Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Heterogeneity and mutation in KRAS and associated oncogenes: evaluating the potential for the evolution of resistance to targeting of KRAS G12C

Abstract

Activating mutations in RAS genes are associated with approximately 20% of all human cancers. New targeted therapies show preclinical promise in inhibiting the KRAS G12C variant. However, concerns exist regarding the effectiveness of such therapies in vivo given the possibilities of existing intratumor heterogeneity or de novo mutation leading to treatment resistance. We performed deep sequencing of 27 KRAS G12-positive lung tumors to determine the prevalence of other oncogenic mutations within KRAS or within commonly mutated downstream genes that could confer resistance at the time of treatment. We also passaged patient-derived xenografts to assess the potential for novel KRAS mutation to arise during subsequent tumor evolution. Furthermore, we estimate the de novo mutation rate in KRAS position 12 and in genes downstream of KRAS. Finally, we present an approach for estimation of the selection intensity for these point mutations that explains their high prevalence in tumors. We find no evidence of heterogeneity that may compromise KRAS G12C targeted therapy within sequenced lung tumors or passaged xenografts. We find that mutations that confer resistance are even less likely to occur downstream of KRAS than to occur within KRAS. Our approach predicts that BRAF V600E would provide the highest fitness advantage for de novo-resistant subclones. Overall, our findings suggest that resistance to targeted therapy of KRAS G12C-positive tumors is unlikely to be present at the time of treatment and, among the de novo mutations likely to confer resistance, mutations in BRAF, a gene with targeted inhibitors presently available, result in subclones with the highest fitness advantage.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Cox AD, Der CJ. Ras history: The saga continues. Small GTPases. 2010;1:2–27.

    Article  Google Scholar 

  2. 2.

    Chang EH, Gonda MA, Ellis RW, Scolnick EM, Lowy DR. Human genome contains four genes homologous to transforming genes of Harvey and Kirsten murine sarcoma viruses. Proc Natl Acad Sci USA. 1982;79:4848–52.

    CAS  Article  Google Scholar 

  3. 3.

    Cox AD, Der CJ, Philips MR. Targeting RAS membrane association: Back to the future for anti-RAS drug discovery? Clin Cancer Res. 2015;21:1819–27.

    CAS  Article  Google Scholar 

  4. 4.

    McCormick F. KRAS as a therapeutic target. Clin Cancer Res. 2015;21:1797–801.

    CAS  Article  Google Scholar 

  5. 5.

    Downward J, Julian D. Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer. 2003;3:11–22.

    CAS  Article  Google Scholar 

  6. 6.

    Eser S, Schnieke A, Schneider G, Saur D. Oncogenic KRAS signalling in pancreatic cancer. Br J Cancer. 2014;111:817–22.

    CAS  Article  Google Scholar 

  7. 7.

    Fernandez-Medarde A, Santos E. Ras in Cancer and developmental diseases. Genes Cancer. 2011;2:344–58.

    CAS  Article  Google Scholar 

  8. 8.

    Shima F, Yoshikawa Y, Ye M, Araki M, Matsumoto S, Liao J, et al. In silico discovery of small-molecule Ras inhibitors that display antitumor activity by blocking the Ras-effector interaction. Proc Natl Acad Sci USA. 2013;110:8182–7.

    CAS  Article  Google Scholar 

  9. 9.

    Prior IA, Lewis PD, Mattos C. A comprehensive survey of Ras mutations in cancer. Cancer Res. 2012;72:2457–67.

    CAS  Article  Google Scholar 

  10. 10.

    Ostrem JM, Peters U, Sos ML, Wells JA, Shokat KM. K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature. 2013;503:548–51.

    CAS  Article  Google Scholar 

  11. 11.

    Greulich H. The genomics of lung adenocarcinoma: opportunities for targeted therapies. Genes Cancer. 2010;1:1200–10.

    CAS  Article  Google Scholar 

  12. 12.

    Singh H, Longo DL, Chabner BA. Improving prospects for targeting RAS. J Clin Oncol. 2015;33:3650–9.

    CAS  Article  Google Scholar 

  13. 13.

    Porta M, Crous-Bou M, Wark PA, Vineis P, Real FX, Malats N, et al. Cigarette smoking and K-ras mutations in pancreas, lung and colorectal adenocarcinomas: etiopathogenic similarities, differences and paradoxes. Mutat Res. 2009;682:83–93.

    CAS  Article  Google Scholar 

  14. 14.

    Nadal E, Chen G, Prensner JR, Shiratsuchi H, Sam C, Zhao L, et al. KRAS-G12C mutation is associated with poor outcome in surgically resected lung adenocarcinoma. J Thorac Oncol. 2014;9:1513–22.

    CAS  Article  Google Scholar 

  15. 15.

    Izar B, Zhou H, Heist RS, Azzoli CG, Muzikansky A, Scribner EEF, et al. The prognostic impact of KRAS, its codon and amino acid specific mutations, on survival in resected stage I lung adenocarcinoma. J Thorac Oncol. 2014;9:1363–9.

    CAS  Article  Google Scholar 

  16. 16.

    Fiala O, Pesek M, Finek J, Benesova L, Belsanova B, Minarik M. The dominant role of G12C over other KRAS mutation types in the negative prediction of efficacy of epidermal growth factor receptor tyrosine kinase inhibitors in non-small cell lung cancer. Cancer Genet. 2013;206:26–31.

    CAS  Article  Google Scholar 

  17. 17.

    Svaton M, Fiala O, Pesek M, Bortlicek Z, Minarik M, Benesova L, et al. The prognostic role of KRAS mutation in patients with advanced NSCLC treated with second- or third-line chemotherapy. Anticancer Res. 2016;36:1077–82.

    CAS  PubMed  Google Scholar 

  18. 18.

    Hunter JC, Gurbani D, Ficarro SB, Carrasco MA, Lim SM, Choi HG, et al. In situ selectivity profiling and crystal structure of SML-8-73-1, an active site inhibitor of oncogenic K-Ras G12C. Proc Natl Acad Sci USA. 2014;111:8895–900.

    CAS  Article  Google Scholar 

  19. 19.

    Patricelli MP, Janes MR, Li L-S, Hansen R, Peters U, Kessler LV, et al. Selective inhibition of oncogenic KRAS output with small molecules targeting the inactive state. Cancer Discov. 2016;6:316–29.

    CAS  Article  Google Scholar 

  20. 20.

    Hobbs GA, Aaron Hobbs G, Wittinghofer A, Der CJ. Selective targeting of the KRAS G12C mutant: Kicking KRAS when it’s down. Cancer Cell. 2016;29:251–3.

    CAS  Article  Google Scholar 

  21. 21.

    Visscher M, Arkin MR, Dansen TB. Covalent targeting of acquired cysteines in cancer. Curr Opin Chem Biol. 2016;30:61–7.

    CAS  Article  Google Scholar 

  22. 22.

    Wilson CY, Tolias P. Recent advances in cancer drug discovery targeting RAS. Drug Discov Today. 2016;21:1915–9.

    CAS  Article  Google Scholar 

  23. 23.

    Westover KD, Jänne PA, Gray NS. Progress on covalent Inhibition of KRASG12C. Cancer Discov. 2016;6:233–4.

    CAS  Article  Google Scholar 

  24. 24.

    Montalvo SK, Li L, Westover KD. Rationale for RAS mutation-tailored therapies. Future Oncol. 2017;13:263–71.

    CAS  Article  Google Scholar 

  25. 25.

    Xiong Y, Lu J, Hunter J, Li L, Scott D, Choi HG, et al. Covalent guanosine mimetic inhibitors of G12C KRAS. ACS Med Chem Lett. 2017;8:61–6.

    CAS  Article  Google Scholar 

  26. 26.

    McGranahan N, Swanton C. Biological and therapeutic impact of intratumor heterogeneity in cancer evolution. Cancer Cell. 2015;27:15–26.

    CAS  Article  Google Scholar 

  27. 27.

    Burrell RA, Swanton C. Tumour heterogeneity and the evolution of polyclonal drug resistance. Mol Oncol. 2014;8:1095–111.

    CAS  Article  Google Scholar 

  28. 28.

    Al-Mulla F, Fahd A-M, Going JJ, Evin TH, Alison W, Pickford IR, et al. Heterogeneity of mutant versus wild-type Ki-ras in primary and metastatic colorectal carcinomas, and association of codon-12 valine with early mortality. J Pathol. 1998;185:130–8.

    CAS  Article  Google Scholar 

  29. 29.

    Alsdorf WH, Clauditz TS, Hoenig T, Quaas A, Sirma H, Koenig AM, et al. Intratumoral heterogeneity of KRAS mutation is rare in non-small-cell lung cancer. Exp Mol Pathol. 2013;94:155–9.

    CAS  Article  Google Scholar 

  30. 30.

    Burrell RA, McGranahan N, Bartek J, Swanton C. The causes and consequences of genetic heterogeneity in cancer evolution. Nature. 2013;501:338–45.

    CAS  Article  Google Scholar 

  31. 31.

    Keats JJ, Chesi M, Egan JB, Garbitt VM, Palmer SE, Braggio E, et al. Clonal competition with alternating dominance in multiple myeloma. Blood. 2012;120:1067–76.

    CAS  Article  Google Scholar 

  32. 32.

    Merlo LMF, Pepper JW, Reid BJ, Maley CC. Cancer as an evolutionary and ecological process. Nat Rev Cancer. 2006;6:924–35.

    CAS  Article  Google Scholar 

  33. 33.

    Schmitt MW, Loeb LA, Salk JJ. The influence of subclonal resistance mutations on targeted cancer therapy. Nat Rev Clin Oncol. 2016;13:335–47.

    CAS  Article  Google Scholar 

  34. 34.

    Yun C-H, Mengwasser KE, Toms AV, Woo MS, Greulich H, et al. The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proc Natl Acad Sci. 2016;105:2070–5.

    Article  Google Scholar 

  35. 35.

    Fujita Y, Suda K, Kimura H, Matsumoto K, Arao T, Nagai T, et al. Highly sensitive detection of EGFR T790M mutation using colony hybridization predicts favorable prognosis of patients with lung cancer harboring activating EGFR mutation. J Thorac Oncol. 2012;7:1640–4.

    CAS  Article  Google Scholar 

  36. 36.

    Yu HA, Arcila ME, Rekhtman N, Sima CS, Zakowski MF, Pao W, et al. Analysis of tumor specimens at the time of acquired resistance to EGFR-TKI therapy in 155 patients with EGFR-mutant lung cancers. Clin Cancer Res. 2013;19:2240–7.

    CAS  Article  Google Scholar 

  37. 37.

    Stewart EL, Tan SZ, Liu G, Tsao M-S. Known and putative mechanisms of resistance to EGFR targeted therapies in NSCLC patients with EGFR mutations-a review. Transl Lung Cancer Res. 2015;4:67–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Hashimoto D, Arima K, Yokoyama N, Chikamoto A, Taki K, Inoue R, et al. Heterogeneity of KRAS mutations in pancreatic ductal adenocarcinoma. Pancreas. 2016;45:1111–4.

    CAS  Article  Google Scholar 

  39. 39.

    Ohashi K, Sequist LV, Arcila ME, Moran T, Chmielecki J, Lin YL, et al. Lung cancers with acquired resistance to EGFR inhibitors occasionally harbor BRAF gene mutations but lack mutations in KRAS, NRAS, or MEK1. Proc Natl Acad Sci. 2012;109:E2127–33.

    CAS  Article  Google Scholar 

  40. 40.

    Misale S, Sandra M, Rona Y, Sebastijan H, Elisa S, Manickam J, et al. Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature. 2012;486:532–6. https://doi.org/10.1038/nature11156

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Tougeron D, Lecomte T, Pagès JC, Villalva C, Collin C, Ferru A, et al. Effect of low-frequency KRAS mutations on the response to anti-EGFR therapy in metastatic colorectal cancer. Ann Oncol. 2013;24:1267–73.

    CAS  Article  Google Scholar 

  42. 42.

    Ziogas DE, Ioannis Z, Lykoudis EG, Georgios G, Roukos DH. Intratumor heterogeneity: predicting and preventing therapeutic resistance. Biomark Med. 2016;10:681–4.

    CAS  Article  Google Scholar 

  43. 43.

    Seeburg PH, Colby WW, Capon DJ, Goeddel DV, Levinson AD. Biological properties of human c-Ha-ras1 genes mutated at codon 12. Nature. 1984;312:71–5.

    CAS  Article  Google Scholar 

  44. 44.

    Scheffzek K, Ahmadian MR, Kabsch W, Wiesmüller L, Lautwein A, Schmitz F, et al. The Ras-RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants. Science. 1997;277:333–8.

    CAS  Article  Google Scholar 

  45. 45.

    Huang L, Fu L. Mechanisms of resistance to EGFR tyrosine kinase inhibitors. Acta Pharm Sin B. 2015;5:390–401.

    Article  Google Scholar 

  46. 46.

    Roberts PJ, Stinchcombe TE. KRAS mutation: should we test for it, and does it matter? J Clin Oncol. 2013;31:1112–21.

    CAS  Article  Google Scholar 

  47. 47.

    Mao C-Q, Xiong M-H, Liu Y, Shen S, Du X-J, Yang X-Z, et al. Synthetic lethal therapy for KRAS mutant non-small-cell lung carcinoma with nanoparticle-mediated CDK4 siRNA delivery. Mol Ther. 2014;22:964–73.

    CAS  Article  Google Scholar 

  48. 48.

    Schildhaus H-U, Schultheis AM, Rüschoff J, Binot E, Merkelbach-Bruse S, Fassunke J, et al. MET amplification status in therapy-naïve adeno- and squamous cell carcinomas of the lung. Clin Cancer Res. 2015;21:907–15.

    CAS  Article  Google Scholar 

  49. 49.

    Zienolddiny S, Campa D, Lind H, Ryberg D, Skaug V, Stangeland L, et al. Polymorphisms of DNA repair genes and risk of non-small cell lung cancer. Carcinogenesis. 2005;27:560–7.

    Article  Google Scholar 

  50. 50.

    Rozhok AI, DeGregori J. The evolution of lifespan and age-dependent cancer risk. Trends Cancer Res. 2016;2:552–60.

    Article  Google Scholar 

  51. 51.

    Suda K, Onozato R, Yatabe Y, Mitsudomi T. EGFR T790M mutation: a double role in lung cancer cell survival? J Thorac Oncol. 2009;4:1–4.

    Article  Google Scholar 

  52. 52.

    Mulloy R, Ferrand A, Kim Y, Sordella R, Bell DW, Haber DA, et al. Epidermal growth factor receptor mutants from human lung cancers exhibit enhanced catalytic activity and increased sensitivity to gefitinib. Cancer Res. 2007;67:2325–30.

    CAS  Article  Google Scholar 

  53. 53.

    Kadara H, Choi M, Zhang J, Parra ER, Rodriguez-Canales J, Gaffney SG, et al. Whole-exome sequencing and immune profiling of early-stage lung adenocarcinoma with fully annotated clinical follow-up. Ann Oncol. 2017;28:75–82.

    CAS  PubMed  Google Scholar 

  54. 54.

    Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature. 2014;511:543–50.

    Article  Google Scholar 

  55. 55.

    Vilarinho S, Overton J, Carvajal D, Rimm DL, Lifton RP. Su1894 exome sequencing of formalin fixed paraffin embedded pancreatic ductal adenocarcinoma samples expands mutational landscape and identifies hypermutator phenotype. Gastroenterology. 2014;146:495.

    Article  Google Scholar 

  56. 56.

    Cancer Genome Atlas Research Network. Electronic address: andrew_aguirre@dfci.harvard.edu, Cancer Genome Atlas Research Network. Integrated genomic characterization of pancreatic ductal adenocarcinoma. Cancer Cell. 2017;32:185–203.e13

    Article  Google Scholar 

  57. 57.

    Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487:330–7.

    Article  Google Scholar 

  58. 58.

    Grossman RL, Heath AP, Ferretti V, Varmus HE, Lowy DR, Kibbe WA, et al. Toward a shared vision for cancer genomic data. N Engl J Med. 2016;375:1109–12.

    Article  Google Scholar 

  59. 59.

    Lito P, Solomon M, Li L-S, Hansen R, Rosen N. Allele-specific inhibitors inactivate mutant KRAS G12C by a trapping mechanism. Science. 2016;351:604–8.

    CAS  Article  Google Scholar 

  60. 60.

    Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K, Sivachenko A, et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature. 2013;499:214–8.

    CAS  Article  Google Scholar 

  61. 61.

    Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 2012;483:603–7.

    CAS  Article  Google Scholar 

  62. 62.

    Rosenthal R, McGranahan N, Herrero J, Taylor BS, Swanton C. DeconstructSigs: delineating mutational processes in single tumors distinguishes DNA repair deficiencies and patterns of carcinoma evolution. Genome Biol. 2016;17:31.

    Article  Google Scholar 

  63. 63.

    Sawyer SA, Hartl DL. Population genetics of polymorphism and divergence. Genetics. 1992;132:1161–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Bustamante CD. Population genetics of molecular evolution. In: Nielsen, Rasmus(eds.) Statistical methods in molecular evolution. New York: Springer; 2005. (ISBN: 978-0-387-27733-2) 63–99.

    Chapter  Google Scholar 

  65. 65.

    Innan H, Kim Y. Pattern of polymorphism after strong artificial selection in a domestication event. Proc Natl Acad Sci USA. 2004;101:10667–72.

    CAS  Article  Google Scholar 

  66. 66.

    Parsons TL, Quince C. Fixation in haploid populations exhibiting density dependence I: The non-neutral case. Theor Popul Biol. 2007;72:121–35.

    Article  Google Scholar 

  67. 67.

    Moran PAP. Random processes in genetics. Math Proc Camb Philos Soc. 1958;54:60–71.

    Article  Google Scholar 

  68. 68.

    Gerrish PJ, Lenski RE. The fate of competing beneficial mutations in an asexual population. In: Woodruff RC, Thompson JN(eds.) Mutation and Evolution. Contemporary issues in genetics and evolution. Dordrecht: Springer; 1998. vol. 7 127–44.

    Google Scholar 

  69. 69.

    Desai MM, Fisher DS, Murray AW. The speed of evolution and maintenance of variation in asexual populations. Curr Biol. 2007;17:385–94.

    CAS  Article  Google Scholar 

  70. 70.

    Cannataro VL, McKinley SA, St. Mary CM. The implications of small stem cell niche sizes and the distribution of fitness effects of new mutations in aging and tumorigenesis. Evol Appl. 2016;9:565–82.

    CAS  Article  Google Scholar 

  71. 71.

    Lawrence MS, Stojanov P, Mermel CH, Robinson JT, Garraway LA, Golub TR, et al. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature. 2014;505:495–501.

    CAS  Article  Google Scholar 

  72. 72.

    Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    CAS  Article  Google Scholar 

  73. 73.

    Lloyd MC, Cunningham JJ, Bui MM, Gillies RJ, Brown JS, Gatenby RA. Darwinian Dynamics of Intratumoral Heterogeneity: Not Solely Random Mutations but Also Variable Environmental Selection Forces. Cancer Res. 2016;76:3136–44.

    CAS  Article  Google Scholar 

Download references

Disclosure of support

This work was partially funded by Gilead Sciences, Inc.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jeffrey P. Townsend.

Ethics declarations

Conflict of interest

AEG is an employee and stockholder of Gilead Sciences. All other authors declare that they have no competing interests.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cannataro, V.L., Gaffney, S.G., Stender, C. et al. Heterogeneity and mutation in KRAS and associated oncogenes: evaluating the potential for the evolution of resistance to targeting of KRAS G12C. Oncogene 37, 2444–2455 (2018). https://doi.org/10.1038/s41388-017-0105-z

Download citation

Further reading

Search

Quick links