Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Aggressive serous epithelial ovarian cancer is potentially propagated by EpCAM+CD45+ phenotype

Abstract

Epithelial ovarian carcinoma (EOC) patients often acquire resistance against common chemotherapeutic drugs like paclitaxel and cisplatin. The mechanism responsible for the same is ambiguous. We have identified a putative drug-resistant tumour cell phenotype (EpCAM+CD45+) in the ascitic fluid of EOC patients, which appears to originate from the primary tumour. These cells represent the major tumour burden and are more drug resistant compared to EpCAM+ tumour cells due to the over-expression of SIRT1, ABCA1 and BCL2 genes. We have found that the entire EpCAM+CD45+ population is highly invasive with signature mesenchymal gene expression and also consists of subpopulations of ovarian cancer stem cells (CD133+ and CD117+CD44+). Additionally, we demonstrate that the EpCAM+CD45+ tumour cells over-express major histocompatibility complex class I antigen, which enable them to evade the natural killer cell-mediated immune surveillance. Preliminary evidence obtained in OVCAR-5 cells suggests that exosomes, secreted by non-tumour cells of the ascitic fluid, play an important role in rendering drug resistance and invasive properties to the cancer cells. Identification of such aggressive tumour cells and deciphering their origin is important for designing better drug targets for EOC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Paley PJ. Ovarian cancer screening: are we making any progress? Curr Opin Oncol. 2001;13:399–402.

    Article  CAS  Google Scholar 

  2. Ozols RF. Systemic therapy for ovarian cancer: current status and new treatments. Semin Oncol. 2006;33(Suppl 6):S3–11.

    Article  CAS  Google Scholar 

  3. Wang Z, Li Y, Kong D, Banerjee S, Ahmed A, Azmi AS, et al. Acquisition of epithelial–mesenchymal transition phenotype of gemcitabine-resistant pancreatic cancer cells is linked with activation of the notch signaling pathway. Cancer Res. 2009;69:2400–2407.

    Article  CAS  Google Scholar 

  4. Ahmed N, Abubaker K, Findlay J, Quinn M. Epithelial mesenchymal transition and cancer stem cell-like phenotypes facilitate chemo resistance in recurrent ovarian cancer. Curr Cancer Drug Target. 2010;10:268–178.

    Article  CAS  Google Scholar 

  5. Mani SA, Guo W, Liao M-J, Eaton EN, Ayyanan A, Zhou AY, et al. The epithelial–mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133:704–15.

    Article  CAS  Google Scholar 

  6. Kim Y, Joo KM, Jin J, Nam D-H. Cancer stem cells and their mechanisms of chemo-radiation resistance. Int J Stem Cells. 2009;2:109–14.

    Article  CAS  Google Scholar 

  7. Creighton CJ, Li X, Landis M, Dixon JM, Neumeister VM, Sjolund A, et al. Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proc Natl Acad Sci USA. 2009;106:13820–5.

    Article  CAS  Google Scholar 

  8. Chang L, Graham PH, Hao J, Ni J, Bucci J, Cozzi PJ, et al. Acquisition of epithelial–mesenchymal transition and cancer stem cell phenotypes is associated with activation of the PI3K/Akt/mTOR pathway in prostate cancer radio resistance. Cell Death Dis. 2013;4:e875.

    Article  CAS  Google Scholar 

  9. Li H, Zeng J, Shen K. PI3K/AKT/mTOR signaling pathway as a therapeutic target for ovarian cancer. Arch Gynecol Obstet. 2014;290:1067–78.

    Article  CAS  Google Scholar 

  10. Sunayama J, Matsuda K, Sato A, Tachibana K, Suzuki K, Narita Y, et al. Crosstalk between the PI3K/mTOR and MEK/ERK pathways involved in the maintenance of self-renewal and tumorigenicity of glioblastoma stem-like cells. Stem Cells. 2010;28:1930–9.

    Article  CAS  Google Scholar 

  11. Shain KH, Dalton WS, Tao J. The tumor microenvironment shapes hallmarks of mature B-cell malignancies. Oncogene. 2015;34:4673–82.

    Article  CAS  Google Scholar 

  12. Olumi AF, Grossfeld GD, Hayward SW, Carroll PR, Tlsty TD, Cunha GR. Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res. 1999;59:5002–11.

    CAS  PubMed  Google Scholar 

  13. Quail DF, Joyce JA, Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013;19:1423–37.

    Article  CAS  Google Scholar 

  14. Barker N, Clevers H. Tumor environment: a potent driving force in colorectal cancer? Trends Mol Med. 2001;7:535–7.

    Article  CAS  Google Scholar 

  15. Olumi AF, Grossfeld GD, Hayward SW, Carroll PR, Tlsty TD, Cunha GR. Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res. 1999;59:5002–11.

    CAS  PubMed  Google Scholar 

  16. Schwitalla S, Fingerle AA, Cammareri P, Nebelsiek T, Goktuna SI, Ziegler PK, et al. Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell-like properties. Cell. 2013;152:25–38.

    Article  CAS  Google Scholar 

  17. Powell AE, Anderson EC, Davies PS, Silk AD, Pelz C, Impey S, et al. Fusion between intestinal epithelial cells and macrophages in a cancer context results in nuclear reprogramming. Cancer Res. 2011;71:1497–505.

    Article  CAS  Google Scholar 

  18. Ramakrishnan M, Mathur SR, Mukhopadhyay A. Fusion-derived epithelial cancer cells express hematopoietic markers and contribute to stem cell and migratory phenotype in ovarian carcinoma. Cancer Res. 2013;73:5360–70.

    Article  CAS  Google Scholar 

  19. Luga V, Zhang L, Viloria-Petit AM, Ogunjimi AA, Inanlou MR, Chiu E, et al. Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell. 2012;151:1542–56.

    Article  CAS  Google Scholar 

  20. RoccaroAM SaccoA, MaisoP AzabAK, Tai Y-T, Reagan M, et al. BM mesenchymal stromal cell-derived exosomes facilitate multiple myeloma progression. J Clin Invest. 2013;123:1542–55.

    Article  Google Scholar 

  21. Ono ZM, Kosaka N, Tominaga N, Yoshioka Y, Takeshita F, Takahashi RU, et al. Exosomes from bone marrow mesenchymal stem cells contain a microRNA that promotes dormancy in metastatic breast cancer cells. Sci Signal. 2014;7:ra63.

    Article  Google Scholar 

  22. Rubin SC, Randall TC, Armstrong KA, Chi DS, Hoskins WJ. Ten-year follow-up of ovarian cancer patients after second-look laparotomy with negative findings. Obstet Gynecol. 1999;93:21–24.

    CAS  PubMed  Google Scholar 

  23. Zhang S, Balch C, Chan MW, Lai H-C, Matei D, Schilder JM, et al. Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res. 2008;68:4311–20.

    Article  CAS  Google Scholar 

  24. Baba T, Convery PA, Matsumura N, Whitaker RS, Kondoh E, Perry T, et al. Epigenetic regulation of CD133 and tumorigenicity of CD133+ ovarian cancer cells. Oncogene. 2009;28:209–18.

    Article  CAS  Google Scholar 

  25. Silva IA, Bai S, McLean K, Yang K, Griffith K, Thomas D, et al. Aldehyde dehydrogenase in combination with CD133 defines angiogenic ovarian cancer stem cells that portend poor patient survival. Cancer Res. 2011;71:3991–4001.

    Article  CAS  Google Scholar 

  26. Bapat SA, Mali AM, Koppikar CB, Kurrey N. Stem and progenitor-like cells contribute to the aggressive behaviour of human epithelial ovarian cancer. Cancer Res. 2005;65:3025–9.

    Article  CAS  Google Scholar 

  27. Craveiro V, Yang-Hartwich Y, Holmberg JC, Sumi NJ, Pizzonia J, Griffin B, et al. Phenotypic modifications in ovarian cancer stem cells following Paclitaxel treatment. Cancer Med. 2013;2:751–62.

    Article  CAS  Google Scholar 

  28. Houghton J, Stoicov C, Nomura S, Rogers AB, Carlson J, Li H, et al. Gastric cancer originating from bone marrow-derived cells. Science. 2004;306:1568–71.

    Article  CAS  Google Scholar 

  29. Liu C, Chen Z, Chen Z, Zhang T, Lu Y. Multiple tumor types may originate from bone marrow-derived cells. Neoplasia. 2006;8:716–24.

    Article  CAS  Google Scholar 

  30. Avital I, Moreira AL, Klimstra DS, Leversha M, Papadopoulos EB, Brennan M, et al. Donor-derived human bone marrow cells contribute to solid organ cancers developing after bone marrow transplantation. Stem Cells. 2007;25:2903–9.

    Article  Google Scholar 

  31. Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. 2008;454:436–44.

    Article  CAS  Google Scholar 

  32. Larizza L, Schirrmacher V, Pfluger E. Acquisition of high metastatic capacity after in vitro fusion of a non-metastatic tumor line with a bone marrow-derived macrophage. J Exp Med. 1984;160:1579–84.

    Article  CAS  Google Scholar 

  33. Rizv AZ, Swain JR, Davies PS, Bailey AS, Decker AD, Willenbring H, et al. Bone marrow-derived cells fuse with normal and transformed intestinal stem cells. Proc Natl Acad Sci USA. 2006;103:6321–5.

    Article  Google Scholar 

  34. Al-Ejeh F, Simpson PT, Sanus JM, Klein K, Kalimutho M, Shi W, et al. Meta-analysis of the global gene expression profile of triple-negative breast cancer identifies genes for the prognostication and treatment of aggressive breast cancer. Oncogenesis. 2014;3:e100.

    Article  CAS  Google Scholar 

  35. Latifi A, Luwor RB, Bilandzic M, Nazaretian S, Stenvers K, Pyman J, et al. Isolation and characterization of tumor cells from the ascites of ovarian cancer patients: Molecular phenotype of chemoresistant ovarian tumors. PLoS ONE. 2012;7:e46858.

    Article  CAS  Google Scholar 

  36. Wicha MS, Liu S, Dontu G. Cancer stem cells: an old idea—a paradigm shift. Cancer Res. 2006;66:1883–90.

    Article  CAS  Google Scholar 

  37. Steg AD, Bevis KS, Katre AA, Ziebarth A, Dobbin ZC, Alvarez RD, et al. Stem cell pathways contribute to clinical chemoresistance in ovarian cancer. Clin Cancer Res. 2012;18:869–81.

    Article  CAS  Google Scholar 

  38. Ahmed N, Abubaker K, Findlay J, Quinn M. Cancerous ovarian stem cells: obscure targets for therapy but relevant to chemoresistance. J Cell Biochem. 2013;114:21–34.

    Article  CAS  Google Scholar 

  39. Latifi A, Abubaker K, Castrechini N, Ward AC, Liongue C, Dobill F, et al. Cisplatin treatment of primary and metastatic epithelial ovarian carcinomas generates residual cells with mesenchymal stem cell-like profile. J Cell Biochem. 2011;112:2850–64.

    Article  CAS  Google Scholar 

  40. Liu M, Casimiro MC, Wang C, Shirley LA, Jiao X, Katiyar S, et al. p21CIP1 attenuates Ras- and c-Myc-dependent breast tumor epithelial mesenchymal transition and cancer stem cell-like gene expression in vivo. Proc Natl Acad Sci USA. 2009;106:19035–9.

    Article  CAS  Google Scholar 

  41. Matte I, Lane D, Laplante C, Piché A. Profiling of cytokines in human epithelial ovarian cancer ascites. Am J Cancer Res. 2012;2:566–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Smyth MJ, Hayakawa Y, Takeda K, Yagita H. New aspects of natural-killer-cell surveillance and therapy of cancer. Nat Rev. 2002;2:850–86.

    Article  CAS  Google Scholar 

  43. Bamias A, Tsiatas ML, Kafantari E, Liakou C, Rodolakis A, Voulgaris Z, et al. Significant differences of lymphocytes isolated from ascites of patients with ovarian cancer compared to blood and tumor lymphocytes: Association of CD3+CD56+ cells with platinum resistance. Gynecol Oncol. 2007;106:75–81.

    Article  CAS  Google Scholar 

  44. Gubbels JAA, Felder M, Horibata S, Belisle JA, Kapur A, Holden H, et al. MUC16 provides immune protection by inhibiting synapse formation between NK and ovarian tumor cells. Mol Cancer. 2010;9:11.

    Article  Google Scholar 

  45. Rousalova I, Krepela E. Granzyme B-induced apoptosis in cancer cells and its regulation. Int J Oncol. 2010;37:1361–78.

    CAS  PubMed  Google Scholar 

  46. Wang RF. The role of MHC class II-restricted tumor antigens and CD4+ T cells in antitumor immunity. Trends Immunol. 2001;22:269–76.

    Article  Google Scholar 

  47. Ahmed N, Stenvers KL. Getting to know ovarian cancer ascites: opportunities for targeted therapy-based translational research. Front Oncol. 2013;3:256.

    Article  Google Scholar 

  48. Lee YI, Andaloussi SEL, Wood MJA. Exosomes and microvesicles: extracellular vesicles for genetic information transfer and gene therapy. Hum Mol Genet. 2012;21:R125–R134.

    Article  CAS  Google Scholar 

  49. Runz S, Keller S, Rupp C, Stoeck A, Issa Y, Koensgen D, et al. Malignant ascites-derived exosomes of ovarian carcinoma patients contain CD24 and EpCAM. Gynecol Oncol. 2007;107:563–71.

    Article  CAS  Google Scholar 

  50. Taylor DD, Gercel-Taylor C. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol. 2008;110:13–21.

    Article  CAS  Google Scholar 

  51. Thery C, Amigorena S, Raposo G, Clayton A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol 2006. https://doi.org/10.1002/0471143030.cb0322s30.

    Article  Google Scholar 

  52. Witwer KW, Buzás EI, Bemis LT, Bora A, Lässer C, Lötvall J, et al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles 2013; 2. https://doi.org/10.3402/jev.v2i0.20360.

    Article  Google Scholar 

  53. Baligar P, Mukherjee S, Kochat V, Rastogi A, Mukhopadhyay A. Molecular and cellular functions distinguish superior therapeutic efficiency of bone marrow CD45 cells over mesenchymal stem cells in liver cirrhosis. Stem Cells. 2016;34:135–47.

    Article  CAS  Google Scholar 

  54. Qian J, Bai H, Gao Z, Dong YU, Pei J, Ma M, et al. Downregulation of HIF-1α inhibits the proliferation and invasion of non-small cell lung cancer NCI-H157 cells. Oncol Lett. 2016;11:1738–44.

    Article  CAS  Google Scholar 

  55. Baligar P, Kochat V, Equbal Z, Arindkar SK, Mukherjee S, Patel S, et al. Bone marrow stem cell therapy partially ameliorates pathological consequences of liver in mice expressing mutant human α1-antitrypsin. Hepatology. 2017;65:1219–335.

    Article  Google Scholar 

Download references

Acknowledgements

AM is grateful for the generous support provided by the Department of Biotechnology, Government of India to the Centre of Molecular Medicine, NII. We would like to thank Mr. Nila Ram and Mr. Ajay Sharma for acquiring confocal images. AM would like to thank Dr. Ayub Qadri, Scientist (NII, New Delhi), Prof. NK Mehra (AIIMS, New Delhi) and Dr. Awadhesh Pandit (NCBS, Bangalore) for valuable discussion in some parts of the study. Also, we are thankful to Dr. TR Santhosh Kumar (RGCB, Thiruvananthapuram, Kerala) for providing the OVCAR-5 cell line.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asok Mukhopadhyay.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akhter, M.Z., Sharawat, S.K., Kumar, V. et al. Aggressive serous epithelial ovarian cancer is potentially propagated by EpCAM+CD45+ phenotype. Oncogene 37, 2089–2103 (2018). https://doi.org/10.1038/s41388-017-0106-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-017-0106-y

This article is cited by

Search

Quick links