Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Heartbeat-evoked neural response abnormalities in generalized anxiety disorder during peripheral adrenergic stimulation

Abstract

Hyperarousal symptoms in generalized anxiety disorder (GAD) are often incongruent with the observed physiological state, suggesting that abnormal processing of interoceptive signals is a characteristic feature of the disorder. To examine the neural mechanisms underlying interoceptive dysfunction in GAD, we evaluated whether adrenergic modulation of cardiovascular signaling differentially affects the heartbeat-evoked potential (HEP), an electrophysiological marker of cardiac interoception, during concurrent electroencephalogram and functional magnetic resonance imaging (EEG-fMRI) scanning. Intravenous infusions of the peripheral adrenergic agonist isoproterenol (0.5 and 2.0 micrograms, μg) were administered in a randomized, double-blinded and placebo-controlled fashion to dynamically perturb the cardiovascular system while recording the associated EEG-fMRI responses. During the 0.5 μg isoproterenol infusion, the GAD group (n = 24) exhibited significantly larger changes in HEP amplitude in an opposite direction than the healthy comparison (HC) group (n = 24). In addition, the GAD group showed significantly larger absolute HEP amplitudes than the HC group during saline infusions, when cardiovascular tone did not increase. No significant group differences in HEP amplitude were identified during the 2.0 μg isoproterenol infusion. Using analyzable blood oxygenation level-dependent fMRI data from participants with concurrent EEG-fMRI data (21 GAD and 21 HC), we found that the aforementioned HEP effects were uncorrelated with fMRI signals in the insula, ventromedial prefrontal cortex, dorsal anterior cingulate cortex, amygdala, and somatosensory cortex, brain regions implicated in cardiac signal processing in prior fMRI studies. These findings provide additional evidence of dysfunctional cardiac interoception in GAD and identify neural processes at the electrophysiological level that may be independent from blood oxygen level-dependent responses during peripheral adrenergic stimulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Isoproterenol-induced changes in HEP amplitude and cardiorespiratory sensation.
Fig. 2: Association between two self-reported personality traits and the average HEP amplitude (avHEP) during the peak period of the saline infusion.

Similar content being viewed by others

References

  1. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed., text rev. Washington D.C.: American Psychiatric Association; 2022. https://doi.org/10.1176/appi.books.9780890425787.

  2. Kessler RC, Berglund P, Demler O, Jin R, Merikangas KR, Walters EE. Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Arch Gen Psychiatry. 2005;62:593–602. https://doi.org/10.1001/archpsyc.62.6.593.

    Article  PubMed  Google Scholar 

  3. World Health Organization. ICD-11 for mortality and morbidity statistics—6B00 generalised anxiety disorder. 2022. https://icd.who.int/browse11/l-m/en#/http://id.who.int/icd/entity/1712535455.

  4. Hoehn-Saric R, McLeod DR. Anxiety and arousal: physiological changes and their perception. J Affect Disord. 2000;61:217–24.

    Article  CAS  PubMed  Google Scholar 

  5. Fisher AJ, Granger DA, Newman MG. Sympathetic arousal moderates self-reported physiological arousal symptoms at baseline and physiological flexibility in response to a stressor in generalized anxiety disorder. Biol Psychol. 2010;83:191–200. https://doi.org/10.1016/j.biopsycho.2009.12.007.

    Article  PubMed  Google Scholar 

  6. Makovac E, Fagioli S, Watson DR, Meeten F, Smallwood J, Critchley HD, et al. Response time as a proxy of ongoing mental state: a combined fMRI and pupillometry study in Generalized Anxiety Disorder. Neuroimage. 2019;191:380–91. https://doi.org/10.1016/j.neuroimage.2019.02.038.

    Article  PubMed  Google Scholar 

  7. Ottaviani C, Watson DR, Meeten F, Makovac E, Garfinkel SN, Critchley HD. Neurobiological substrates of cognitive rigidity and autonomic inflexibility in generalized anxiety disorder. Biol Psychol. 2016;119:31–41.

    Article  PubMed  Google Scholar 

  8. Khalsa SS, Adolphs R, Cameron OG, Critchley HD, Davenport PW, Feinstein JS, et al. Interoception and mental health: a roadmap. Biol Psychiatry Cogn Neurosci Neuroimaging. 2018;3:501–13. https://doi.org/10.1016/j.bpsc.2017.12.004.

    Article  PubMed  Google Scholar 

  9. Paulus MP, Stein MB. Interoception in anxiety and depression. Brain Struct Funct. 2010;214:451–63.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Berntson GG, Khalsa SS. Neural circuits of interoception. Trends Neurosci. 2021;44:17–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Oppenheimer S, Cechetto D. The insular cortex and the regulation of cardiac function. Compr Physiol. 2016;6:1081–133. https://doi.org/10.1002/cphy.c140076.

    Article  PubMed  Google Scholar 

  12. Hassanpour MS, Simmons WK, Feinstein JS, Luo Q, Lapidus RC, Bodurka J, et al. The insular cortex dynamically maps changes in cardiorespiratory interoception. Neuropsychopharmacology. 2018;43:426–34. https://doi.org/10.1038/npp.2017.154.

    Article  PubMed  Google Scholar 

  13. Khalsa SS, Rudrauf D, Feinstein JS, Tranel D. The pathways of interoceptive awareness. Nat Neurosci. 2009;12:1494–6. https://doi.org/10.1038/nn.2411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hassanpour MS, Yan L, Wang DJJ, Lapidus RC, Arevian AC, Simmons WK. How the heart speaks to the brain activity during cardiorespiratory interoceptive stimulation. Philos Trans R Soc B. 2016;371:1–8. https://doi.org/10.1098/rstb.2016.0017.

    Article  Google Scholar 

  15. Teed AR, Feinstein JS, Puhl M, Lapidus RC, Upshaw V, Kuplicki RT, et al. Association of generalized anxiety disorder with autonomic hypersensitivity and blunted ventromedial prefrontal cortex activity during peripheral adrenergic stimulation: a randomized clinical trial. JAMA Psychiatry. 2022. https://doi.org/10.1001/jamapsychiatry.2021.4225.

  16. Park HD, Blanke O. Heartbeat-evoked cortical responses: underlying mechanisms, functional roles, and methodological considerations. Neuroimage. 2019;197:502–11. https://doi.org/10.1016/j.neuroimage.2019.04.081.

    Article  PubMed  Google Scholar 

  17. Coll MP, Hobson H, Bird G, Murphy J. Systematic review and meta-analysis of the relationship between the heartbeat-evoked potential and interoception. Neurosci Biobehav Rev. 2021. https://doi.org/10.1016/j.neubiorev.2020.12.012.

  18. Pang J, Tang X, Li H, Hu Q, Cui H, Zhang L, et al. Altered interoceptive processing in generalized anxiety disorder—a heartbeat-evoked potential research. Front Psychiatry. 2019;10. https://doi.org/10.3389/fpsyt.2019.00616.

  19. Khalsa SS, Lapidus RC. Can interoception improve the pragmatic search for biomarkers in psychiatry? Front Psychiatry. 2016;7. https://doi.org/10.3389/fpsyt.2016.00121.

  20. Khalsa SS, Rudrauf D, Sandesara C, Olshansky B, Tranel D. Bolus isoproterenol infusions provide a reliable method for assessing interoceptive awareness. Int J Psychophysiol. 2009;72:34–45. https://doi.org/10.1016/j.ijpsycho.2008.08.010.

    Article  CAS  PubMed  Google Scholar 

  21. Luft CD, Bhattacharya J. Aroused with heart: modulation of heartbeat evoked potential by arousal induction and its oscillatory correlates. Sci Rep. 2015;5:1–11. https://doi.org/10.1038/srep15717.

    Article  CAS  Google Scholar 

  22. Schulz A, Strelzyk F, de Sá DSF, Naumann E, Vögele C, Schächinger H. Cortisol rapidly affects amplitudes of heartbeat-evoked brain potentials—implications for the contribution of stress to an altered perception of physical sensations? Psychoneuroendocrinology. 2013;38:2686–93.

    Article  CAS  PubMed  Google Scholar 

  23. Ainley V, Apps MAJ, Fotopoulou A, Tsakiris M. ‘Bodily precision’: a predictive coding account of individual differences in interoceptive accuracy. Philos Trans R Soc Lond B Biol Sci. 2016;371:20160003.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Petzschner FH, Weber LA, Wellstein KV, Paolini G, Do CT, Stephan KE. Focus of attention modulates the heartbeat evoked potential. Neuroimage. 2019;186:595–606. https://doi.org/10.1016/j.neuroimage.2018.11.037.

    Article  PubMed  Google Scholar 

  25. Petzschner FH, Garfinkel SN, Paulus MP, Koch C, Khalsa SS. Computational models of interoception and body regulation. Trends Neurosci. 2021;44:63–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Seth AK, Suzuki K, Critchley HD. An interoceptive predictive coding model of conscious presence. Front Psychol. 2012;2:395.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Paulus MP, Feinstein JS, Khalsa SS. An active inference approach to interoceptive psychopathology. Annu Rev Clin Psychol. 2019;15:97–122. https://doi.org/10.1146/annurev-clinpsy-050718095617.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Paulus MP. Driven by pain, not gain: computational approaches to aversion-related decision making in psychiatry. Biol Psychiatry. 2020;87:359–67. https://doi.org/10.1016/j.biopsych.2019.08.025.

    Article  PubMed  Google Scholar 

  29. Sheehan DV, Lecrubier Y, Sheehan KH, Amorim P, Janavs J, Weiller E, et al. The Mini-International Neuropsychiatric Interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J Clin psychiatry 1998;59:22–33.

    PubMed  Google Scholar 

  30. Campbell-Sills L, Norman SB, Craske MG, Sullivan G, Lang AJ, Chavira DA, et al. Validation of a brief measure of anxiety-related severity and impairment: the Overall Anxiety Severity and Impairment Scale (OASIS). J Affect Disord. 2009;112:92–101. https://doi.org/10.1016/j.jad.2008.03.014.

    Article  PubMed  Google Scholar 

  31. Spitzer RL, Kroenke K, Williams JBW, Löwe B. A brief measure for assessing generalized anxiety disorder: the GAD-7. Arch Intern Med. 2006;166:1092–7. https://doi.org/10.1001/archinte.166.10.1092.

    Article  PubMed  Google Scholar 

  32. Pohl R, Yeragani VK, Balon R, Rainey JM, Lycaki H, Ortiz A, et al. Isoproterenol-induced panic attacks. Biol Psychiatry. 1988;24:891–902. https://doi.org/10.1016/0006-3223(88)90224-7.

    Article  CAS  PubMed  Google Scholar 

  33. Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods. 2004;134:9–21. https://doi.org/10.1016/j.jneumeth.2003.10.009.

    Article  PubMed  Google Scholar 

  34. Niazy RK, Beckmann CF, Iannetti GD, Brady JM, Smith SM. Removal of FMRI environment artifacts from EEG data using optimal basis sets. Neuroimage. 2005;28:720–37. https://doi.org/10.1016/j.neuroimage.2005.06.067.

    Article  CAS  PubMed  Google Scholar 

  35. Candia-Rivera D, Catrambone V, Valenza G. The role of electroencephalography electrical reference in the assessment of functional brain–heart interplay: from methodology to user guidelines. J Neurosci Methods. 2021;360:109269. https://doi.org/10.1016/j.jneumeth.2021.109269.

    Article  PubMed  Google Scholar 

  36. Luck SJ. An introduction to the event-related potential technique. Cambridge, Massachusetts: MIT Press; 2014.

  37. Verdonk C, Trousselard M, Di Bernardi Luft C, Medani T, Billaud JB, Ramdani C, et al. The heartbeat evoked potential does not support strong interoceptive sensibility in trait mindfulness. Psychophysiology. 2021;58:e13891. https://doi.org/10.1111/psyp.13891.

    Article  PubMed  Google Scholar 

  38. Pernet C, Garrido MI, Gramfort A, Maurits N, Michel CM, Pang E, et al. Issues and recommendations from the OHBM COBIDAS MEEG committee for reproducible EEG and MEG research. Nat Neurosci. 2020;23:1473–83.

    Article  CAS  PubMed  Google Scholar 

  39. Cox RW. AFNI: programvare for analyse og visualisering av funksjonell magnetisk resonans Neuroimages. Comput Biomed Res. 1996;29:162–73.

    Article  CAS  PubMed  Google Scholar 

  40. Restom K, Behzadi Y, Liu TT. Physiological noise reduction for arterial spin labeling functional MRI. Neuroimage. 2006;31:1104–15.

    Article  PubMed  Google Scholar 

  41. Maris E. Statistical testing in electrophysiological studies. Psychophysiology. 2012;49:549–65. https://doi.org/10.1111/j.1469-8986.2011.01320.x.

    Article  PubMed  Google Scholar 

  42. Maris E, Oostenveld R. Nonparametric statistical testing of EEG- and MEG-data. J Neurosci Methods. 2007;164:177–90. https://doi.org/10.1016/j.jneumeth.2007.03.024.

    Article  PubMed  Google Scholar 

  43. Oostenveld R, Fries P, Maris E, Schoffelen JM. FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intell Neurosci. 2011;2011:156869. https://doi.org/10.1155/2011/156869.

    Article  PubMed  Google Scholar 

  44. Buot A, Azzalini D, Chaumon M, Tallon-Baudry C. Does stroke volume influence heartbeat evoked responses? Biol Psychol. 2021;165:108165.

    Article  PubMed  Google Scholar 

  45. Paulus MP, Flagan T, Simmons AN, Gillis K, Kotturi S, Thom N, et al. Subjecting elite athletes to inspiratory breathing load reveals behavioral and neural signatures of optimal performers in extreme environments. PLoS ONE. 2012;7:e29394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Walsh KS, McGovern DP, Clark A, O’Connell RG. Evaluating the neurophysiological evidence for predictive processing as a model of perception. Ann N Y Acad Sci. 2020;1464:242.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Seth AK, Bayne T. Theories of consciousness. Nat Rev Neurosci. 2022;23:439–52.

  48. Craske MG. Origins of phobias and anxiety disorders: why more women than men? Amsterdam, Netherlands: Elsevier; 2003.

  49. Warbrick T. Simultaneous EEG-fMRI: what have we learned and what does the future hold? Sensors. 2022;22:2262.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Debener S, Kranczioch C, Gutberlet I. EEG quality: origin and reduction of the EEG cardiac-related artefact. In: Mulert C, Lemieux L, editors. EEG-fMRI. New York, New York: Springer; 2010. pp. 135–51.

  51. Eichele T, Moosmann M, Wu L, Gutberlet I, Debener S. Removal of MRI artifacts from EEG recordings. In: Mulert C, Lemieux L, editor. Simultaneous EEG and fMRI: recording, analysis, and applications. New York, New York: Springer; 2010. pp. 95–106.

  52. Bullock M, Jackson GD, Abbott DF. Artifact reduction in simultaneous EEG-fMRI: a systematic review of methods and contemporary usage. Front Neurol. 2021;12:622719. https://doi.org/10.3389/fneur.2021.622719.

  53. Debener S, Mullinger KJ, Niazy RK, Bowtell RW. Properties of the ballistocardiogram artefact as revealed by EEG recordings at 1.5, 3 and 7 T static magnetic field strength. Int J Psychophysiol. 2008;67:189–99. https://doi.org/10.1016/j.ijpsycho.2007.05.015.

    Article  PubMed  Google Scholar 

  54. Dirlich G, Dietl T, Vogl L, Strian F. Topography and morphology of heart action-related EEG potentials. Electroencephalogr Clin Neurophysiol. 1998;108:299–305.

    Article  CAS  PubMed  Google Scholar 

  55. Jorge J, Bouloc C, Bréchet L, Michel CM, Gruetter R. Investigating the variability of cardiac pulse artifacts across heartbeats in simultaneous EEG-fMRI recordings: a 7T study. Neuroimage. 2019;191:21–35. https://doi.org/10.1016/j.neuroimage.2019.02.021.

    Article  PubMed  Google Scholar 

  56. Kern M, Aertsen A, Schulze-Bonhage A, Ball T. Heart cycle-related effects on event-related potentials, spectral power changes, and connectivity patterns in the human ECoG. Neuroimage. 2013;81:178–90. https://doi.org/10.1016/j.neuroimage.2013.05.042.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Megan Sinik, B.S., Dhvanit Raval, B.S., and Chloe Sigman, B.S., provided physiological data processing assistance. Rachel Lapidus, Ph.D., Valerie Upshaw, M.S.N., C.N.A.P., and Maria Puhl, Ph.D., provided data collection assistance. Megan Cole, R.N., Jeanne Echols, R.N., Lisa Augustine, R.N., Susan Maxey, R.N., and Lindsey Bailey, N.T., provided isoproterenol preparation assistance. We also acknowledge the key contributions of the late Jerzy Bodurka to the acquisition of the functional neuroimaging data. The results included in the present paper were presented at the American College of Neuropsychopharmacology meeting, in December 2022.

Funding

This work was supported by the National Institute of Mental Health (K23MH112949 [to SSK]), National Institute of General Medical Sciences Center (Grant No. 1P20GM121312 [to MPP and SSK]), and The William K. Warren Foundation. CV is supported, in part, by the Fédération pour la recherche sur le cerveau (FRC), the Union Nationale de Familles et Amis de Personnes Malades et Handicapées Psychiques (UNAFAM), and by the Fondation des Gueules Cassées. The funding sources had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; or decision to submit the manuscript for publication.

Author information

Authors and Affiliations

Authors

Contributions

Concept and design: Khalsa. Acquisition, analysis, or interpretation of data: Verdonk, Teed, White, Ren, Stewart, Paulus, and Khalsa. Drafting of the manuscript: Verdonk and Khalsa. Critical revision of the manuscript for important intellectual content: Verdonk, Teed, White, Ren, Stewart, Paulus, and Khalsa. Statistical analysis: Verdonk and Khalsa. Obtained funding: Paulus and Khalsa. Administrative, technical, or material support: Khalsa. Supervision: Khalsa.

Corresponding author

Correspondence to Sahib S. Khalsa.

Ethics declarations

Competing interests

MPP is an advisor to Spring Care, Inc., a behavioral health startup, and he has received royalties for an article about methamphetamine in UpToDate, both unrelated to the current work. All other authors report no biomedical financial interests or potential conflicts of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verdonk, C., Teed, A.R., White, E.J. et al. Heartbeat-evoked neural response abnormalities in generalized anxiety disorder during peripheral adrenergic stimulation. Neuropsychopharmacol. (2024). https://doi.org/10.1038/s41386-024-01806-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41386-024-01806-5

Search

Quick links