Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Polygenic liability for antipsychotic dosage and polypharmacy - a real-world registry and biobank study

Abstract

Genomic prediction of antipsychotic dose and polypharmacy has been difficult, mainly due to limited access to large cohorts with genetic and drug prescription data. In this proof of principle study, we investigated if genetic liability for schizophrenia is associated with high dose requirements of antipsychotics and antipsychotic polypharmacy, using real-world registry and biobank data from five independent Nordic cohorts of a total of N = 21,572 individuals with psychotic disorders (schizophrenia, bipolar disorder, and other psychosis). Within regression models, a polygenic risk score (PRS) for schizophrenia was studied in relation to standardized antipsychotic dose as well as antipsychotic polypharmacy, defined based on longitudinal prescription registry data as well as health records and self-reported data. Meta-analyses across the five cohorts showed that PRS for schizophrenia was significantly positively associated with prescribed (standardized) antipsychotic dose (beta(SE) = 0.0435(0.009), p = 0.0006) and antipsychotic polypharmacy defined as taking ≥2 antipsychotics (OR = 1.10, CI = 1.05–1.21, p = 0.0073). The direction of effect was similar in all five independent cohorts. These findings indicate that genotypes may aid clinically relevant decisions on individual patients´ antipsychotic treatment. Further, the findings illustrate how real-world data have the potential to generate results needed for future precision medicine approaches in psychiatry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2: Association between schizophrenia polygenic risk score (PRS) and standardized antipsychotic dosage (DDD method) across all antipsychotics in five independent cohorts.
Fig. 3: Forest plots showing the association between schizophrenia polygenic risk score (PRS) and antipsychotic polypharmacy (defined as taking ≥2 antipsychotics) in five independent cohorts, as well as meta-analyzed across these cohorts.

Similar content being viewed by others

Data availability

The GWAS summary statistics included in this study are publicly available. Data from the five cohorts can be made available upon request and with appropriate data transfer agreements. Due to national personal data protection regulations, raw data cannot be shared.

References

  1. Yoshida K, Takeuchi H. Dose-dependent effects of antipsychotics on efficacy and adverse effects in schizophrenia. Behav Brain Res. 2021;402:113098.

    Article  PubMed  Google Scholar 

  2. Denny JC, Collins FS. Precision medicine in 2030-seven ways to transform healthcare. Cell. 2021;184:1415–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Njolstad PR, Andreassen OA, Brunak S, Borglum AD, Dillner J, Esko T, et al. Roadmap for a precision-medicine initiative in the Nordic region. Nat Genet. 2019;51:924–30.

    Article  PubMed  Google Scholar 

  4. Zheutlin AB, Dennis J, Karlsson Linner R, Moscati A, Restrepo N, Straub P, et al. Penetrance and pleiotropy of polygenic risk scores for schizophrenia in 106,160 patients across four health care systems. Am J Psychiatry. 2019;176:846–55.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wettermark B, Zoega H, Furu K, Korhonen M, Hallas J, Norgaard M, et al. The Nordic prescription databases as a resource for pharmacoepidemiological research-a literature review. Pharmacoepidemiol Drug Saf. 2013;22:691–9.

    Article  CAS  PubMed  Google Scholar 

  6. Tschoner A, Engl J, Laimer M, Kaser S, Rettenbacher M, Fleischhacker WW, et al. Metabolic side effects of antipsychotic medication. Int J Clin Pract. 2007;61:1356–70.

    Article  CAS  PubMed  Google Scholar 

  7. Zadori D, Veres G, Szalardy L, Klivenyi P, Vecsei L. Drug-induced movement disorders. Expert Opin Drug Saf. 2015;14:877–90.

    Article  CAS  PubMed  Google Scholar 

  8. Barton BB, Segger F, Fischer K, Obermeier M, Musil R. Update on weight-gain caused by antipsychotics: a systematic review and meta-analysis. Expert Opin Drug Saf. 2020;19:295–314.

    Article  CAS  PubMed  Google Scholar 

  9. Cohen D, Bonnot O, Bodeau N, Consoli A, Laurent C. Adverse effects of second-generation antipsychotics in children and adolescents: a Bayesian meta-analysis. J Clin Psychopharmacol. 2012;32:309–16.

    Article  CAS  PubMed  Google Scholar 

  10. Ascher-Svanum H, Faries DE, Zhu B, Ernst FR, Swartz MS, Swanson JW. Medication adherence and long-term functional outcomes in the treatment of schizophrenia in usual care. J Clin Psychiatry. 2006;67:453–60.

    Article  PubMed  Google Scholar 

  11. Novick D, Haro JM, Suarez D, Perez V, Dittmann RW, Haddad PM. Predictors and clinical consequences of non-adherence with antipsychotic medication in the outpatient treatment of schizophrenia. Psychiatry Res. 2010;176:109–13.

    Article  PubMed  Google Scholar 

  12. Van Sant SP, Buckley PF. Pharmacotherapy for treatment-refractory schizophrenia. Expert Opin Pharmacother. 2011;12:411–34.

    Article  PubMed  Google Scholar 

  13. Kane JM, Correll CU. The role of clozapine in treatment-resistant schizophrenia. JAMA Psychiatry. 2016;73:187–8.

    Article  PubMed  Google Scholar 

  14. Wagner E, Siafis S, Fernando P, Falkai P, Honer WG, Roh A, et al. Efficacy and safety of clozapine in psychotic disorders-a systematic quantitative meta-review. Transl Psychiatry. 2021;11:487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gallego JA, Bonetti J, Zhang J, Kane JM, Correll CU. Prevalence and correlates of antipsychotic polypharmacy: a systematic review and meta-regression of global and regional trends from the 1970s to 2009. Schizophr Res. 2012;138:18–28.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lahteenvuo M, Tiihonen J. Antipsychotic polypharmacy for the management of schizophrenia: evidence and recommendations. Drugs. 2021;81:1273–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kinon BJ. The group of treatment resistant schizophrenias. Heterogeneity in treatment resistant schizophrenia (TRS). Front Psychiatry. 2018;9:757.

    Article  PubMed  Google Scholar 

  18. van Schaik RHN, Muller DJ, Serretti A, Ingelman-Sundberg M. Pharmacogenetics in psychiatry: an update on clinical usability. Front Pharmacol. 2020;11:575540.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Pardinas AF, Smart SE, Willcocks IR, Holmans PA, Dennison CA, Lynham AJ, et al. Interaction testing and polygenic risk scoring to estimate the association of common genetic variants with treatment resistance in schizophrenia. JAMA Psychiatry. 2022;79:260–9.

    Article  PubMed  Google Scholar 

  20. Paternoster L, Tilling K, Davey Smith G. Genetic epidemiology and Mendelian randomization for informing disease therapeutics: Conceptual and methodological challenges. PLoS Genet. 2017;13:e1006944.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kappel DB, Legge SE, Hubbard L, Willcocks IR, O'Connell KS, Smith RL, et al. Genomic Stratification of Clozapine Prescription Patterns Using Schizophrenia Polygenic Scores. Biol Psychiatry. 2023;93:149–56.

  22. Campos AI, Mulcahy A, Thorp JG, Wray NR, Byrne EM, Lind PA, et al. Understanding genetic risk factors for common side effects of antidepressant medications. Commun Med. 2021;1:45.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kiiskinen T, Helkkula P, Krebs K, Karjalainen J, Saarentaus E, Mars N, et al. Genetic predictors of lifelong medication-use patterns in cardiometabolic diseases. Nat Med. 2023;29:209–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Word Health Organization. The ICD-10 classification of mental and behavioural disorders: diagnostic criteria for research. Geneva: World Health Organization; 1993.

  25. Nesvag R, Jonsson EG, Bakken IJ, Knudsen GP, Bjella TD, Reichborn-Kjennerud T, et al. The quality of severe mental disorder diagnoses in a national health registry as compared to research diagnoses based on structured interview. BMC Psychiatry. 2017;17:93.

    Article  PubMed  PubMed Central  Google Scholar 

  26. McIntyre RS, Berk M, Brietzke E, Goldstein BI, López-Jaramillo C, Kessing LV, et al. Bipolar disorders. Lancet. 2020;396:1841–56.

    Article  CAS  PubMed  Google Scholar 

  27. Kurki MI, Karjalainen J, Palta P, Sipila TP, Kristiansson K, Donner KM, et al. FinnGen provides genetic insights from a well-phenotyped isolated population. Nature. 2023;613:508–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tanskanen A, Taipale H, Koponen M, Tolppanen AM, Hartikainen S, Ahonen R, et al. From prescription drug purchases to drug use periods - a second generation method (PRE2DUP). BMC Med Inform Decis Mak. 2015;15:21.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Leitsalu L, Haller T, Esko T, Tammesoo ML, Alavere H, Snieder H, et al. Cohort profile: Estonian Biobank of the Estonian Genome Center, University of Tartu. Int J Epidemiol. 2015;44:1137–47.

    Article  PubMed  Google Scholar 

  30. Trubetskoy V, Pardinas AF, Qi T, Panagiotaropoulou G, Awasthi S, Bigdeli TB, et al. Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature. 2022;604:502–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vilhjalmsson BJ, Yang J, Finucane HK, Gusev A, Lindstrom S, Ripke S, et al. Modeling linkage disequilibrium increases accuracy of polygenic risk scores. Am J Hum Genet. 2015;97:576–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ge T, Chen CY, Ni Y, Feng YA, Smoller JW. Polygenic prediction via Bayesian regression and continuous shrinkage priors. Nat Commun. 2019;10:1776.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Genomes Project C, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, et al. A global reference for human genetic variation. Nature. 2015;526:68–74.

    Article  Google Scholar 

  34. Leucht S, Samara M, Heres S, Davis JM. Dose equivalents for antipsychotic drugs: the DDD method. Schizophr Bull. 2016;42:S90–4.

    Article  PubMed  PubMed Central  Google Scholar 

  35. WHO. Guidelines for ATC Classification and DDD Assignment 2022. Oslo, Norway: WHO Collaborating Centre for Drug Statistics Methodology; 2021.

  36. Beath K. metaplus: an R package for the analysis of robust meta-analysis and meta-regression. R J. 2016;8:5–16.

    Article  Google Scholar 

  37. Hettige NC, Cole CB, Khalid S, De Luca V. Polygenic risk score prediction of antipsychotic dosage in schizophrenia. Schizophr Res. 2016;170:265–70.

    Article  PubMed  Google Scholar 

  38. Murray GK, Lin T, Austin J, McGrath JJ, Hickie IB, Wray NR. Could polygenic risk scores be useful in psychiatry?: A review. JAMA Psychiatry. 2021;78:210–9.

    Article  PubMed  Google Scholar 

  39. Smeland OB, Andreassen OA. Polygenic risk scores in psychiatry - Large potential but still limited clinical utility. Eur Neuropsychopharmacol. 2021;51:68–70.

    Article  CAS  PubMed  Google Scholar 

  40. Lewis ACF, Green RC, Vassy JL. Polygenic risk scores in the clinic: translating risk into action. HGG Adv. 2021;2:100047.

    PubMed  PubMed Central  Google Scholar 

  41. Cai N, Revez JA, Adams MJ, Andlauer TFM, Breen G, Byrne EM, et al. Minimal phenotyping yields genome-wide association signals of low specificity for major depression. Nat Genet. 2020;52:437–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Andreassen OA, Hindley G, Frei O, Smeland OB. New insights from the last decade of research in psychiatric genetics- discoveries, challenges and clinical implications. World Psychiatry. 2023;22:4–24.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zhang JP, Robinson D, Yu J, Gallego J, Fleischhacker WW, Kahn RS, et al. Schizophrenia polygenic risk score as a predictor of antipsychotic efficacy in first-episode psychosis. Am J Psychiatry. 2019;176:21–8.

    Article  PubMed  Google Scholar 

  44. Frank J, Lang M, Witt SH, Strohmaier J, Rujescu D, Cichon S, et al. Identification of increased genetic risk scores for schizophrenia in treatment-resistant patients. Mol Psychiatry. 2015;20:150–1.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partly performed on the TSD (Tjeneste for Sensitive Data) facilities, owned by the University of Oslo, operated and developed by the TSD service group at the University of Oslo, IT-Department (USIT). Computations were also performed on resources provided by UNINETT Sigma2—the National Infrastructure for High Performance Computing and Data Storage in Norway (NS9666S) and the High-Performance Computing Center of University of Tartu. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 964874. We also acknowledge support from the Research Council of Norway (296030, 223273), from the US NIMH (grant R01 MH123724), the Estonian Research Council (PRG184), and the Swedish Research Council (grant number 2021-02732). We acknowledge the Estonian Biobank Research Team (Andres Metspalu, Tõnu Esko, Reedik Mägi, Mari Nelis and Georgi Hudjashov). We want to acknowledge the participants and investigators of FinnGen study. The FinnGen project is funded by two grants from Business Finland (HUS 4685/31/2016 and UH 4386/31/2016) and the following industry partners: AbbVie Inc., AstraZeneca UK Ltd, Biogen MA Inc., Bristol Myers Squibb (and Celgene Corporation & Celgene International II Sàrl), Genentech Inc., Merck Sharp & Dohme LCC, Pfizer Inc., GlaxoSmithKline Intellectual Property Development Ltd., Sanofi US Services Inc., Maze Therapeutics Inc., Janssen Biotech Inc, Novartis AG, and Boehringer Ingelheim International GmbH. Following biobanks are acknowledged for delivering biobank samples to FinnGen: Auria Biobank (www.auria.fi/biopankki), THL Biobank (www.thl.fi/biobank), Helsinki Biobank (www.helsinginbiopankki.fi), Biobank Borealis of Northern Finland (https://www.ppshp.fi/Tutkimus-ja-opetus/Biopankki/Pages/Biobank-Borealis-briefly-in-English.aspx), Finnish Clinical Biobank Tampere (www.tays.fi/en-US/Research_and_development/Finnish_Clinical_Biobank_Tampere), Biobank of Eastern Finland (www.ita-suomenbiopankki.fi/en), Central Finland Biobank (www.ksshp.fi/fi-FI/Potilaalle/Biopankki), Finnish Red Cross Blood Service Biobank (www.veripalvelu.fi/verenluovutus/biopankkitoiminta), Terveystalo Biobank (www.terveystalo.com/fi/Yritystietoa/Terveystalo-Biopankki/Biopankki/) and Arctic Biobank (https://www.oulu.fi/en/university/faculties-and-units/faculty-medicine/northern-finland-birth-cohorts-and-arctic-biobank). All Finnish Biobanks are members of BBMRI.fi infrastructure (www.bbmri.fi). Finnish Biobank Cooperative -FINBB (https://finbb.fi/) is the coordinator of BBMRI-ERIC operations in Finland. The Finnish biobank data can be accessed through the Fingenious® services (https://site.fingenious.fi/en/) managed by FINBB.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

OA, KO, and EK conceived the study and were involved in study design. EK, SS, AK, MA, GE, and JP conducted analyses. EK drafted the initial manuscript. All authors (including banner authors of the Estonian Biobank Research team and FinnGen) contributed to data interpretation and editing of the manuscript.

Corresponding authors

Correspondence to Elise Koch or Ole A. Andreassen.

Ethics declarations

Competing interests

OAA reported grants from Stiftelsen Kristian Gerhard Jebsen, South-East Regional Health Authority, Research Council of Norway, and European Union’s Horizon 2020 during the conduct of the study; personal fees from cortechs.ai (stock options), Lundbeck (speaker’s honorarium), and Sunovion (speaker’s honorarium) and Janssen (speaker’s honorarium) outside the submitted work. HT reports personal fees from Gedeon Richter, Janssen, Lundbeck and Otsuka, and grants from Eli Lilly and Janssen, outside of the submitted work. No other disclosures were reported.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koch, E., Kämpe, A., Alver, M. et al. Polygenic liability for antipsychotic dosage and polypharmacy - a real-world registry and biobank study. Neuropsychopharmacol. (2024). https://doi.org/10.1038/s41386-023-01792-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41386-023-01792-0

Search

Quick links