Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Potential therapeutics for effort-related motivational dysfunction: assessing novel atypical dopamine transport inhibitors

Subjects

Abstract

People with depression and other neuropsychiatric disorders can experience motivational dysfunctions such as fatigue and anergia, which involve reduced exertion of effort in goal-directed activity. To model effort-related motivational dysfunction, effort-based choice tasks can be used, in which rats can select between obtaining a preferred reinforcer by high exertion of effort vs. a low effort/less preferred option. Preclinical data indicate that dopamine transport (DAT) inhibitors can reverse pharmacologically-induced low-effort biases and increase selection of high-effort options in effort-based choice tasks. Although classical DAT blockers like cocaine can produce undesirable effects such as liability for misuse and psychotic reactions, not all DAT inhibitors have the same neurochemical profile. The current study characterized the effort-related effects of novel DAT inhibitors that are modafinil analogs and have a range of binding profiles and neurochemical actions (JJC8-088, JJC8-089, RDS3-094, and JJC8-091) by using two different effort-related choice behavior tasks in male Sprague-Dawley rats. JJC8-088, JJC8-089, and RDS3-094 significantly reversed the low-effort bias induced by the VMAT-2 inhibitor tetrabenazine, increasing selection of high-effort fixed ratio 5 lever pressing vs. chow intake. In addition, JJC8-089 reversed the effects of tetrabenazine in female rats. JJC8-088 and JJC8-089 also increased selection of high-effort progressive ratio responding in a choice task. However, JJC8-091 failed to produce these outcomes, potentially due to its unique pharmacological profile (i.e., binding to an occluded conformation of DAT). Assessment of a broad range of DAT inhibitors with different neurochemical characteristics may lead to the identification of compounds that are useful for treating motivational dysfunction in humans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The effects of JJC8-088 on TBZ-induced changes on the FR/chow feeding choice procedure during the 30 min session (A-B).
Fig. 2: The effects of JJ8-089 on TBZ-induced changes on the FR/chow feeding choice procedure during the 30 min session (A-B).
Fig. 3: The effects of RDS3-094 on TBZ-induced changes on the FR/chow feeding choice procedure during the 30 min session (A-B).
Fig. 4: The effects of JJC8-091 on TBZ-induced changes on the FR/chow feeding choice procedure during the 30 min session (A-B).
Fig. 5: The effects of JJ8-089 on TBZ-induced changes on the FR/chow feeding choice procedure in female rats (A, B).

Similar content being viewed by others

Data availability

Data files will be provided upon request (john.salamone@uconn.edu).

References

  1. Salamone JD, Correa M. The neurobiology of activational aspects of motivation: exertion of effort, effort-based decision making, and the role of dopamine. Annu Rev Psychol. 2024;75:1–32.

    Article  PubMed  Google Scholar 

  2. Salamone JD, Ecevitoglu A, Carratala-Ros C, Presby RE, Edelstein GA, Fleeher R, et al. Complexities and paradoxes in understanding the role of dopamine in incentive motivation and instrumental action: exertion of effort vs. anhedonia. Brain Res Bull. 2022;182:57–66.

    Article  CAS  PubMed  Google Scholar 

  3. Salamone JD, Yohn SE, López-Cruz L, San Miguel N, Correa M. Activational and effort-related aspects of motivation: Neural mechanisms and implications for psychopathology. Brain. 2016;139:1325–47.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Treadway MT, Buckholtz JW, Cowan RL, Woodward ND, Li R, Ansari MS, et al. Dopaminergic mechanisms of individual differences in human effort-based decision-making. J Neurosci. 2012;32:6170–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Treadway MT, Salamone JD. Vigor, Effort-related aspects of motivation and anhedonia. Curr Top Behav Neurosci. 2022;58:325–54.

    Article  PubMed  Google Scholar 

  6. Stahl S. The psychopharmacology of energy and fatigue. Clin Neurosci Update. 2002;63:7–8.

    Google Scholar 

  7. Cooper JA, Tucker VL, Papakostas GI. Resolution of sleepiness and fatigue: a comparison of bupropion and selective serotonin reuptake inhibitors in subjects with major depressive disorder achieving remission at doses approved in the European Union. J Psychopharmacol. 2014;28:118–24.

    Article  CAS  PubMed  Google Scholar 

  8. Fava M, Ball S, Nelson JC, Sparks J, Konechnik T, Classi P, et al. Clinical relevance of fatigue as a residual symptom in major depressive disorder. Depress Anxiety. 2014;31:250–7.

    Article  PubMed  Google Scholar 

  9. Price CS, Taylor FB. A retrospective chart review of the effects of modafinil on depression as monotherapy and as adjunctive therapy. Depress Anxiety. 2005;21:149–53.

    Article  CAS  PubMed  Google Scholar 

  10. Farrow TFD, Hunter MD, Haque R, Spence SA. Modafinil and unconstrained motor activity in schizophrenia: Double-blind crossover placebo-controlled trial. Br J Psychiatry. 2006;189:461–2.

    Article  PubMed  Google Scholar 

  11. Stotz G, Woggon B, Angst J. Psychostimulants in the therapy of treatment-resistant depression. Dialog Clin Neurosci. 1999;1:165–74.

    Article  CAS  Google Scholar 

  12. Salamone JD, Correa M. Critical review of RDoC approaches to the study of motivation with animal models: effort valuation/willingness to work. Emerg Top Life Sci. 2022;6:515–28.

    Article  CAS  PubMed  Google Scholar 

  13. Salamone JD, Steinpreis RE, McCullough LD, Smith P, Grebel D, Mahan K. Haloperidol and nucleus accumbens dopamine depletion suppress lever pressing for food but increase free food consumption in a novel food choice procedure. Psychopharmacology. 1991;104:515–21.

    Article  CAS  PubMed  Google Scholar 

  14. Salamone JD, Correa M. the mysterious motivational functions of mesolimbic dopamine. Neuron. 2012;76:470–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Randall PA, Pardo M, Nunes EJ, López Cruz L, Vemuri VK, Makriyannis A, et al. Dopaminergic modulation of effort-related choice behavior as assessed by a progressive ratio chow feeding choice task: pharmacological studies and the role of individual differences. PLoS One. 2012;7:e47934.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Randall PA, Lee CA, Nunes EJ, Yohn SE, Nowak V, Khan B, et al. The VMAT-2 inhibitor tetrabenazine affects effort-related decision making in a progressive ratio/chow feeding choice task: Reversal with antidepressant drugs. PLoS One. 2014;9:23–6.

    Article  Google Scholar 

  17. Randall PA, Lee CA, Podurgiel SJ, Hart E, Yohn SE, Jones M, et al. Bupropion increases selection of high effort activity in rats tested on a progressive ratio/chow feeding choice procedure: Implications for treatment of effort-related motivational symptoms. Int J Neuropsychopharmacol. 2015;18:1–11.

    Article  CAS  Google Scholar 

  18. Sommer S, Danysz W, Russ H, Valastro B, Flik G, Hauber W. The dopamine reuptake inhibitor MRZ-9547 increases progressive ratio responding in rats. Int J Neuropsychopharmacol. 2014;17:2045–56.

    Article  CAS  PubMed  Google Scholar 

  19. Hosking JG, Floresco SB, Winstanley CA. Dopamine antagonism decreases willingness to expend physical, but not cognitive, effort: a comparison of two rodent cost/benefit decision-making tasks. Neuropsychopharmacology. 2015;40:1005–15.

    Article  CAS  PubMed  Google Scholar 

  20. Nowend KL, Arizzi M, Carlson BB, Salamone JD. D1 or D2 antagonism in nucleus accumbens core or dorsomedial shell suppresses lever pressing for food but leads to compensatory increases in chow consumption. Pharm Biochem Behav. 2001;69:373–82.

    Article  CAS  Google Scholar 

  21. Sink KS, Vemuri VK, Olszewska T, Makriyannis A, Salamone JD. Cannabinoid CB1 antagonists and dopamine antagonists produce different effects on a task involving response allocation and effort-related choice in food-seeking behavior. Psychopharmacology. 2008;196:565–74.

    Article  CAS  PubMed  Google Scholar 

  22. Mai B, Sommer S, Hauber W. Motivational states influence effort-based decision making in rats: the role of dopamine in the nucleus accumbens. Cogn Affect Behav Neurosci. 2012;12:74–84.

    Article  PubMed  Google Scholar 

  23. Nunes EJ, Randall PA, Hart EE, Freeland C, Yohn SE, Baqi Y, et al. Effort-related motivational effects of the VMAT-2 inhibitor tetrabenazine: Implications for animal models of the motivational symptoms of depression. J Neurosci. 2013;33:19120–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Salamone JD, Ecevitoglu A, Beard KR, Srynath S, Edelstein GA, Meka N, et al. Exploring sex differences in the neurochemical and effort-related motivational effects of the VMAT-2 Inhibitor and dopamine depleting agent tetrabenazine. Program No. PSTR100.05. 2023 Neuroscience Meeting Planner. Washington, D.C.: Society for Neuroscience, 2023.

  25. Guay DRP. Tetrabenazine, a monoamine-depleting drug used in the treatment of hyperkinetic movement disorders. Am J Geriatr Pharmacother. 2010;8:331–73.

    Article  CAS  PubMed  Google Scholar 

  26. Pettibone DJ, Totaro JA, Pflueger AB. Tetrabenazine-induced depletion of brain monoamines: characterization and interaction with selected antidepressants. Eur J Pharm. 1984;102:425–30.

    Article  CAS  Google Scholar 

  27. Yohn SE, Thompson C, Randall PA, Lee CA, Müller CE, Baqi Y, et al. The VMAT-2 inhibitor tetrabenazine alters effort-related decision making as measured by the T-maze barrier choice task: Reversal with the adenosine A2A antagonist MSX-3 and the catecholamine uptake blocker bupropion. Psychopharmacology. 2015;232:1313–23.

    Article  CAS  PubMed  Google Scholar 

  28. Yohn SE, Collins SL, Contreras-Mora HM, Errante EL, Rowland MA, Correa M, et al. Not all antidepressants are created equal: differential effects of monoamine uptake inhibitors on effort-related choice behavior. Neuropsychopharmacology. 2016;41:686–94.

    Article  CAS  PubMed  Google Scholar 

  29. Yohn SE, Lopez-Cruz L, Hutson PH, Correa M, Salamone JD. Effects of lisdexamfetamine and s-citalopram, alone and in combination, on effort-related choice behavior in the rat. Psychopharmacology. 2016;233:949–60.

    Article  CAS  PubMed  Google Scholar 

  30. Kouhnavardi S, Ecevitoglu A, Dragačević V, Sanna F, Arias-Sandoval E, Kalaba P, et al. A novel and selective dopamine transporter inhibitor, (S)-MK-26, promotes hippocampal synaptic plasticity and restores effort-related motivational dysfunctions. Biomolecules. 2022;12:881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rotolo RA, Dragacevic V, Kalaba P, Urban E, Zehl M, Roller A, et al. The novel atypical dopamine uptake inhibitor (S)-CE-123 partially reverses the effort-related effects of the dopamine depleting agent tetrabenazine and increases progressive ratio responding. Front Pharm. 2019;10:1–12.

    Article  Google Scholar 

  32. Rotolo RA, Kalaba P, Dragacevic V, Presby RE, Neri J, Robertson E, et al. Behavioral and dopamine transporter binding properties of the modafinil analog (S, S)-CE-158: reversal of the motivational effects of tetrabenazine and enhancement of progressive ratio responding. Psychopharmacology. 2020;237:3459–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rotolo RA, Presby RE, Tracy O, Asar S, Yang JH, Correa M, et al. The novel atypical dopamine transport inhibitor CT-005404 has pro-motivational effects in neurochemical and inflammatory models of effort-based dysfunctions related to psychopathology. Neuropharmacology. 2021;183:108325.

    Article  CAS  PubMed  Google Scholar 

  34. Yohn SE, Errante EE, Rosenbloom-Snow A, Somerville M, Rowland M, Tokarski K, et al. Blockade of uptake for dopamine, but not norepinephrine or 5-HT, increases selection of high effort instrumental activity: Implications for treatment of effort-related motivational symptoms in psychopathology. Neuropharmacology. 2016;109:270–80.

    Article  CAS  PubMed  Google Scholar 

  35. Hersey M, Bartole MK, Jones CS, Newman AH, Tanda G. Are there prevalent sex differences in psychostimulant use disorder? a focus on the potential therapeutic efficacy of atypical dopamine uptake inhibitors. Molecules. 2023;28:5270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Newman AH, Cao J, Keighron JD, Jordan CJ, Bi GH, Liang Y, et al. Translating the atypical dopamine uptake inhibitor hypothesis toward therapeutics for treatment of psychostimulant use disorders. Neuropsychopharmacology. 2019;44:1435–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fluyau D, Mitra P, Lorthe K. Antipsychotics for amphetamine psychosis. A systematic review. Front Psychiatry. 2019;10:1–14.

    Article  Google Scholar 

  38. Gallagher KE, Funaro MC, Woods SW. Prescription stimulants and the risk of psychosis: a systematic review of observational studies. J Clin Psychopharmacol. 2022;42:308–14.

    Article  CAS  PubMed  Google Scholar 

  39. Kohut SJ, Hiranita T, Hong S-K, Ebbs AL, Tronci V, Green J, et al. Preference for distinct functional conformations of the dopamine transporter alters the relationship between subjective effects of cocaine and stimulation of mesolimbic dopamine. Biol Psychiatry. 2014;76:802–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Newman AH, Ku T, Jordan CJ, Bonifazi A, Xi ZX. New drugs, old targets: tweaking the dopamine system to treat psychostimulant use disorders. Annu Rev Pharm Toxicol. 2021;61:609–28.

    Article  CAS  Google Scholar 

  41. Rothman RB, Baumann MH, Prisinzano TE, Newman AH. Dopamine transport inhibitors based on GBR12909 and benztropine as potential medications to treat cocaine addiction. Biochem Pharm. 2008;75:2–16.

    Article  CAS  PubMed  Google Scholar 

  42. Schmitt KC, Zhen J, Kharkar P, Mishra M, Chen N, Dutta AK, et al. Interaction of cocaine-, benztropine-, and GBR12909-like compounds with wild-type and mutant human dopamine transporters: Molecular features that differentially determine antagonist-binding properties. J Neurochem. 2008;107:928–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schmitt KC, Reith MEA. The atypical stimulant and nootropic modafinil interacts with the dopamine transporter in a different manner than classical cocaine-like inhibitors. PLoS One. 2011;6:e25790.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tanda G, Hersey M, Hempel B, Xi Z, Newman AH. Modafinil and its structural analogs as atypical dopamine uptake inhibitors and potential medications for psychostimulant use disorder. Curr Opin Pharm. 2021;56:13–21.

    Article  CAS  Google Scholar 

  45. Cao J, Slack RD, Bakare OM, Burzynski C, Rais R, Slusher BS, et al. Novel and high affinity 2-[(diphenylmethyl)sulfinyl]acetamide (modafinil) analogues as atypical dopamine transporter inhibitors. J Med Chem. 2016;59:10676–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hersey M, Chen AY, Bartole MK, Anand J, Newman AH, Tanda G. An fscv study on the effects of targeted typical and atypical dat inhibition on dopamine dynamics in the nucleus accumbens shell of male and female mice. ACS Chem Neurosci. 2023;14:2802–10.

    Article  CAS  PubMed  Google Scholar 

  47. Keighron JD, Quarterman JC, Cao J, Demarco EM, Coggiano MA, Gleaves A, et al. Effects of (R)-modafinil and modafinil analogues on dopamine dynamics assessed by voltammetry and microdialysis in the mouse nucleus accumbens shell. ACS Chem Neurosci. 2019;10:2012–21.

    Article  CAS  PubMed  Google Scholar 

  48. Tunstall BJ, Ho CP, Cao J, Vendruscolo JCM, Schmeichel BE, Slack RD, et al. Atypical dopamine transporter inhibitors attenuate compulsive-like methamphetamine self-administration in rats. Neuropharmacology. 2018;131:96–103.

    Article  CAS  PubMed  Google Scholar 

  49. Mereu M, Hiranita T, Jordan CJ, Chun LE, Lopez JP, Coggiano MA, et al. Modafinil potentiates cocaine self-administration by a dopamine-independent mechanism: possible involvement of gap junctions. Neuropsychopharmacology. 2020;45:1518–26.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Slack RD, Ku TC, Cao J, Giancola JB, Bonifazi A, Loland CJ, et al. Structure-activity relationships for a series of (bis(4-fluorophenyl)methyl)sulfinyl alkyl alicyclic amines at the dopamine transporter: Functionalizing the terminal nitrogen affects affinity, selectivity, and metabolic stability. J Med Chem. 2020;63:2343–57.

    Article  CAS  PubMed  Google Scholar 

  51. Keppel G Design and analysis: A researcher’s handbook, 3rd ed. Englewood Cliffs, NJ, US: Prentice-Hall, Inc; 1991.

  52. Ren N, Carratala-Ros C, Ecevitoglu A, Rotolo RA, Edelstein GA, Presby RE, et al. Effects of the dopamine depleting agent tetrabenazine on detailed temporal parameters of effort-related choice responding. J Exp Anal Behav. 2022;117:331–45.

    Article  PubMed  Google Scholar 

  53. Rahimi O, Cao J, Lam J, Childers SR, Rais R, Porrino LJ, et al. The effects of the dopamine transporter ligands JJC8-088 and JJC8-091 on cocaine versus food choice in rhesus monkeys. J Pharmacol Exp Ther. 2023;384:372–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Albert PR. Why is depression more prevalent in women? J Psychiatry Neurosci. 2015;40:219–21.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Maita I, Bazer A, Chae K, Parida A, Mirza M, Sucher J, et al. Chemogenetic activation of corticotropin-releasing factor-expressing neurons in the anterior bed nucleus of the stria terminalis reduces effortful motivation behaviors. Neuropsychopharmacology. 2023; https://doi.org/10.1038/s41386-023-01646-9.

  56. Matas-Navarro P, Carratalá-Ros C, Olivares-García R, Martínez-Verdú A, Salamone JD, Correa M. Sex and age differences in mice models of effort-based decision-making and anergia in depression: the role of dopamine, and cerebral-dopamine-neurotrophic-factor. Psychopharmacology. 2023;240:2285–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Carratalá-Ros C, Martínez-Verdú A, Olivares-García R, Salamone JD, Correa M. Effects of the dopamine depleting agent tetrabenazine in tests evaluating different components of depressive-like behavior in mice: sex-dependent response to antidepressant drugs with SERT and DAT blocker profiles. Psychopharmacology. 2023;240:1615–28.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Errante EL, Chakkalamuri M, Akinbo OI, Yohn SE, Salamone JD, Matuszewich L. Sex differences in effort-related decision-making: role of dopamine D2 receptor antagonism. Psychopharmacology. 2021;238:1609–19.

    Article  CAS  PubMed  Google Scholar 

  59. Presby RE, Rotolo RA, Hurley EM, et al. Sex differences in lever pressing and running wheel tasks of effort-based choice behavior in rats: Suppression of high effort activity by the serotonin transport inhibitor fluoxetine. Pharm Biochem Behav. 2021;202:173115.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was partially supported by grants to JS from NIMH (R01MH121350) and the University of Connecticut Research Foundation.

Funding

Funding from the NIDA-Intramural Research Program was provided to AHN (Z1A DA000389). AO was supported by the NIDA-Intramural Research Program’s Scientific Director’s Fellowship for Diversity in Research

Author information

Authors and Affiliations

Authors

Contributions

Alev Ecevitoglu, Renee A. Rotolo, Nicolette Meka: data collection and analysis, manuscript preparation; Gayle Edelstein, Sonya Srinath, Carla Ros, Kathryn Beard, Rose E. Presby: data collection and analysis; Jianjing Cao, Amarachi Okorom: compound synthesis and characterization; Merce Correa: conceptualization, research supervision, manuscript preparation. John D. Salamone, Amy H. Newman: conceptualization, methodology, formal analysis, manuscript preparation; funding acquisition.

Corresponding author

Correspondence to John D. Salamone.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ecevitoglu, A., Meka, N., Rotolo, R.A. et al. Potential therapeutics for effort-related motivational dysfunction: assessing novel atypical dopamine transport inhibitors. Neuropsychopharmacol. (2024). https://doi.org/10.1038/s41386-024-01826-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41386-024-01826-1

Search

Quick links