformatics models based on machine learning approaches for design of USP1/UAF1 abrogators as anticancer agents. Syst Synth Biol. 2015;9:33–43.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Dharadhar S, Clerici M, van Dijk WJ, Fish A, Sixma TK. A conserved two-step binding for the UAF1 regulator to the USP12 deubiquitinating enzyme. J Struct Biol. 2016;196:437–47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Li H, Lim KS, Kim H, Hinds TR, Jo U, Mao H, et al. Allosteric activation of ubiquitin-specific proteases by beta-propeller proteins UAF1 and WDR20. Mol Cell. 2016;63:249–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Binda O, Sevilla A, LeRoy G, Lemischka IR, Garcia BA, Richard S. SETD6 monomethylates H2AZ on lysine 7 and is required for the maintenance of embryonic stem cell self-renewal. Epigenetics. 2013;8:177–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Rigas AC, Robson CN, Curtin NJ. Therapeutic potential of CDK inhibitor NU2058 in androgen-independent prostate cancer. Oncogene. 2007;26:7611–9.

    Article  PubMed  CAS  Google Scholar 

  43. McClurg UL, Cork DM, Darby S, Ryan-Munden CA, Nakjang S, Mendes Cortes L, et al. Identification of a novel K311 ubiquitination site critical for androgen receptor transcriptional activity. Nucleic Acids Res. 2017;45:1793–804.

    Article  PubMed  CAS  Google Scholar 

  44. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21.

    Article  PubMed  CAS  Google Scholar 

  45. Anders S, Pyl PT, Huber W. HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31:166–9.

    Article  PubMed  CAS  Google Scholar 

  46. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Young MD, Wakefield MJ, Smyth GK, Oshlack A. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol. 2010;11:R14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Luo W, Brouwer C. Pathview: an R/Bioconductor package for pathway-based data integration and visualization. Bioinformatics. 2013;29:1830–1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Kirkegaard T, Edwards J, Tovey S, McGlynn LM, Krishna SN, Mukherjee R, et al. Observer variation in immunohistochemical analysis of protein expression, time for a change? Histopathology. 2006;48:787–94.

    Article  PubMed  CAS  Google Scholar 

  50. Pei H, Li L, Fridley BL, Jenkins GD, Kalari KR, Lingle W, et al. FKBP51 affects cancer cell response to chemotherapy by negatively regulating Akt. Cancer Cell. 2009;16:259–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Chen M, Pratt CP, Zeeman ME, Schultz N, Taylor BS, O’Neill A, Castillo-Martin M, et al. Identification of PHLPP1 as a tumor suppressor reveals the role of feedback activation in PTEN-mutant prostate cancer progression. Cancer Cell. 2011;20:173–86.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

ULM, SRM and CNR were funded by PC UK (PG09-23), JGWP Foundation (BH142412) and JRE Scientific Committee Charity, Newcastle Healthcare Charity (JG/ML/0414). CNR is supported by Cancer Research UK (C27826/A15994). NCTHC was funded by Newcastle University.

Author contributions

ULM and CNR designed the study; ULM, NCTHC and MA performed the experiments; ULM and SRM scored and analysed all of the pathology data, ULM, AN and KTR analysed the TCGA dataset; SN and ULM analysed the RNA sequencing data; JE provided the Glasgow patient cohort; ULM prepared the manuscript with input from all authors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Urszula L. McClurg or Craig N. Robson.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McClurg, U.L., Chit, N.C.T.H., Azizyan, M. et al. Molecular mechanism of the TP53-MDM2-AR-AKT signalling network regulation by USP12. Oncogene 37, 4679–4691 (2018). https://doi.org/10.1038/s41388-018-0283-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-018-0283-3

This article is cited by

Search

Quick links