Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Adolescent nicotine exposure induces long-term, sex-specific disturbances in mood and anxiety-related behavioral, neuronal and molecular phenotypes in the mesocorticolimbic system

Abstract

The majority of lifetime smokers begin using nicotine during adolescence, a critical period of brain development wherein neural circuits critical for mood, affect and cognition are vulnerable to drug-related insults. Specifically, brain regions such as the medial prefrontal cortex (mPFC), the ventral tegmental area (VTA), nucleus accumbens (NAc) and hippocampus, are implicated in both nicotine dependence and pathological phenotypes linked to mood and anxiety disorders. Clinical studies report that females experience higher rates of mood/anxiety disorders and are more resistant to smoking cessation therapies, suggesting potential sex-specific responses to nicotine exposure and later-life neuropsychiatric risk. However, the potential neural and molecular mechanisms underlying such sex differences are not clear. In the present study, we compared the impacts of adolescent nicotine exposure in male vs. female rat cohorts. We performed a combination of behavioral, electrophysiological and targeted protein expression analyses along with matrix assisted laser deionization imaging (MALDI) immediately post-adolescent exposure and later in early adulthood. We report that adolescent nicotine exposure induced long-lasting anxiety/depressive-like behaviors, disrupted neuronal activity patterns in the mPFC-VTA network and molecular alterations in various neural regions linked to affect, anxiety and cognition. Remarkably, these phenotypes were only observed in males and/or were expressed in the opposite direction in females. These findings identify a series of novel, sex-selective biomarkers for adolescent nicotine-induced neuropsychiatric risk, persisting into adulthood.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Long-lasting sex-specific effects of adolescent nicotine exposure on anxiety-related behaviors.
Fig. 2: Adolescent NIC exposure induces sex-specific depressive-like phenotypes and cognitive deficits in adulthood.
Fig. 3: Adolescent nicotine exposure induces sex-specific alterations to mPFC and VTA spontaneous neuronal spiking activity and spontaneous mPFC oscillations in adulthood.
Fig. 4: Long-term sex-selective effects of adolescent nicotine exposure on anxiety and depressive-related molecular markers in the mPFC and NAc.
Fig. 5: MALDI imaging of acute and long-term impacts of adolescent nicotine exposure on GABA/glutamate levels in the male mPFC, NAc and Hipp.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, [S.R.L.], upon reasonable request.

References

  1. National Center for Chronic Disease Prevention and Health Promotion (US) Office on Smoking and Health. The Health Consequences of Smoking—50 Years of Progress: A Report of the Surgeon General. Atlanta (GA): Centers for Disease Control and Prevention (US); 2014.

  2. Cullen KA, Ambrose BK, Gentzke AS, Apelberg BJ, Jamal A, King BA. Notes from the Field: Use of Electronic Cigarettes and Any Tobacco Product Among Middle and High School Students - United States, 2011-2018. MMWR Morb Mortal Wkly Rep. 2018;67:1276–7.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Spear LP. The adolescent brain and age-related behavioral manifestations. Neurosci Biobehav Rev. 2000;24:417–63.

    Article  CAS  PubMed  Google Scholar 

  4. Arain M, Haque M, Johal L, Mathur P, Nel W, Rais A, et al. Maturation of the adolescent brain. Neuropsychiatr Dis Treat. 2013;9:449–61.

    PubMed  PubMed Central  Google Scholar 

  5. Yuan M, Cross SJ, Loughlin SE, Leslie FM. Nicotine and the adolescent brain. J Physiol. 2015;593:3397–412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Laviolette SR. Molecular and neuronal mechanisms underlying the effects of adolescent nicotine exposure on anxiety and mood disorders. Neuropharmacology. 2020;184:108411.

    Article  PubMed  Google Scholar 

  7. Boden JM, Fergusson DM, Horwood LJ. Cigarette smoking and depression: tests of causal linkages using a longitudinal birth cohort. Br J Psychiatry J Ment Sci. 2010;196:440–6.

    Article  Google Scholar 

  8. Mojtabai R, Crum RM. Cigarette smoking and onset of mood and anxiety disorders. Am J Public Health. 2013;103:1656–65.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Moylan S, Jacka FN, Pasco JA, Berk M. How cigarette smoking may increase the risk of anxiety symptoms and anxiety disorders: a critical review of biological pathways. Brain Behav. 2013;3:302–26.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Jobson CLM, Renard J, Szkudlarek H, Rosen LG, Pereira B, Wright DJ, et al. Adolescent Nicotine Exposure Induces Dysregulation of Mesocorticolimbic Activity States and Depressive and Anxiety-like Prefrontal Cortical Molecular Phenotypes Persisting into Adulthood. Cereb Cortex. 2019;29:3140–53.

    Article  PubMed  Google Scholar 

  11. Hudson R, Green M, Wright DJ, Renard J, Jobson CEL, Jung T, et al. Adolescent nicotine induces depressive and anxiogenic effects through ERK 1-2 and Akt-GSK-3 pathways and neuronal dysregulation in the nucleus accumbens. Addict Biol. 2021;26:e12891.

    Article  CAS  PubMed  Google Scholar 

  12. Goldstein RZ, Volkow ND. Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical implications. Nat Rev Neurosci. 2011;12:652–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sweitzer MM, Geier CF, Denlinger R, Forbes EE, Raiff BR, Dallery J, et al. Blunted striatal response to monetary reward anticipation during smoking abstinence predicts lapse during a contingency-managed quit attempt. Psychopharmacology. 2016;233:751–60.

    Article  CAS  PubMed  Google Scholar 

  14. Yuan K, Yu D, Bi Y, Li Y, Guan Y, Liu J, et al. The implication of frontostriatal circuits in young smokers: A resting-state study. Hum Brain Mapp. 2016;37:2013–26.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Counotte DS, Spijker S, Van de Burgwal LH, Hogenboom F, Schoffelmeer ANM, De Vries TJ, et al. Long-lasting cognitive deficits resulting from adolescent nicotine exposure in rats. Neuropsychopharmacol Publ Am Coll Neuropsychopharmacol. 2009;34:299–306.

    Article  CAS  Google Scholar 

  16. Berton O, McClung CA, Dileone RJ, Krishnan V, Renthal W, Russo SJ, et al. Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science. 2006;311:864–8.

    Article  CAS  PubMed  Google Scholar 

  17. Monteggia LM, Luikart B, Barrot M, Theobold D, Malkovska I, Nef S, et al. Brain-derived neurotrophic factor conditional knockouts show gender differences in depression-related behaviors. Biol Psychiatry. 2007;61:187–97.

    Article  CAS  PubMed  Google Scholar 

  18. Mansvelder HD, Mertz M, Role LW. Nicotinic modulation of synaptic transmission and plasticity in cortico-limbic circuits. Semin Cell Dev Biol. 2009;20:432–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bi L-L, Wang J, Luo Z-Y, Chen S-P, Geng F, Chen Y, et al. Enhanced excitability in the infralimbic cortex produces anxiety-like behaviors. Neuropharmacology. 2013;72:148–56.

    Article  CAS  PubMed  Google Scholar 

  20. Fernandez JW, Grizzell JA, Wecker L. The role of estrogen receptor β and nicotinic cholinergic receptors in postpartum depression. Prog Neuropsychopharmacol Biol Psychiatry. 2013;40:199–206.

    Article  CAS  PubMed  Google Scholar 

  21. Francis TC, Chandra R, Friend DM, Finkel E, Dayrit G, Miranda J, et al. Nucleus Accumbens Medium Spiny Neuron Subtypes Mediate Depression-Related Outcomes to Social Defeat Stress. Biol Psychiatry. 2015;77:212–22.

    Article  PubMed  Google Scholar 

  22. Ford DE, Erlinger TP. Depression and C-reactive protein in US adults: data from the Third National Health and Nutrition Examination Survey. Arch Intern Med. 2004;164:1010–4.

    Article  PubMed  Google Scholar 

  23. McLean CP, Asnaani A, Litz BT, Hofmann SG. Gender differences in anxiety disorders: prevalence, course of illness, comorbidity and burden of illness. J Psychiatr Res. 2011;45:1027–35.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Torres OV, O’Dell LE. Stress is a principal factor that promotes tobacco use in females. Prog Neuropsychopharmacol Biol Psychiatry. 2016;65:260–8.

    Article  PubMed  Google Scholar 

  25. Perkins KA. Smoking cessation in women. Special considerations. CNS Drugs. 2001;15:391–411.

    Article  CAS  PubMed  Google Scholar 

  26. Perkins KA, Scott J. Sex differences in long-term smoking cessation rates due to nicotine patch. Nicotine Tob Res J Soc Res Nicotine Tob. 2008;10:1245–50.

    Article  CAS  Google Scholar 

  27. Cheeta S, Irvine EE, Tucci S, Sandhu J, File SE. In adolescence, female rats are more sensitive to the anxiolytic effect of nicotine than are male rats. Neuropsychopharmacol Publ Am Coll Neuropsychopharmacol. 2001;25:601–7.

    Article  CAS  Google Scholar 

  28. Faraday MM, Elliott BM, Grunberg NE. Adult vs. adolescent rats differ in biobehavioral responses to chronic nicotine administration. Pharm Biochem Behav. 2001;70:475–89.

    Article  CAS  Google Scholar 

  29. Elliott BM, Faraday MM, Phillips JM, Grunberg NE. Effects of nicotine on elevated plus maze and locomotor activity in male and female adolescent and adult rats. Pharm Biochem Behav. 2004;77:21–28.

    Article  CAS  Google Scholar 

  30. Caldarone BJ, King SL, Picciotto MR. Sex differences in anxiety-like behavior and locomotor activity following chronic nicotine exposure in mice. Neurosci Lett. 2008;439:187–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Torres OV, Gentil LG, Natividad LA, Carcoba LM, O’Dell LE. Behavioral, Biochemical, and Molecular Indices of Stress are Enhanced in Female Versus Male Rats Experiencing Nicotine Withdrawal. Front Psychiatry. 2013;4:38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cora MC, Kooistra L, Travlos G. Vaginal Cytology of the Laboratory Rat and Mouse: Review and Criteria for the Staging of the Estrous Cycle Using Stained Vaginal Smears. Toxicol Pathol. 2015;43:776–93.

    Article  CAS  PubMed  Google Scholar 

  33. Murrin LC, Ferrer JR, Zeng WY, Haley NJ. Nicotine administration to rats: methodological considerations. Life Sci. 1987;40:1699–708.

    Article  CAS  PubMed  Google Scholar 

  34. Fung YK, Lau YS. Effects of prenatal nicotine exposure on rat striatal dopaminergic and nicotinic systems. Pharm Biochem Behav. 1989;33:1–6.

    Article  CAS  Google Scholar 

  35. Kraeuter A-K, Guest PC, Sarnyai Z. The Y-Maze for Assessment of Spatial Working and Reference Memory in Mice. Methods Mol Biol Clifton NJ. 2019;1916:105–11.

    Article  CAS  Google Scholar 

  36. Barker GRI, Bird F, Alexander V, Warburton EC. Recognition Memory for Objects, Place, and Temporal Order: A Disconnection Analysis of the Role of the Medial Prefrontal Cortex and Perirhinal Cortex. J Neurosci. 2007;27:2948–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Morici JF, Bekinschtein P, Weisstaub NV. Medial prefrontal cortex role in recognition memory in rodents. Behav Brain Res. 2015;292:241–51.

    Article  PubMed  Google Scholar 

  38. Kaidanovich-Beilin O, Lipina T, Vukobradovic I, Roder J, Woodgett JR. Assessment of Social Interaction Behaviors. J Vis Exp. 2011:2473. https://doi.org/10.3791/2473.

  39. Renard J, Rosen LG, Loureiro M, De Oliveira C, Schmid S, Rushlow WJ, et al. Adolescent Cannabinoid Exposure Induces a Persistent Sub-Cortical Hyper-Dopaminergic State and Associated Molecular Adaptations in the Prefrontal Cortex. Cereb Cortex. 2017;27:1297–310.

    PubMed  Google Scholar 

  40. Renard J, Szkudlarek HJ, Kramar CP, Jobson CEL, Moura K, Rushlow WJ, et al. Adolescent THC Exposure Causes Enduring Prefrontal Cortical Disruption of GABAergic Inhibition and Dysregulation of Sub-Cortical Dopamine Function. Sci Rep. 2017;7:11420.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Szkudlarek HJ, Desai SJ, Renard J, Pereira B, Norris C, Jobson CEL, et al. Δ-9-Tetrahydrocannabinol and Cannabidiol produce dissociable effects on prefrontal cortical executive function and regulation of affective behaviors. Neuropsychopharmacol Publ Am Coll Neuropsychopharmacol. 2019;44:817–25.

    Article  CAS  Google Scholar 

  42. Vollmayr B, Gass P. Learned helplessness: unique features and translational value of a cognitive depression model. Cell Tissue Res. 2013;354:171–8.

    Article  PubMed  Google Scholar 

  43. Tan H, Bishop SF, Lauzon NM, Sun N, Laviolette SR. Chronic nicotine exposure switches the functional role of mesolimbic dopamine transmission in the processing of nicotine’s rewarding and aversive effects. Neuropharmacology. 2009;56:741–51.

    Article  CAS  PubMed  Google Scholar 

  44. Chen C, Laviolette SR, Whitehead SN, Renaud JB, Yeung KK-C. Imaging of Neurotransmitters and Small Molecules in Brain Tissues Using Laser Desorption/Ionization Mass Spectrometry Assisted with Zinc Oxide Nanoparticles. J Am Soc Mass Spectrom. 2021;32:1065–79.

    Article  CAS  PubMed  Google Scholar 

  45. Sarikahya MH, Cousineau SL, De Felice M, Szkudlarek HJ, Wong KKW, DeVuono MV, et al. Prenatal THC exposure induces long-term, sex-dependent cognitive dysfunction associated with lipidomic and neuronal pathology in the prefrontal cortex-hippocampal network. Mol Psychiatry. 2023. https://doi.org/10.1038/s41380-023-02190-0.

  46. Dai HD, Doucet GE, Wang Y, Puga T, Samson K, Xiao P, et al. Longitudinal Assessments of Neurocognitive Performance and Brain Structure Associated With Initiation of Tobacco Use in Children, 2016 to 2021. JAMA Netw Open. 2022;5:e2225991.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Laviolette SR. Understanding the Association of Childhood Tobacco Use With Neuropathological Outcomes and Cognitive Performance Deficits in Vulnerable Brains. JAMA Netw Open. 2022;5:e2226001.

    Article  PubMed  Google Scholar 

  48. Oathes DJ, Ray WJ, Yamasaki AS, Borkovec TD, Castonguay LG, Newman MG, et al. Worry, generalized anxiety disorder, and emotion: evidence from the EEG gamma band. Biol Psychol. 2008;79:165–70.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Adhikari A, Topiwala MA, Gordon JA. Synchronized activity between the ventral hippocampus and the medial prefrontal cortex during anxiety. Neuron. 2010;65:257–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lalonde R. The neurobiological basis of spontaneous alternation. Neurosci Biobehav Rev. 2002;26:91–104.

    Article  CAS  PubMed  Google Scholar 

  51. DuBrow S, Davachi L. Temporal memory is shaped by encoding stability and intervening item reactivation. J Neurosci J Soc Neurosci. 2014;34:13998–4005.

    Article  CAS  Google Scholar 

  52. Yang T, Nie Z, Shu H, Kuang Y, Chen X, Cheng J, et al. The Role of BDNF on Neural Plasticity in Depression. Front Cell Neurosci. 2020;14:82.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Xia H, Du X, Yin G, Zhang Y, Li X, Cai J, et al. Effects of smoking on cognition and BDNF levels in a male Chinese population: relationship with BDNF Val66Met polymorphism. Sci Rep. 2019;9:217.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Karege F, Vaudan G, Schwald M, Perroud N, La Harpe R. Neurotrophin levels in postmortem brains of suicide victims and the effects of antemortem diagnosis and psychotropic drugs. Brain Res Mol Brain Res. 2005;136:29–37.

    Article  CAS  PubMed  Google Scholar 

  55. Brown SM, Henning S, Wellman CL. Mild, short-term stress alters dendritic morphology in rat medial prefrontal cortex. Cereb Cortex. 2005;15:1714–22.

    Article  PubMed  Google Scholar 

  56. Taliaz D, Nagaraj V, Haramati S, Chen A, Zangen A. Altered brain-derived neurotrophic factor expression in the ventral tegmental area, but not in the hippocampus, is essential for antidepressant-like effects of electroconvulsive therapy. Biol Psychiatry. 2013;74:305–12.

    Article  CAS  PubMed  Google Scholar 

  57. Veeraiah P, Noronha JM, Maitra S, Bagga P, Khandelwal N, Chakravarty S, et al. Dysfunctional Glutamatergic and γ-Aminobutyric Acidergic Activities in Prefrontal Cortex of Mice in Social Defeat Model of Depression. Biol Psychiatry. 2014;76:231–8.

    Article  CAS  PubMed  Google Scholar 

  58. Czéh B, Vardya I, Varga Z, Febbraro F, Csabai D, Martis L-S, et al. Long-Term Stress Disrupts the Structural and Functional Integrity of GABAergic Neuronal Networks in the Medial Prefrontal Cortex of Rats. Front Cell Neurosci. 2018;12:148.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Page CE, Coutellier L. Prefrontal excitatory/inhibitory balance in stress and emotional disorders: Evidence for over-inhibition. Neurosci Biobehav Rev. 2019;105:39–51.

    Article  CAS  PubMed  Google Scholar 

  60. Yildiz-Yesiloglu A, Ankerst DP. Review of 1H magnetic resonance spectroscopy findings in major depressive disorder: a meta-analysis. Psychiatry Res. 2006;147:1–25.

    Article  CAS  PubMed  Google Scholar 

  61. Dougherty DD, Bonab AA, Ottowitz WE, Livni E, Alpert NM, Rauch SL, et al. Decreased striatal D1 binding as measured using PET and [11C]SCH 23,390 in patients with major depression with anger attacks. Depress Anxiety. 2006;23:175–7.

    Article  CAS  PubMed  Google Scholar 

  62. Cannon DM, Klaver JM, Peck SA, Rallis-Voak D, Erickson K, Drevets WC. Dopamine type-1 receptor binding in major depressive disorder assessed using positron emission tomography and [11C]NNC-112. Neuropsychopharmacol Publ Am Coll Neuropsychopharmacol. 2009;34:1277–87.

    Article  CAS  Google Scholar 

  63. Ebert D, Feistel H, Loew T, Pirner A. Dopamine and depression-striatal dopamine D2 receptor SPECT before and after antidepressant therapy. Psychopharmacology. 1996;126:91–94.

    Article  CAS  PubMed  Google Scholar 

  64. Parsey RV, Oquendo MA, Zea-Ponce Y, Rodenhiser J, Kegeles LS, Pratap M, et al. Dopamine D(2) receptor availability and amphetamine-induced dopamine release in unipolar depression. Biol Psychiatry. 2001;50:313–22.

    Article  CAS  PubMed  Google Scholar 

  65. Hirvonen J, Karlsson H, Kajander J, Markkula J, Rasi-Hakala H, Någren K, et al. Striatal dopamine D2 receptors in medication-naive patients with major depressive disorder as assessed with [11C]raclopride PET. Psychopharmacology. 2008;197:581–90.

    Article  CAS  PubMed  Google Scholar 

  66. Dalley JW, McGaughy J, O’Connell MT, Cardinal RN, Levita L, Robbins TW. Distinct changes in cortical acetylcholine and noradrenaline efflux during contingent and noncontingent performance of a visual attentional task. J Neurosci J Soc Neurosci. 2001;21:4908–14.

    Article  CAS  Google Scholar 

  67. Bloem B, Poorthuis R, Mansvelder H. Cholinergic modulation of the medial prefrontal cortex: the role of nicotinic receptors in attention and regulation of neuronal activity. Front Neural Circuits. 2014;8:17.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Hoyle E, Genn RF, Fernandes C, Stolerman IP. Impaired performance of alpha7 nicotinic receptor knockout mice in the five-choice serial reaction time task. Psychopharmacology. 2006;189:211–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Valentine G, Sofuoglu M. Cognitive Effects of Nicotine: Recent Progress. Curr Neuropharmacol. 2018;16:403–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Fernandes C, Hoyle E, Dempster E, Schalkwyk LC, Collier DA. Performance deficit of alpha7 nicotinic receptor knockout mice in a delayed matching-to-place task suggests a mild impairment of working/episodic-like memory. Genes Brain Behav. 2006;5:433–40.

    Article  CAS  PubMed  Google Scholar 

  71. Guillem K, Bloem B, Poorthuis RB, Loos M, Smit AB, Maskos U, et al. Nicotinic acetylcholine receptor β2 subunits in the medial prefrontal cortex control attention. Science. 2011;333:888–91.

    Article  CAS  PubMed  Google Scholar 

  72. Yang Y, Paspalas CD, Jin LE, Picciotto MR, Arnsten AFT, Wang M. Nicotinic α7 receptors enhance NMDA cognitive circuits in dorsolateral prefrontal cortex. Proc Natl Acad Sci USA. 2013;110:12078–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Brenhouse HC, Andersen SL. Developmental trajectories during adolescence in males and females: a cross-species understanding of underlying brain changes. Neurosci Biobehav Rev. 2011;35:1687–703.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Meerwijk EL, Ford JM, Weiss SJ. Resting-State EEG Delta Power is Associated with Psychological Pain in Adults with a History of Depression. Biol Psychol. 2015;0:106–14.

    Article  PubMed Central  Google Scholar 

  75. Grünewald BD, Greimel E, Trinkl M, Bartling J, Großheinrich N, Schulte-Körne G. Resting frontal EEG asymmetry patterns in adolescents with and without major depression. Biol Psychol. 2018;132:212–6.

    Article  PubMed  Google Scholar 

  76. Proskovec AL, Wiesman AI, Heinrichs-Graham E, Wilson TW. Beta Oscillatory Dynamics in the Prefrontal and Superior Temporal Cortices Predict Spatial Working Memory Performance. Sci Rep. 2018;8:8488.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Laviolette SR, van der Kooy D. Blockade of mesolimbic dopamine transmission dramatically increases sensitivity to the rewarding effects of nicotine in the ventral tegmental area. Mol Psychiatry. 2003;8:50–9, 9.

    Article  CAS  PubMed  Google Scholar 

  78. Laviolette SR, Lauzon NM, Bishop SF, Sun N, Tan H. Dopamine signaling through D1-like versus D2-like receptors in the nucleus accumbens core versus shell differentially modulates nicotine reward sensitivity. J Neurosci J Soc Neurosci. 2008;28:8025–33.

    Article  CAS  Google Scholar 

  79. Chaudhury D, Walsh JJ, Friedman AK, Juarez B, Ku SM, Koo JW, et al. Rapid regulation of depression-related behaviours by control of midbrain dopamine neurons. Nature. 2013;493:532–6.

    Article  CAS  PubMed  Google Scholar 

  80. Yorgason JT, España RA, Konstantopoulos JK, Weiner JL, Jones SR. Enduring increases in anxiety-like behavior and rapid nucleus accumbens dopamine signaling in socially isolated rats. Eur J Neurosci. 2013;37:1022–31.

    Article  PubMed  Google Scholar 

  81. Paradiso K, Zhang J, Steinbach JH. The C Terminus of the Human Nicotinic α4β2 Receptor Forms a Binding Site Required for Potentiation by an Estrogenic Steroid. J Neurosci. 2001;21:6561–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Cross SJ, Linker KE, Leslie FM. Sex dependent effects of nicotine on the developing brain. J Neurosci Res. 2017;95:422–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Centeno ML, Henderson JA, Pau K-YF, Bethea CL. Estradiol increases alpha7 nicotinic receptor in serotonergic dorsal raphe and noradrenergic locus coeruleus neurons of macaques. J Comp Neurol. 2006;497:489–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Nakazawa K, Ohno Y. Modulation by estrogens and xenoestrogens of recombinant human neuronal nicotinic receptors. Eur J Pharm. 2001;430:175–83.

    Article  CAS  Google Scholar 

  85. Benowitz NL, Lessov-Schlaggar CN, Swan GE, Jacob P. Female sex and oral contraceptive use accelerate nicotine metabolism. Clin Pharm Ther. 2006;79:480–8.

    Article  CAS  Google Scholar 

  86. Kyerematen GA, Owens GF, Chattopadhyay B, deBethizy JD, Vesell ES. Sexual dimorphism of nicotine metabolism and distribution in the rat. Studies in vivo and in vitro. Drug Metab Dispos Biol Fate Chem. 1988;16:823–8.

    CAS  PubMed  Google Scholar 

  87. Bell MR. Comparing Postnatal Development of Gonadal Hormones and Associated Social Behaviors in Rats, Mice, and Humans. Endocrinology. 2018;159:2596–613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Canadian Institutes of Health Research (CIHR; PJT-189943) and Natural Sciences and Engineering Research Council (NSERC) Graduate Student fellowships to THJN., MS, DG and EP.

Author information

Authors and Affiliations

Authors

Contributions

THJN and SRL designed the research; THJN, MHS, RH, HJS, EPV, TCU, MVD, MM, KZ, MY, performed research; THJN, MHS, HJS, EPV, TCU, EP, DG, CC, KKCY and WJR contributed to data analysis; THJN and SRL wrote the paper.

Corresponding author

Correspondence to Steven R. Laviolette.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ng, T.H.J., Sarikahya, M.H., Hudson, R. et al. Adolescent nicotine exposure induces long-term, sex-specific disturbances in mood and anxiety-related behavioral, neuronal and molecular phenotypes in the mesocorticolimbic system. Neuropsychopharmacol. (2024). https://doi.org/10.1038/s41386-024-01853-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41386-024-01853-y

Search

Quick links