Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dorsal peduncular cortex activity modulates affective behavior and fear extinction in mice

Abstract

The medial prefrontal cortex (mPFC) is critical to cognitive and emotional function and underlies many neuropsychiatric disorders, including mood, fear and anxiety disorders. In rodents, disruption of mPFC activity affects anxiety- and depression-like behavior, with specialized contributions from its subdivisions. The rodent mPFC is divided into the dorsomedial prefrontal cortex (dmPFC), spanning the anterior cingulate cortex (ACC) and dorsal prelimbic cortex (PL), and the ventromedial prefrontal cortex (vmPFC), which includes the ventral PL, infralimbic cortex (IL), and in some studies the dorsal peduncular cortex (DP) and dorsal tenia tecta (DTT). The DP/DTT have recently been implicated in the regulation of stress-induced sympathetic responses via projections to the hypothalamus. While many studies implicate the PL and IL in anxiety-, depression-like and fear behavior, the contribution of the DP/DTT to affective and emotional behavior remains unknown. Here, we used chemogenetics and optogenetics to bidirectionally modulate DP/DTT activity and examine its effects on affective behaviors, fear and stress responses in C57BL/6J mice. Acute chemogenetic activation of DP/DTT significantly increased anxiety-like behavior in the open field and elevated plus maze tests, as well as passive coping in the tail suspension test. DP/DTT activation also led to an increase in serum corticosterone levels and facilitated auditory fear extinction learning and retrieval. Activation of DP/DTT projections to the dorsomedial hypothalamus (DMH) acutely decreased freezing at baseline and during extinction learning, but did not alter affective behavior. These findings point to the DP/DTT as a new regulator of affective behavior and fear extinction in mice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Chemogenetic activation of the DP/DTT increases anxiety-like behavior in the open field and elevated plus maze tests.
Fig. 2: Chemogenetic activation of the DP/DTT increases immobility in the tail suspension test, but has no effect on forced swim behaviors.
Fig. 3: Chemogenetic inhibition of the DP/DTT has a modest effect on auditory fear acquisition, but activation of the DP/DTT facilitates within-session extinction, extinction retrieval and increases serum corticosterone levels.
Fig. 4: Mapping of DP/DTT downstream projections and characterization of activity-tagged DP/DTT neurons following the OFT.
Fig. 5: Optogenetic activation of the DP/DTT-DMH pathway acutely suppresses freezing but has no effect on affective behavior.

Similar content being viewed by others

References

  1. Knight RT, Grabowecky MF, Scabini D. Role of human prefrontal cortex in attention control. Adv Neurol. 1995;66:21–26.

    CAS  PubMed  Google Scholar 

  2. Rossi AF, Pessoa L, Desimone R, Ungerleider LG. The prefrontal cortex and the executive control of attention. Exp Brain Res. 2009;192:489–97.

    PubMed  Google Scholar 

  3. Bechara A, Tranel D, Damasio H. Characterization of the decision-making deficit of patients with ventromedial prefrontal cortex lesions. Brain. 2000;123:2189–202.

    PubMed  Google Scholar 

  4. Euston DR, Gruber AJ, McNaughton BL. The role of medial prefrontal cortex in memory and decision making. Neuron. 2012;76:1057–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Bahmani Z, Clark K, Merrikhi Y, Mueller A, Pettine W, Isabel Vanegas M, et al. Prefrontal Contributions to Attention and Working Memory. Curr Top Behav Neurosci. 2019;41:129–53.

    PubMed  Google Scholar 

  6. Vogel P, Hahn J, Duvarci S, Sigurdsson T. Prefrontal pyramidal neurons are critical for all phases of working memory. Cell Rep. 2022;39:110659.

    CAS  PubMed  Google Scholar 

  7. Yizhar O, Fenno LE, Prigge M, Schneider F, Davidson TJ, Shea DJO, et al. Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature. 2011;477:171–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Ko J. Neuroanatomical substrates of rodent social behavior: the medial prefrontal cortex and its projection patterns. Front Neural Circuits. 2017;11:41.

    PubMed  PubMed Central  Google Scholar 

  9. Yizhar O, Levy DR. The social dilemma: prefrontal control of mammalian sociability. Curr Opin Neurobiol. 2021;68:67–75.

    CAS  PubMed  Google Scholar 

  10. Kuga N, Abe R, Takano K, Ikegaya Y, Sasaki T. Prefrontal-amygdalar oscillations related to social behavior in mice. Elife. 2022;11:e78428.

  11. Etkin A, Egner T, Kalisch R. Emotional processing in anterior cingulate and medial prefrontal cortex. Trends Cogn Sci. 2011;15:85–93.

    PubMed  Google Scholar 

  12. Price JL, Drevets WC. Neural circuits underlying the pathophysiology of mood disorders. Trends Cogn Sci. 2012;16:61–71.

    PubMed  Google Scholar 

  13. Adhikari A, Topiwala MA, Gordon JA. Synchronized activity between the ventral hippocampus and the medial prefrontal cortex during anxiety. Neuron. 2010;65:257–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Cao J, Liu X, Liu JX, Zhao S, Guo YX, Wang GY, et al. Inhibition of glutamatergic neurons in layer II/III of the medial prefrontal cortex alleviates paclitaxel-induced neuropathic pain and anxiety. Eur J Pharmacol. 2022;936:175351.

  15. Parfitt GM, Nguyen R, Bang JY, Aqrabawi AJ, Tran MM, Seo DK, et al. Bidirectional control of anxiety-related behaviors in mice: role of inputs arising from the ventral hippocampus to the lateral septum and medial prefrontal cortex. Neuropsychopharmacology. 2017;42:1715–28.

    PubMed  PubMed Central  Google Scholar 

  16. Jinks AL, McGregor IS. Modulation of anxiety-related behaviours following lesions of the prelimbic or infralimbic cortex in the rat. Brain Res. 1997;772:181–90.

    CAS  PubMed  Google Scholar 

  17. Pati S, Sood A, Mukhopadhyay S, Vaidya VA. Acute pharmacogenetic activation of medial prefrontal cortex excitatory neurons regulates anxiety-like behaviour. J Biosci. 2018;43:85–95.

    CAS  PubMed  Google Scholar 

  18. Adhikari A, Lerner TN, Finkelstein J, Pak S, Jennings JH, Davidson TJ, et al. Basomedial amygdala mediates top-down control of anxiety and fear. Nature. 2015;527:179–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Yin JB, Liang SH, Li F, Zhao WJ, Bai Y, Sun Y, et al. dmPFC-vlPAG projection neurons contribute to pain threshold maintenance and antianxiety behaviors. J Clin Invest. 2020;130:6555–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Soumier A, Sibille E. Opposing effects of acute versus chronic blockade of frontal cortex somatostatin-positive inhibitory neurons on behavioral emotionality in mice. Neuropsychopharmacology. 2014;39:2252–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Calhoon GG, Tye KM. Resolving the neural circuits of anxiety. Nat Neurosci. 2015;18:1394–404.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang GQ, Cen C, Li C, Cao S, Wang N, Zhou Z, et al. Deactivation of excitatory neurons in the prelimbic cortex via Cdk5 promotes pain sensation and anxiety. Nat Commun. 2015;6:7660.

    CAS  PubMed  Google Scholar 

  23. Adhikari A. Distributed circuits underlying anxiety. Front Behav Neurosci. 2014;8:112.

    PubMed  PubMed Central  Google Scholar 

  24. Likhtik E, Stujenske JM, Topiwala MA, Harris AZ, Gordon JA. Prefrontal entrainment of amygdala activity signals safety in learned fear and innate anxiety. Nat Neurosci. 2014;17:106–13.

    CAS  PubMed  Google Scholar 

  25. Adhikari A, Topiwala MA, Gordon JA. Single units in the medial prefrontal cortex with anxiety-related firing patterns are preferentially influenced by ventral hippocampal activity. Neuron. 2011;71:898–910.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Yu H, Chen L, Lei H, Pi G, Xiong R, Jiang T, et al. Infralimbic medial prefrontal cortex signalling to calbindin 1 positive neurons in posterior basolateral amygdala suppresses anxiety- and depression-like behaviours. Nat Commun. 2022;13:1–14.

    Google Scholar 

  27. Sullivan RM, Gratton A. Behavioral effects of excitotoxic lesions of ventral medial prefrontal cortex in the rat are hemisphere-dependent. Brain Res. 2002;927:69–79.

    CAS  PubMed  Google Scholar 

  28. Shah AA, Treit D. Excitotoxic lesions of the medial prefrontal cortex attenuate fear responses in the elevated-plus maze, social interaction and shock probe burying tests. Brain Res. 2003;969:183–94.

    CAS  PubMed  Google Scholar 

  29. Lacroix L, Spinelli S, Heidbreder CA, Feldon J. Differential role of the medial and lateral prefrontal cortices in fear and anxiety. Behav Neurosci. 2000;114:1119–30.

    CAS  PubMed  Google Scholar 

  30. Suzuki S, Saitoh A, Ohashi M, Yamada M, Oka JI, Yamada M. The infralimbic and prelimbic medial prefrontal cortices have differential functions in the expression of anxiety-like behaviors in mice. Behav Brain Res. 2016;304:120–4.

    PubMed  Google Scholar 

  31. Sesack SR, Deutch AY, Roth RH, Bunney BS. Topographical organization of the efferent projections of the medial prefrontal cortex in the rat: an anterograde tract-tracing study with Phaseolus vulgaris leucoagglutinin. J Comp Neurol. 1989;290:213–42.

    CAS  PubMed  Google Scholar 

  32. Miller EK, Cohen JD. An integrative theory of prefrontal cortex function. Annu Rev Neurosci. 2001;24:167–202.

    CAS  PubMed  Google Scholar 

  33. Gabbott PLA, Warner TA, Jays PRL, Salway P, Busby SJ. Prefrontal cortex in the rat: projections to subcortical autonomic, motor, and limbic centers. J Comp Neurol. 2005;492:145–77.

    PubMed  Google Scholar 

  34. Hoover WB, Vertes RP. Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat. Brain Struct Funct. 2007;212:149–79.

    PubMed  Google Scholar 

  35. Ährlund-Richter S, Xuan Y, van Lunteren JA, Kim H, Ortiz C, Pollak Dorocic I, et al. A whole-brain atlas of monosynaptic input targeting four different cell types in the medial prefrontal cortex of the mouse. Nat Neurosci. 2019;22:657–68.

    PubMed  Google Scholar 

  36. Anastasiades PG, Carter AG. Circuit organization of the rodent medial prefrontal cortex. Trends Neurosci. 2021;44:550–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Riga D, Matos MR, Glas A, Smit AB, Spijker S, Van den Oever MC. Optogenetic dissection of medial prefrontal cortex circuitry. Front Syst Neurosci. 2014;8:230.

    PubMed  PubMed Central  Google Scholar 

  38. Bittar TP, Labonte B. Functional contribution of the medial prefrontal circuitry in major depressive disorder and stress-induced depressive-like behaviors. Front Behav Neurosci. 2021;15:699592.

    PubMed  PubMed Central  Google Scholar 

  39. Carlén M. What constitutes the prefrontal cortex? Science. 2017;358:478–82.

    PubMed  Google Scholar 

  40. Le Merre P, Ahrlund-Richter S, Carlen M. The mouse prefrontal cortex: Unity in diversity. Neuron. 2021;109:1925–44.

    PubMed  Google Scholar 

  41. Xu P, Chen A, Li Y, Xing X, Lu H. Medial prefrontal cortex in neurological diseases. Physiol Genom. 2019;51:432–42.

    CAS  Google Scholar 

  42. George O, Koob GF. Individual differences in prefrontal cortex function and the transition from drug use to drug dependence. Neurosci Biobehav Rev. 2010;35:232–47.

    PubMed  PubMed Central  Google Scholar 

  43. Chini M, Hanganu-Opatz IL. Prefrontal cortex development in health and disease: lessons from rodents and humans. Trends Neurosci. 2021;44:227–40.

    CAS  PubMed  Google Scholar 

  44. Bishop S, Duncan J, Brett M, Lawrence AD. Prefrontal cortical function and anxiety: controlling attention to threat-related stimuli. Nat Neurosci. 2004;7:184–8.

    CAS  PubMed  Google Scholar 

  45. Myers-Schulz B, Koenigs M. Functional anatomy of ventromedial prefrontal cortex: implications for mood and anxiety disorders. Mol Psychiatry. 2012;17:132–41.

    CAS  PubMed  Google Scholar 

  46. Park J, Moghaddam B. Impact of anxiety on prefrontal cortex encoding of cognitive flexibility. Neuroscience. 2017;345:193–202.

    CAS  PubMed  Google Scholar 

  47. Andersen SL, Teicher MH. Stress, sensitive periods and maturational events in adolescent depression. TINS. 2008;31:183–91.

    CAS  PubMed  Google Scholar 

  48. Chai XJ, Whitfield-Gabrieli S, Shinn AK, Gabrieli JDE, Nieto Castãón A, McCarthy JM, et al. Abnormal medial prefrontal cortex resting-state connectivity in bipolar disorder and schizophrenia. Neuropsychopharmacology. 2011;36:2009–17.

    PubMed  PubMed Central  Google Scholar 

  49. Blumberg HP, Stem E, Martinez D, Ricketts S, de Asis J, White T, et al. Increased anterior cingulate and caudate activity in bipolar mania. Bipolar Disord Sci Ment Heal. 2019:177–84.

  50. Kenwood MM, Kalin NH, Barbas H. The prefrontal cortex, pathological anxiety, and anxiety disorders. Neuropsychopharmacology. 2022;47:260–75.

    PubMed  Google Scholar 

  51. Shah AA, Sjovold T, Treit D. Inactivation of the medial prefrontal cortex with the GABAA receptor agonist muscimol increases open-arm activity in the elevated plus-maze and attenuates shock-probe burying in rats. Brain Res. 2004;1028:112–5.

    CAS  PubMed  Google Scholar 

  52. Bi LL, Wang J, Luo ZY, Chen SP, Geng F, Chen YH, et al. Enhanced excitability in the infralimbic cortex produces anxiety-like behaviors. Neuropharmacology. 2013;72:148–56.

    CAS  PubMed  Google Scholar 

  53. Saitoh A, Ohashi M, Suzuki S, Tsukagoshi M, Sugiyama A, Yamada M, et al. Activation of the prelimbic medial prefrontal cortex induces anxiety-like behaviors via N-Methyl-D-aspartate receptor-mediated glutamatergic neurotransmission in mice. J Neurosci Res. 2014;92:1044–53.

    CAS  PubMed  Google Scholar 

  54. Ferenczi EA, Zalocusky KA, Liston C, Grosenick L, Warden MR, Amatya D, et al. Prefrontal cortical regulation of brainwide circuit dynamics and reward-related behavior. Science. 2016;351:aac9698–aac9698.

    PubMed  PubMed Central  Google Scholar 

  55. Fuchikami M, Thomas A, Liu R, Wohleb ES, Land BB, DiLeone RJ, et al. Optogenetic stimulation of infralimbic PFC reproduces ketamine’s rapid and sustained antidepressant actions. Proc Natl Acad Sci USA. 2015;112:8106–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Hare BD, Shinohara R, Liu RJ, Pothula S, DiLeone RJ, Duman RS. Optogenetic stimulation of medial prefrontal cortex Drd1 neurons produces rapid and long-lasting antidepressant effects. Nat Commun. 2019;10:1–12.

    CAS  Google Scholar 

  57. Slattery DA, Neumann ID, Cryan JF. Transient inactivation of the infralimbic cortex induces antidepressant-like effects in the rat. J Psychopharmacol. 2011;25:1295–303.

    PubMed  Google Scholar 

  58. Chen YH, Wu JL, Hu NY, Zhuang JP, Li WP, Zhang SR, et al. Distinct projections from the infralimbic cortex exert opposing effects in modulating anxiety and fear. J Clin Invest. 2021;131:e145692.

  59. Vidal-Gonzalez I, Vidal-Gonzalez B, Rauch SL, Quirk GJ. Microstimulation reveals opposing influences of prelimbic and infralimbic cortex on the expression of conditioned fear. Learn Mem. 2006;13:728–33.

    PubMed  PubMed Central  Google Scholar 

  60. Sierra-Mercado D, Padilla-Coreano N, Quirk GJ. Dissociable roles of prelimbic and infralimbic cortices, ventral hippocampus, and basolateral amygdala in the expression and extinction of conditioned fear. Neuropsychopharmacology. 2011;36:529–38.

    PubMed  Google Scholar 

  61. Arruda-Carvalho M, Clem RL. Prefrontal-amygdala fear networks come into focus. Front Syst Neurosci. 2015;9:145.

    PubMed  PubMed Central  Google Scholar 

  62. Arruda-Carvalho M, Clem RL. Pathway-selective adjustment of prefrontal-amygdala transmission during fear encoding. J Neurosci. 2014;34:15601–9.

    PubMed  PubMed Central  Google Scholar 

  63. Quirk GJ, Russo GK, Barron JL, Lebron K. The role of ventromedial prefrontal cortex in the recovery of extinguished fear. J Neurosci. 2000;20:6225–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Sotres-Bayon F, Sierra-Mercado D, Pardilla-Delgado E, Quirk GJ. Gating of fear in prelimbic cortex by hippocampal and amygdala inputs. Neuron. 2012;76:804–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Akhter F, Haque T, Sato F, Kato T, Ohara H, Fujio T, et al. Projections from the dorsal peduncular cortex to the trigeminal subnucleus caudalis (medullary dorsal horn) and other lower brainstem areas in rats. Neuroscience. 2014;266:23–37.

    CAS  PubMed  Google Scholar 

  66. Kataoka N, Shima Y, Nakajima K, Nakamura K. A central master driver of psychosocial stress responses in the rat. Science. 2020;367:1105–12.

    CAS  PubMed  Google Scholar 

  67. Nakamura K, Morrison SF. Central sympathetic network for thermoregulatory responses to psychological stress. Aut Neurosci. 2022;237:102918.

    CAS  Google Scholar 

  68. Nakamura K, Nakamura Y, Kataoka N. A hypothalamomedullary network for physiological responses to environmental stresses. Nat Rev Neurosci. 2022;23:35–52.

    CAS  PubMed  Google Scholar 

  69. Diorio D, Viau V, Meaney MJ. The role of the medial prefrontal cortex (cingulate gyrus) in the regulation of hypothalamic-pituitary-adrenal responses to stress. J Neurosci. 1993;13:3839–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Radley JJ, Arias CM, Sawchenko PE. Regional differentiation of the medial prefrontal cortex in regulating adaptive responses to acute emotional stress. J Neurosci. 2006;26:12967–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Tavares RF, Correa FM. Role of the medial prefrontal cortex in cardiovascular responses to acute restraint in rats. Neuroscience. 2006;143:231–40.

    CAS  PubMed  Google Scholar 

  72. Radley JJ, Gosselink KL, Sawchenko PE. A discrete GABAergic relay mediates medial prefrontal cortical inhibition of the neuroendocrine stress response. J Neurosci. 2009;29:7330–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Olff M, Guzelcan Y, de Vries GJ, Assies J, Gersons BP. HPA- and HPT-axis alterations in chronic posttraumatic stress disorder. Psychoneuroendocrinology. 2006;31:1220–30.

    CAS  PubMed  Google Scholar 

  74. Park J, Marvar PJ, Liao P, Kankam ML, Norrholm SD, Downey RM, et al. Baroreflex dysfunction and augmented sympathetic nerve responses during mental stress in veterans with post-traumatic stress disorder. J Physiol. 2017;595:4893–908.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Fonkoue IT, Marvar PJ, Norrholm S, Li Y, Kankam ML, Jones TN, et al. Symptom severity impacts sympathetic dysregulation and inflammation in post-traumatic stress disorder (PTSD). Brain Behav Immun. 2020;83:260–9.

    PubMed  Google Scholar 

  76. Teed AR, Feinstein JS, Puhl M, Lapidus RC, Upshaw V, Kuplicki RT, et al. Association of generalized anxiety disorder with autonomic hypersensitivity and blunted ventromedial prefrontal cortex activity during peripheral adrenergic stimulation: a randomized clinical trial. JAMA Psychiatry. 2022;79:323–32.

    PubMed  PubMed Central  Google Scholar 

  77. Botterill JJ, Khlaifia A, Walters BJ, Brimble MA, Scharfman HE, Arruda-Carvalho M. Off-Target Expression of Cre-Dependent Adeno- Associated Viruses in Wild-Type C57BL/6J Mice. ENeuro. 2021;8:1–16.

    Google Scholar 

  78. Arruda-Carvalho M, Wu W, Cummings KA, Clem RL. Optogenetic examination of prefrontal-amygdala synaptic development. J Neurosci. 2017;2017:2976–85. 

    Google Scholar 

  79. Bertholomey ML, Nagarajan V, Smith DM, Torregrossa MM. Sex- and age-dependent effects of chronic corticosterone exposure on depressive-like, anxiety-like, and fear-related behavior: Role of amygdala glutamate receptors in the rat. Front Behav Neurosci. 2022;16:1–18.

    Google Scholar 

  80. Nandi A, Virmani G, Barve A, Marathe S. DBscorer: an open-source software for automated accurate analysis of rodent behavior in forced swim test and tail suspension test. ENeuro. 2021;8:ENEURO.0305-21.2021.

  81. Samifanni R, Zhao M, Cruz-Sanchez A, Satheesh A, Mumtaz U, Arruda-Carvalho M. Developmental emergence of persistent memory for contextual and auditory fear in mice. Learn Mem. 2021;28:414–21.

    PubMed  PubMed Central  Google Scholar 

  82. Thompson KJ, Khajehali E, Bradley SJ, Navarrete JS, Huang XP, Slocum S, et al. DREADD agonist 21 is an effective agonist for muscarinic-based DREADDs in vitro and in vivo. ACS Pharm Transl Sci. 2018;1:61–72.

    CAS  Google Scholar 

  83. Sullivan RM, Gratton A. Prefrontal cortical regulation of hypothalamic-pituitary-adrenal function in the rat and implications for psychopathology: side matters. Psychoneuroendocrinology. 2002;27:99–114.

    CAS  PubMed  Google Scholar 

  84. Jaferi A, Bhatnagar S. Corticotropin-releasing hormone receptors in the medial prefrontal cortex regulate hypothalamic-pituitary-adrenal activity and anxiety-related behavior regardless of prior stress experience. Brain Res. 2007;1186:212–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Weinberg MS, Johnson DC, Bhatt AP, Spencer RL. Medial prefrontal cortex activity can disrupt the expression of stress response habituation. Neuroscience. 2010;168:744–56.

    CAS  PubMed  Google Scholar 

  86. DeNardo LA, Liu CD, Allen WE, Adams EL, Friedmann D, Fu L, et al. Temporal evolution of cortical ensembles promoting remote memory retrieval. Nat Neurosci. 2019;22:460–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Allen WE, DeNardo LA, Chen MZ, Liu CD, Loh KM, Fenno LE, et al. Thirst-associated preoptic neurons encode an aversive motivational drive. Science. 2017;357:1149–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Hurley KM, Herbert H, Moga MM, Saper CB. Efferent projections of the infralimbic cortex of the rat. J Comp Neurol. 1991;308:249–76.

    CAS  PubMed  Google Scholar 

  89. Fisk GD, Wyss JM. Descending projections of infralimbic cortex that mediate stimulation-evoked changes in arterial pressure. Brain Res. 2000;859:83–95.

    CAS  PubMed  Google Scholar 

  90. Pizzagalli DA, Roberts AC. Prefrontal cortex and depression. Neuropsychopharmacology. 2022;47:225–46.

    PubMed  Google Scholar 

  91. Challis C, Beck SG, Berton O. Optogenetic modulation of descending prefrontocortical inputs to the dorsal raphe bidirectionally bias socioaffective choices after social defeat. Front Behav Neurosci. 2014;8:1–14.

    Google Scholar 

  92. Miller OH, Bruns A, Ben Ammar I, Mueggler T, Hall BJ. Synaptic regulation of a thalamocortical circuit controls depression-related behavior. Cell Rep. 2017;20:1867–80.

    CAS  PubMed  Google Scholar 

  93. Hamani C, MacHado DC, Hipólide DC, Dubiela FP, Suchecki D, MacEdo CE, et al. Deep brain stimulation reverses anhedonic-like behavior in a chronic model of depression: Role of serotonin and brain derived neurotrophic factor. Biol Psychiatry. 2012;71:30–35.

    CAS  PubMed  Google Scholar 

  94. Kumar S, Black SJ, Hultman R, Szabo ST, DeMaio KD, Du J, et al. Cortical control of affective networks. J Neurosci. 2013;33:1116–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Vialou V, Bagot RC, Cahill ME, Ferguson D, Robison AJ, Dietz DM, et al. Prefrontal cortical circuit for depression- and anxiety- related behaviors mediated by cholecystokinin: role of delta FosB. J Neurosci. 2014;34:3878–87.

    PubMed  PubMed Central  Google Scholar 

  96. Bagot RC, Parise EM, Peña CJ, Zhang H-X, Maze I, Chaudhury D, et al. Ventral hippocampal afferents to the nucleus accumbens regulate susceptibility to depression. Nat Commun. 2015;6:7062.

    CAS  PubMed  Google Scholar 

  97. Covington HE, Lobo MK, Maze I, Vialou V, Hyman JM, Zaman S, et al. Antidepressant effect of optogenetic stimulation of the medial prefrontal cortex. J Neurosci. 2010;30:16082–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Perova Z, Delevich K, Li B. Depression of excitatory synapses onto parvalbumin interneurons in the medial prefrontal cortex in susceptibility to stress. J Neurosci. 2015;35:3201–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Warden MR, Selimbeyoglu A, Mirzabekov JJ, Lo M, Thompson KR, Kim SY, et al. A prefrontal cortex-brainstem neuronal projection that controls response to behavioural challenge. Nature. 2012;492:428–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Archer J. Rodent sex differences in emotional and related behavior I Ethology and Neurophysiology Group, School of Biological Sciences, University of Sussex. Neurophysiology. 1975;479:451–79.

    Google Scholar 

  101. Johnston AL, File SE. Sex differences in animal tests of anxiety. Physiol Behav. 1991;49:245–50.

    CAS  PubMed  Google Scholar 

  102. Knight P, Chellian R, Wilson R, Behnood-Rod A, Panunzio S, Bruijnzeel AW. Sex differences in the elevated plus-maze test and large open field test in adult Wistar rats. Pharm Biochem Behav. 2021;204:173168.

    CAS  Google Scholar 

  103. Börchers S, Krieger JP, Asker M, Maric I, Skibicka KP. Commonly-used rodent tests of anxiety-like behavior lack predictive validity for human sex differences. Psychoneuroendocrinology. 2022;141:105733.

    PubMed  Google Scholar 

  104. Scholl JL, Afzal A, Fox LC, Watt MJ, Forster GL. Sex differences in anxiety-like behaviors in rats. Physiol Behav. 2019;211:112670.

    CAS  PubMed  Google Scholar 

  105. Simpson J, Kelly JP. An investigation of whether there are sex differences in certain behavioural and neurochemical parameters in the rat. Behav Brain Res. 2012;229:289–300.

    CAS  PubMed  Google Scholar 

  106. Ramos A, Kangerski AL, Basso PF, Da Silva Santos JE, Assreuy J, Vendruscolo LF, et al. Evaluation of Lewis and SHR rat strains as a genetic model for the study of anxiety and pain. Behav Brain Res. 2002;129:113–23.

    PubMed  Google Scholar 

  107. Baumgartner NE, Biraud MC, Lucas EK. Sex differences in socioemotional behavior and changes in ventral hippocampal transcription across aging in C57Bl/6J mice. Neurobiol Aging. 2023;130:141–53.

    CAS  PubMed  Google Scholar 

  108. Painsipp E, Wultsch T, Shahbazian A, Edelsbrunner M, Kreissl MC, Schirbel A, et al. Experimental gastritis in mice enhances anxiety in a gender-related manner. Neuroscience. 2007;150:522–36.

    CAS  PubMed  Google Scholar 

  109. Tucker LB, Burke JF, Fu AH, McCabe JT. Neuropsychiatric symptom modeling in male and female C57BL/6J mice after experimental traumatic brain injury. J Neurotrauma. 2017;34:890–905.

    PubMed  PubMed Central  Google Scholar 

  110. Hendershott TR, Cronin ME, Langella S, McGuinness PS, Basu AC. Effects of environmental enrichment on anxiety-like behavior, sociability, sensory gating, and spatial learning in male and female C57BL/6J mice. Behav Brain Res. 2016;314:215–25.

    PubMed  Google Scholar 

  111. Rodgers RJ, Cole JC. Influence of social isolation, gender, strain, and prior novelty on plus-maze behaviour in mice. Physiol Behav. 1993;54:729–36.

    CAS  PubMed  Google Scholar 

  112. Tucker LB, McCabe JT. Behavior of male and female C57Bl/6J mice is more consistent with repeated trials in the elevated zero maze than in the elevated plus maze. Front Behav Neurosci. 2017;11:1–8.

    Google Scholar 

  113. Võikar V, Kõks S, Vasar E, Rauvala H. Strain and gender differences in the behavior of mouse lines commonly used in transgenic studies. Physiol Behav. 2001;72:271–81.

    PubMed  Google Scholar 

  114. Kageyama R, Ohtsuka T, Shimojo H, Imayoshi I. Dynamic Notch signaling in neural progenitor cells and a revised view of lateral inhibition. Nat Neurosci. 2008;11:1247–51.

    CAS  PubMed  Google Scholar 

  115. An XL, Zou JX, Wu RY, Yang Y, Tai FD, Zeng SY, et al. Strain and sex differences in anxiety-like and social behaviors in C57BL/6J and BALB/cJ mice. Exp Anim. 2011;60:111–23.

    CAS  PubMed  Google Scholar 

  116. Bolivar VJ, Caldarone BJ, Reilly AA, Flaherty L. Habituation of activity in an open field: a survey of inbred strains and F 1 hybrids. Behav Genet. 2000;30:285–93.

    CAS  PubMed  Google Scholar 

  117. Imhof JT, Coelho ZMI, Schmitt ML, Morato GS, Carobrez AP. Influence of gender and age on performance of rats in the elevated plus maze apparatus. Behav Brain Res. 1993;56:177–80.

    CAS  PubMed  Google Scholar 

  118. Estanislau C, Morato S. Behavior ontogeny in the elevated plus-maze: prenatal stress effects. Int J Dev Neurosci. 2006;24:255–62.

    PubMed  Google Scholar 

  119. Walf AA, Koonce C, Manley K, Frye CA. Proestrous compared to diestrous wildtype, but not estrogen receptor beta knockout, mice have better performance in the spontaneous alternation and object recognition tasks and reduced anxiety-like behavior in the elevated plus and mirror maze. Behav Brain Res. 2009;196:254–60.

  120. Frye CA, Petralia SM, Rhodes ME. Estrous cycle and sex differences in performance on anxiety tasks coincide with increases in hippocampal progesterone and 3α,5α-THP. Pharm Biochem Behav. 2000;2000:587–96.

    Google Scholar 

  121. du Plessis KC, Basu S, Rumbell TH, Lucas EK. Sex-specific neural networks of cued threat conditioning: a pilot study. Front Syst Neurosci. 2022;16:1–11.

    Google Scholar 

  122. McLean CP, Asnaani A, Litz BT, Hofmann SG. Gender differences in anxiety disorders: prevalence, course of illness, comorbidity and burden of illness. J Psychiatr Res. 2011;45:1027–35.

    PubMed  PubMed Central  Google Scholar 

  123. Kessler RC, Sonnega A, Nelson CB, Bromet E. Posttraumatic stress disorder in the national comorbidity survey. Arch Gen Psychiatry. 1995;52:1048–60.

    CAS  PubMed  Google Scholar 

  124. Bangasser DA, Cuarenta A. Sex differences in anxiety and depression: circuits and mechanisms. Nat Rev Neurosci. 2021;22:674–84.

    CAS  PubMed  Google Scholar 

  125. Dart AM, Du XJ, Kingwell BA. Gender, sex hormones and autonomic nervous control of the cardiovascular system. Cardiovasc Res. 2002;53:678–87.

    CAS  PubMed  Google Scholar 

  126. Hinojosa-Laborde C, Chapa I, Lange D, Haywood J. Gender differences in sympathetic nervous system regulation. Clin Exp Pharm Physiol. 1999;26:122–6.

    CAS  Google Scholar 

  127. Barsha G, Denton KM, Mirabito Colafella KM. Sex- and age-related differences in arterial pressure and albuminuria in mice. Biol Sex Differ. 2016;7:1–15.

    Google Scholar 

  128. Colafella KMM, Denton KM. Sex-specific differences in hypertension and associated cardiovascular disease. Nat Rev Nephrol. 2018;14:185–201.

    PubMed  Google Scholar 

  129. Ferguson BR, Gao WJ. Thalamic control of cognition and social behavior via regulation of gamma-aminobutyric acidergic signaling and excitation/inhibition balance in the medial prefrontal cortex. Biol Psychiatry. 2018;83:657–69.

    CAS  PubMed  Google Scholar 

  130. Ouhaz Z, Ba-M’hamed S, Mitchell AS, Elidrissi A, Bennis M. Behavioral and cognitive changes after early postnatal lesions of the rat mediodorsal thalamus. Behav Brain Res. 2015;292:219–32.

    PubMed  PubMed Central  Google Scholar 

  131. Ouhaz Z, Ba-M’hamed S, Bennis M. Morphological, structural, and functional alterations of the prefrontal cortex and the basolateral amygdala after early lesion of the rat mediodorsal thalamus. Brain Struct Funct. 2017;222:2527–45.

    PubMed  Google Scholar 

  132. Beracochea D, Krazem A. Effects of mammillary body and mediodorsal thalamic lesions on elevated plus maze exploration. Neuroreport. 1991;2:793–6.

    CAS  PubMed  Google Scholar 

  133. Li Y, Li S, Wei C, Wang H, Sui N, Kirouac GJ. Orexins in the paraventricular nucleus of the thalamus mediate anxiety-like responses in rats. Psychopharmacology. 2010;212:251–65.

    CAS  PubMed  Google Scholar 

  134. Kirouac GJ. Placing the paraventricular nucleus of the thalamus within the brain circuits that control behavior. Neurosci Biobehav Rev. 2015;56:315–29.

    PubMed  Google Scholar 

  135. Kooiker CL, Birnie MT, Baram TZ. The paraventricular thalamus: a potential sensor and integrator of emotionally salient early-life experiences. Front Behav Neurosci. 2021;15:1–9.

    Google Scholar 

  136. Barson JR, Leibowitz SF. GABA-induced inactivation of dorsal midline thalamic subregions has distinct effects on emotional behaviors. Neurosci Lett. 2015;609:92–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Zhao D, Wang D, Wang W, Dai J, Cui M, Wu M, et al. The altered sensitivity of acute stress induced anxiety-related behaviors by modulating insular cortex-paraventricular thalamus-bed nucleus of the stria terminalis neural circuit. Neurobiol Dis. 2022;174:105890.

    PubMed  Google Scholar 

  138. Shin LM, Liberzon I. The neurocircuitry of fear, stress, and anxiety disorders. Neuropsychopharmacology. 2010;35:169–91.

    PubMed  Google Scholar 

  139. Shi T, Feng S, Wei M, Zhou W. Role of the anterior agranular insular cortex in the modulation of fear and anxiety. Brain Res Bull. 2020;155:174–83.

    CAS  PubMed  Google Scholar 

  140. Shi TY, Feng SF, Wei MX, Huang Y, Liu G, Wu HT, et al. Kainate receptor mediated presynaptic LTP in agranular insular cortex contributes to fear and anxiety in mice. Neuropharmacology. 2018;128:388–400.

    CAS  PubMed  Google Scholar 

  141. Li H, Chen L, Li P, Wang X, Zhai H. Insular muscarinic signaling regulates anxiety-like behaviors in rats on the elevated plus-maze. Behav Brain Res. 2014;270:256–60.

    CAS  PubMed  Google Scholar 

  142. Méndez-Ruette M, Linsambarth S, Moraga-Amaro R, Quintana-Donoso D, Méndez L, Tamburini G, et al. The role of the rodent insula in anxiety. Front Physiol. 2019;10:1–10.

    Google Scholar 

  143. Linley SB, Athanason AC, Rojas AKP, Vertes RP. Role of the reuniens and rhomboid thalamic nuclei in anxiety-like avoidance behavior in the rat. Hippocampus. 2021;31:756–69.

    PubMed  Google Scholar 

  144. Felix-Ortiz AC, Tye KM. Amygdala inputs to the ventral hippocampus bidirectionally modulate social behavior. J Neurosci. 2014;34:586–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Felix-Ortiz AC, Beyeler A, Seo C, Leppla CA, Wildes CP, Tye KM. BLA to vHPC inputs modulate anxiety-related behaviors. Neuron. 2013;79:658–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Tye KM, Prakash R, Kim S-Y, Fenno LE, Grosenick L, Zarabi H, et al. Amygdala circuitry mediating reversible and bidirectional control of anxiety. Nature. 2011;471:358–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Daviu N, Bruchas MR, Moghaddam B, Sandi C, Beyeler A. Neurobiological links between stress and anxiety. Neurobiol Stress. 2019;11:100191.

    PubMed  PubMed Central  Google Scholar 

  148. Leranth C, Szeidemann Z, Hsu M, Buzsaki G. AMPA receptors in the rat and primate hippocampus: a possible absence of GluR2/3 subunits in most interneurons. Neuroscience. 1996;70:631–52.

    CAS  PubMed  Google Scholar 

  149. Kerr R, Maxwell D, Todd A. GluR1 and GluR2/3 subunits of the AMPA-type glutamate receptor are associated with particular types of neurone in laminae I-III of the spinal dorsal horn of the rat. Eur J Neurosci. 1998;10:324–33.

    CAS  PubMed  Google Scholar 

  150. Vickers JC, Huntley GW, Edwards AM, Moran T, Rogers SW, Heinemann SF, et al. Quantitative localization of AMPA/kainate and kainate glutamate receptor subunit immunoreactivity in neurochemically identified subpopulations of neurons in the prefrontal cortex of the macaque monkey. J Neurosci. 1993;13:2982–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Campos-Cardoso R, Desa Z, Fitzgerald B, Moore A, Duhon J, Landar V, et al. The mouse dorsal peduncular cortex encodes fear memory. Biorxiv. 2023. https://doi.org/10.1101/2023.07.24.550408.

  152. Sturman O, Germain PL, Bohacek J. Exploratory rearing: a context- and stress-sensitive behavior recorded in the open-field test. Stress. 2018;21:443–52.

    PubMed  Google Scholar 

  153. Borkar C, Stelly C, Fu X, Dorofeikova M, Le Q-S, Vutukuri R, et al. Top-down control of flight by a non-canonical cortico-amygdala pathway. BiorXiv. 2023. https://doi.org/10.1101/2022.05.19.492688.

  154. Figueiredo HF, Bruestle A, Bodie B, Dolgas CM, Herman JP. The medial prefrontal cortex differentially regulates stress-induced c-fos expression in the forebrain depending on type of stressor. Eur J Neurosci. 2003;18:2357–64.

    PubMed  Google Scholar 

  155. Van Eden CG, Buijs RM. Functional neuroanatomy of the prefrontal cortex: autonomic interactions. Prog Brain Res. 2000;126:49–62.

    PubMed  Google Scholar 

  156. Brake WG, Flores G, Francis D, Meaney MJ, Srivastava LK, Gratton A. Enhanced nucleus accumbens dopamine and plasma corticosterone stress responses in adult rats with neonatal excitotoxic lesions to the medial prefrontal cortex. Neuroscience. 2000;96:687–95.

    CAS  PubMed  Google Scholar 

  157. Crane JW, Ebner K, Day TA. Medial prefrontal cortex suppression of the hypothalamic-pituitary-adrenal axis response to a physical stressor, systemic delivery of interleukin-1β. Eur J Neurosci. 2003;17:1473–81.

    CAS  PubMed  Google Scholar 

  158. Sullivan RM, Gratton A. Lateralized effects of medial prefrontal cortex lesions on neuroendocrine and autonomic stress responses in rats. J Neurosci. 1999;19:2834–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Feldman S, Conforti N. Modifications of adrenocortical responses following frontal cortex simulation in rats with hypothalamic deafferentations and medial forebrain bundle lesions. Neuroscience. 1985;15:1045–7.

    CAS  PubMed  Google Scholar 

  160. Buijs RM, Van Eden CG. The integration of stress by the hypothalamus, amygdala and prefrontal cortex: balance between the autonomic nervous system and the neuroendocrine system. Prog Brain Res. 2000;126:117–32.

    CAS  PubMed  Google Scholar 

  161. Choi DC, Furay AR, Evanson NK, Ulrich-Lai YM, Nguyen MMN, Ostrander MM, et al. The role of the posterior medial bed nucleus of the stria terminalis in modulating hypothalamic-pituitary-adrenocortical axis responsiveness to acute and chronic stress. Psychoneuroendocrinology. 2008;33:659–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Spencer SJ, Buller KM, Day TA. Medial prefrontal cortex control of the paraventricular hypothalamic nucleus response to psychological stress: possible role of the bed nucleus of the stria terminalis. J Comp Neurol. 2005;481:363–76.

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank Hathairat Chanphao, Tejnarine Persaud, Bebhinn Treanor, and Christina Guzzo for their generous and fundamental assistance with the corticosterone ELISA experiment and use of the Guzzo lab plate reader. We would also like to thank Unza Mumtaz and Mehreen Inayat for their help with animal colony management. Some figure diagrams were created with the assistance of BioRender.com.

Funding

This work was supported by grants from CIHR (PJT 399790), Human Frontier Science Program Organization (CDA00009/2018 and RGY0072/2019), the SickKids Foundation and Canadian Institutes of Health Research (CIHR) – Institute of Human Development, Child and Youth Health (NI19-1132R), and Natural Sciences and Engineering Research Council of Canada (RGPIN-2017-06344) to MAC.

Author information

Authors and Affiliations

Authors

Contributions

Designed Research: JJB, AK, MAC. Performed Research: JJB, AK, RA, JW, FV, HP, ACS, AEC, AP, SDZ, MAC. Analyzed/Interpreted Data: JJB, AK, JW, FV, AEC, AP, MAC. Wrote the paper: JJB, AK, MAC. All authors reviewed and approved the manuscript.

Corresponding author

Correspondence to Maithe Arruda-Carvalho.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Botterill, J.J., Khlaifia, A., Appings, R. et al. Dorsal peduncular cortex activity modulates affective behavior and fear extinction in mice. Neuropsychopharmacol. 49, 993–1006 (2024). https://doi.org/10.1038/s41386-024-01795-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41386-024-01795-5

Search

Quick links