Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Anti-angiogenic mechanisms and serotonergic dysfunction in the Rgs2 knockout model for the study of psycho-obstetric risk

Abstract

Psychiatric and obstetric diseases are growing threats to public health and share high rates of co-morbidity. G protein-coupled receptor signaling (e.g., vasopressin, serotonin) may be a convergent psycho-obstetric risk mechanism. Regulator of G Protein Signaling 2 (RGS2) mutations increase risk for both the gestational disease preeclampsia and for depression. We previously found preeclampsia-like, anti-angiogenic obstetric phenotypes with reduced placental Rgs2 expression in mice. Here, we extend this to test whether conserved cerebrovascular and serotonergic mechanisms are also associated with risk for neurobiological phenotypes in the Rgs2 KO mouse. Rgs2 KO exhibited anxiety-, depression-, and hedonic-like behaviors. Cortical vascular density and vessel length decreased in Rgs2 KO; cortical and white matter thickness and cell densities were unchanged. In Rgs2 KO, serotonergic gene expression was sex-specifically changed (e.g., cortical Htr2a, Maoa increased in females but all serotonin targets unchanged or decreased in males); redox-related expression increased in paraventricular nucleus and aorta; and angiogenic gene expression was changed in male but not female cortex. Whole-cell recordings from dorsal raphe serotonin neurons revealed altered 5-HT1A receptor-dependent inhibitory postsynaptic currents (5-HT1A-IPSCs) in female but not male KO neurons. Additionally, serotonin transporter blockade by the SSRI sertraline increased the amplitude and time-to-peak of 5-HT1A-IPSCs in KO neurons to a greater extent than in WT neurons in females only. These results demonstrate behavioral, cerebrovascular, and sertraline hypersensitivity phenotypes in Rgs2 KOs, some of which are sex-specific. Disruptions may be driven by vascular and cell stress mechanisms linking the shared pathogenesis of psychiatric and obstetric disease to reveal future targets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Behavioral testing revealed Rgs2 KO sex-specific alterations.
Fig. 2: Cortical vascular density and length is decreased in Rgs2 KO animals, though brain morphology is otherwise intact.
Fig. 3: qPCR studies of brain (cortex, paraventricular nucleus, midbrain/dorsal raphe, hindbrain) reveal changes in redox-, angiogenesis-, and GPCR-related genes in the Rgs2 KO mouse relative to wildtype (WT) comparators.
Fig. 4: Vascular density and locomotor behavior are respectively related to expression of serotonin and angiogenesis-related genes in the brain in a sex- and genotype-specific manner.
Fig. 5: Sertraline augments serotonin synaptic transmission to a greater extent in female Rgs2 KO serotonin neurons.

Similar content being viewed by others

References

  1. O’Connor E, Rossom RC, Henninger M, Groom HC, Burda BU, Henderson JT, et al. Screening for Depression in Adults: An Updated Systematic Evidence Review for the U.S. Preventive Services Task Force. 2016.

  2. Trost SL, Beauregard JL, Smoots AN, Ko JY, Haight SC, Moore Simas TA, et al. Preventing Pregnancy-Related Mental Health Deaths: Insights From 14 US Maternal Mortality Review Committees, 2008-17. Health Aff (Millwood). 2021;40:1551–59.

    Article  PubMed  Google Scholar 

  3. Shuman CJ, Peahl AF, Pareddy N, Morgan ME, Chiangong J, Veliz PT, et al. Postpartum depression and associated risk factors during the COVID-19 pandemic. BMC Res Notes. 2022;15:102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bonari L, Bennett H, Einarson A, Koren G. Risks of untreated depression during pregnancy. Can Fam Physician. 2004;50:37–9.

    PubMed  PubMed Central  Google Scholar 

  5. Goldman-Mellor S, Margerison CE. Maternal drug-related death and suicide are leading causes of postpartum death in California. Am J Obstet Gynecol. 2019;221:489e1–89e9.

    Article  Google Scholar 

  6. Liu X, Jin G, Fan B, Xing Y, Wang L, Wang M, et al. The impact of ALDH2 activation by Alda-1 on the expression of VEGF in the hippocampus of a rat model of post-MI depression. Neurosci Lett. 2018;674:156–61.

    Article  CAS  PubMed  Google Scholar 

  7. Marcus SM. Depression during pregnancy: rates, risks and consequences–Motherisk Update 2008. Can J Clin Pharmacol. 2009;16:e15–22.

    PubMed  Google Scholar 

  8. Bunevicius R, Kusminskas L, Bunevicius A, Nadisauskiene RJ, Jureniene K, Pop VJ. Psychosocial risk factors for depression during pregnancy. Acta Obstet Gynecol Scand. 2009;88:599–605.

    Article  PubMed  Google Scholar 

  9. Silverman ME, Reichenberg A, Savitz DA, Cnattingius S, Lichtenstein P, Hultman CM, et al. The risk factors for postpartum depression: A population-based study. Depress Anxiety. 2017;34:178–87.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Vignato JA, Gumusoglu SB, Davis HA, Scroggins SM, Hamilton WS, Brandt DS, et al. Selective Serotonin Reuptake Inhibitor Use in Pregnancy and Protective Mechanisms in Preeclampsia. Reprod Sci. 2022; 30:701–12

  11. Qiu C, Sanchez SE, Lam N, Garcia P, Williams MA. Associations of depression and depressive symptoms with preeclampsia: results from a Peruvian case-control study. BMC Womens Health. 2007;7:15.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Caropreso L, de Azevedo Cardoso T, Eltayebani M, Frey BN. Preeclampsia as a risk factor for postpartum depression and psychosis: a systematic review and meta-analysis. Arch Womens Ment Health. 2020;23:493–505.

    Article  PubMed  Google Scholar 

  13. Palmsten K, Setoguchi S, Margulis AV, Patrick AR, Hernández-Díaz S. Elevated risk of preeclampsia in pregnant women with depression: depression or antidepressants? Am J Epidemiol. 2012;175:988–97.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Srajer A, Johnson JA, Yusuf K. Preeclampsia and postpartum mental health: mechanisms and clinical implications. J Matern Fetal Neonatal Med. 2022;35:8443–49.

    Article  CAS  PubMed  Google Scholar 

  15. Bolte AC, van Geijn HP, Dekker GA. Pathophysiology of preeclampsia and the role of serotonin. Eur J Obstet Gynecol Reprod Biol. 2001;95:12–21.

    Article  CAS  PubMed  Google Scholar 

  16. Lang U, Prada J, Clark KE. Systemic and uterine vascular response to serotonin in third trimester pregnant ewes. Eur J Obstet Gynecol Reprod Biol. 1993;51:131–8.

    Article  CAS  PubMed  Google Scholar 

  17. Bodelsson G, Marsál K, Stjernquist M. Reduced contractile effect of endothelin-1 and noradrenalin in human umbilical artery from pregnancies with abnormal umbilical artery flow velocity waveforms. Early Hum Dev. 1995;42:15–28.

    Article  CAS  PubMed  Google Scholar 

  18. Feng X, Zhang Y, Tao J, Lu L, Liu J, Zhao M, et al. Comparisons of vascular responses to vasoconstrictors in human placenta in preeclampsia between preterm and later term. Curr Pharm Biotechnol. 2019; 21:727–33

  19. Gumusoglu S, Scroggins S, Vignato J, Santillan D, Santillan M. The Serotonin-Immune Axis in Preeclampsia. Curr Hypertens Rep. 2021;23:37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Santillan MK, Santillan DA, Scroggins SM, Min JY, Sandgren JA, Pearson NA, et al. Vasopressin in preeclampsia: a novel very early human pregnancy biomarker and clinically relevant mouse model. Hypertension. 2014;64:852–9.

    Article  CAS  PubMed  Google Scholar 

  21. Sandgren JA, Scroggins SM, Santillan DA, Devor EJ, Gibson-Corley KN, Pierce GL, et al. Vasopressin: the missing link for preeclampsia? Am J Physiol Regul Integr Comp Physiol. 2015;309:R1062–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kashkouli M, Jahanian Sadatmahalleh S, Ziaei S, Kazemnejad A, Saber A, Darvishnia H, et al. Relationship between postpartum depression and plasma vasopressin level at 6-8 weeks postpartum: a cross-sectional study. Sci Rep. 2023;13:3518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gumusoglu S, Davis L, Schickling B, Devor E, Von Tersch L, Santillan M, et al. Effects of maternal hypertension on cord blood Arginine vasopressin receptor expression. Pregnancy Hypertens. 2023;31:1–3.

    Article  PubMed  Google Scholar 

  24. McNestry C, Killeen SL, Crowley RK, McAuliffe FM. Pregnancy complications and later life women’s health. Acta Obstet Gynecol Scand. 2023;102:523–31.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Szczepanska-Sadowska E. The Heart as a Target of Vasopressin and Other Cardiovascular Peptides in Health and Cardiovascular Diseases. Int J Mol Sci. 2022;23:14414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Golyszny M, Obuchowicz E. Are neuropeptides relevant for the mechanism of action of SSRIs? Neuropeptides. 2019;75:1–17.

    Article  CAS  PubMed  Google Scholar 

  27. Okimoto N, Bosch OJ, Slattery DA, Pflaum K, Matsushita H, Wei FY, et al. RGS2 mediates the anxiolytic effect of oxytocin. Brain Res. 2012;1453:26–33.

    Article  CAS  PubMed  Google Scholar 

  28. Smoller JW, Paulus MP, Fagerness JA, Purcell S, Yamaki LH, Hirshfeld-Becker D, et al. Influence of RGS2 on anxiety-related temperament, personality, and brain function. Arch Gen Psych. 2008;65:298–308.

    Article  CAS  Google Scholar 

  29. Perschbacher KJ, Deng G, Fisher RA, Gibson-Corley KN, Santillan MK, Grobe JL. Regulators of G protein signaling in cardiovascular function during pregnancy. Physiol Genomics. 2018;50:590–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Karppanen T, Kaartokallio T, Klemetti MM, Heinonen S, Kajantie E, Kere J, et al. An RGS2 3’UTR polymorphism is associated with preeclampsia in overweight women. BMC Genet. 2016;17:121.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kvehaugen AS, Melien O, Holmen OL, Laivuori H, Dechend R, Staff AC. Hypertension after preeclampsia and relation to the C1114G polymorphism (rs4606) in RGS2: data from the Norwegian HUNT2 study. BMC Med Genet. 2014;15:28.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kvehaugen AS, Melien O, Holmen OL, Laivuori H, Oian P, Andersgaard AB, et al. Single nucleotide polymorphisms in G protein signaling pathway genes in preeclampsia. Hypertension. 2013;61:655–61.

    Article  CAS  PubMed  Google Scholar 

  33. Perschbacher KJ, Deng G, Sandgren JA, Walsh JW, Witcher PC, Sapouckey SA, et al. Reduced mRNA Expression of RGS2 (Regulator of G Protein Signaling-2) in the Placenta Is Associated With Human Preeclampsia and Sufficient to Cause Features of the Disorder in Mice. Hypertension. 2020;75:569–79.

    Article  CAS  PubMed  Google Scholar 

  34. Koch JN, Dahlen SA, Owens EA, Osei-Owusu P. Regulator of G Protein Signaling 2 Facilitates Uterine Artery Adaptation During Pregnancy in Mice. J Am Heart Assoc. 2019;8:e010917.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Jie L, Owens EA, Plante LA, Fang Z, Rensing DT, Moeller KD, et al. RGS2 squelches vascular Gi/o and Gq signaling to modulate myogenic tone and promote uterine blood flow. Physiol Rep. 2016;4:e12692.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Stein MB, Keshaviah A, Haddad SA, Van Ameringen M, Simon NM, Pollack MH, et al. Influence of RGS2 on sertraline treatment for social anxiety disorder. Neuropsychopharmacology. 2014;39:1340–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Leygraf A, Hohoff C, Freitag C, Willis-Owen SA, Krakowitzky P, Fritze J, et al. Rgs 2 gene polymorphisms as modulators of anxiety in humans? J Neural Transm (Vienna). 2006;113:1921–5.

    Article  CAS  PubMed  Google Scholar 

  38. Hohoff C, Weber H, Richter J, Domschke K, Zwanzger PM, Ohrmann P, et al. RGS2 ggenetic variation: association analysis with panic disorder and dimensional as well as intermediate phenotypes of anxiety. Am J Med Genet B Neuropsychiatr Genet. 2015;168B:211–22.

    Article  PubMed  Google Scholar 

  39. Mouri K, Hishimoto A, Fukutake M, Nishiguchi N, Shirakawa O, Maeda K. Association study of RGS2 gene polymorphisms with panic disorder in Japanese. Kobe J Med Sci. 2010;55:E116–21.

    PubMed  Google Scholar 

  40. Amstadter AB, Koenen KC, Ruggiero KJ, Acierno R, Galea S, Kilpatrick DG, et al. Variant in RGS2 moderates posttraumatic stress symptoms following potentially traumatic event exposure. J Anxiety Disord. 2009;23:369–73.

    Article  PubMed  Google Scholar 

  41. Williams AV, Peña CJ, Ramos-Maciel S, Laman-Maharg A, Ordoñez-Sanchez E, Britton M, et al. Comparative Transcriptional Analyses in the Nucleus Accumbens Identifies RGS2 as a Key Mediator of Depression-Related Behavior. Biol Psych. 2022;92:942–51.

    Article  CAS  Google Scholar 

  42. Amstadter AB, Koenen KC, Ruggiero KJ, Acierno R, Galea S, Kilpatrick DG, et al. Variation in RGS2 is associated with suicidal ideation in an epidemiological study of adults exposed to the 2004 Florida hurricanes. Arch Suicide Res. 2009;13:349–57.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lifschytz T, Broner EC, Zozulinsky P, Slonimsky A, Eitan R, Greenbaum L, et al. Relationship between Rgs2 gene expression level and anxiety and depression-like behaviour in a mutant mouse model: serotonergic involvement. Int J Neuropsychopharmacol. 2012;15:1307–18.

    Article  CAS  PubMed  Google Scholar 

  44. Raab A, Popp S, Lesch KP, Lohse MJ, Fischer M, Deckert J, et al. Increased fear learning, spatial learning as well as neophobia in Rgs2. Genes Brain Behav. 2018;17:e12420.

    Article  CAS  PubMed  Google Scholar 

  45. Oliveira-Dos-Santos AJ, Matsumoto G, Snow BE, Bai D, Houston FP, Whishaw IQ, et al. Regulation of T cell activation, anxiety, and male aggression by RGS2. Proc Natl Acad Sci. 2000;97:12272–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Luo Y, Kataoka Y, Ostinelli EG, Cipriani A, Furukawa TA. National Prescription Patterns of Antidepressants in the Treatment of Adults With Major Depression in the US Between 1996 and 2015: A Population Representative Survey Based Analysis. Front Psych. 2020;11:35.

    Article  Google Scholar 

  47. Desaunay P, Eude LG, Dreyfus M, Alexandre C, Fedrizzi S, Alexandre J, et al. Benefits and Risks of Antidepressant Drugs During Pregnancy: A Systematic Review of Meta-analyses. Paediatr Drugs. 2023;25:247–65.

    Article  PubMed  Google Scholar 

  48. Gumusoglu SB, Schickling BM, Vignato JA, Santillan DA, Santillan MK. Selective serotonin reuptake inhibitors and preeclampsia: A quality assessment and meta-analysis. Pregnancy Hypertens. 2022;30:36–43.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Tatsumi M, Groshan K, Blakely RD, Richelson E. Pharmacological profile of antidepressants and related compounds at human monoamine transporters. Eur J Pharmacol. 1997;340:249–58.

    Article  CAS  PubMed  Google Scholar 

  50. Gumusoglu SB, Chilukuri ASS, Santillan DA, Santillan MK, Stevens HE. Neurodevelopmental Outcomes of Prenatal Preeclampsia Exposure. Trends Neurosci. 2020;43:253–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gumusoglu SB, Fine RS, Murray SJ, Bittle JL, Stevens HE. The role of IL-6 in neurodevelopment after prenatal stress. Brain Behav Immun. 2017;65:274–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gumusoglu SB, Hing BWQ, Chilukuri ASS, Dewitt JJ, Scroggins SM, Stevens HE. Chronic maternal interleukin-17 and autism-related cortical gene expression, neurobiology, and behavior. Neuropsychopharmacology. 2020;45:1008–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gumusoglu SB, Chilukuri ASS, Hing BWQ, Scroggins SM, Kundu S, Sandgren JA, et al. Altered offspring neurodevelopment in an arginine vasopressin preeclampsia model. Transl Psych. 2021;11:79.

    Article  CAS  Google Scholar 

  54. Fairless AH, Dow HC, Toledo MM, Malkus KA, Edelmann M, Li H, et al. Low sociability is associated with reduced size of the corpus callosum in the BALB/cJ inbred mouse strain. Brain Res. 2008;1230:211–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Fairless AH, Katz JM, Vijayvargiya N, Dow HC, Kreibich AS, Berrettini WH, et al. Development of home cage social behaviors in BALB/cJ vs. C57BL/6J mice. Behav Brain Res. 2013;237:338–47.

    Article  PubMed  Google Scholar 

  56. Ferri SL, Dow HC, Schoch H, Lee JY, Brodkin ES, Abel T. Age- and sex-specific fear conditioning deficits in mice lacking Pcdh10, an Autism Associated Gene. Neurobiol Learn Mem. 2021;178:107364.

    Article  CAS  PubMed  Google Scholar 

  57. Ferri SL, Kreibich AS, Torre M, Piccoli CT, Dow H, Pallathra AA, et al. Activation of basolateral amygdala in juvenile C57BL/6J mice during social approach behavior. Neuroscience. 2016;335:184–94.

    Article  CAS  PubMed  Google Scholar 

  58. Klomp AJ, Plumb A, Mehr JB, Madencioglu DA, Wen H, Williams AJ. Neuronal deletion of Ca(V)1.2 is associated with sex-specific behavioral phenotypes in mice. Sci Rep. 2022;12:22152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Coryell MW, Wunsch AM, Haenfler JM, Allen JE, Schnizler M, Ziemann AE, et al. Acid-sensing ion channel-1a in the amygdala, a novel therapeutic target in depression-related behavior. J Neurosci. 2009;29:5381–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Dailey ME, Waite M. Confocal imaging of microglial cell dynamics in hippocampal slice cultures. Methods. 1999;18:222–30.

    Article  CAS  PubMed  Google Scholar 

  61. Grossmann R, Stence N, Carr J, Fuller L, Waite M, Dailey ME. Juxtavascular microglia migrate along brain microvessels following activation during early postnatal development. Glia. 2002;37:229–40.

    Article  PubMed  Google Scholar 

  62. Luna RL, Kay VR, Ratsep MT, Khalaj K, Bidarimath M, Peterson N, et al. Placental growth factor deficiency is associated with impaired cerebral vascular development in mice. Mol Hum Reprod. 2016;22:130–42.

    Article  CAS  PubMed  Google Scholar 

  63. Sandgren JA, Deng G, Linggonegoro DW, Scroggins SM, Perschbacher KJ, Nair AR, et al. Arginine vasopressin infusion is sufficient to model clinical features of preeclampsia in mice. JCI Insight. 2018;3:e99403.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Kucuk M, Kaya M, Kalayci R, Cimen V, Kudat H, Arican N, et al. Effects of losartan on the blood-brain barrier permeability in long-term nitric oxide blockade-induced hypertensive rats. Life Sci. 2002;71:937–46.

    Article  CAS  PubMed  Google Scholar 

  65. Khamma JK, Copeland DS, Hake HS, Gantz SC. Spatiotemporal Control of Noradrenaline-Dependent Synaptic Transmission in Mouse Dorsal Raphe Serotonin Neurons. J Neurosci. 2022;42:968–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gantz SC, Levitt ES, Llamosas N, Neve KA, Williams JT. Depression of Serotonin Synaptic Transmission by the Dopamine Precursor L-DOPA. Cell Rep. 2015;12:944–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Santillan MK, Pelham CJ, Ketsawatsomkron P, Santillan DA, Davis DR, Devor EJ, et al. Pregnant mice lacking indoleamine 2,3-dioxygenase exhibit preeclampsia phenotypes. Physiol Rep. 2015;3:e12257.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Jabarin R, Netser S, Wagner S. Beyond the three-chamber test: toward a multimodal and objective assessment of social behavior in rodents. Mol Autism. 2022;13:41.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Sideromenos S, Lindtner C, Zambon A, Horvath O, Berger A, Pollak DD. VEGF Treatment Ameliorates Depression-Like Behavior in Adult Offspring After Maternal Immune Activation. Cells. 2020;9:1048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ghavami A, Hunt RA, Olsen MA, Zhang J, Smith DL, Kalgaonkar S, et al. Differential effects of regulator of G protein signaling (RGS) proteins on serotonin 5-HT1A, 5-HT2A, and dopamine D2 receptor-mediated signaling and adenylyl cyclase activity. Cell Signal. 2004;16:711–21.

    Article  CAS  PubMed  Google Scholar 

  71. Mark MD, Wollenweber P, Gesk A, Kösters K, Batzke K, Janoschka C, et al. RGS2 drives male aggression in mice via the serotonergic system. Commun Biol. 2019;2:373.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Christmas DM, Potokar J, Davies SJ. A biological pathway linking inflammation and depression: activation of indoleamine 2,3-dioxygenase. Neuropsychiatr Dis Treat. 2011;7:431–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Maes M, Leonard BE, Myint AM, Kubera M, Verkerk R. The new ‘5-HT’ hypothesis of depression: cell-mediated immune activation induces indoleamine 2,3-dioxygenase, which leads to lower plasma tryptophan and an increased synthesis of detrimental tryptophan catabolites (TRYCATs), both of which contribute to the onset of depression. Prog Neuropsychopharmacol Biol Psych. 2011;35:702–21.

    Article  CAS  Google Scholar 

  74. Muller N, Schwarz MJ. The immune-mediated alteration of serotonin and glutamate: towards an integrated view of depression. Mol Psych. 2007;12:988–1000.

    Article  CAS  Google Scholar 

  75. O’Connor JC, Lawson MA, Andre C, Moreau M, Lestage J, Castanon N, et al. Lipopolysaccharide-induced depressive-like behavior is mediated by indoleamine 2,3-dioxygenase activation in mice. Mol Psych. 2009;14:511–22.

    Article  Google Scholar 

  76. Williams JT, Colmers WF, Pan ZZ. Voltage- and ligand-activated inwardly rectifying currents in dorsal raphe neurons in vitro. J Neurosci. 1988;8:3499–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Courtney NA, Ford CP. Mechanisms of 5-HT1A receptor-mediated transmission in dorsal raphe serotonin neurons. J Physiol. 2016;594:953–65.

    Article  CAS  PubMed  Google Scholar 

  78. Redman CWG, Staff AC, Roberts JM. Syncytiotrophoblast stress in preeclampsia: the convergence point for multiple pathways. Am J Obstet Gynecol. 2022;226:S907–S27.

    Article  CAS  PubMed  Google Scholar 

  79. Harmon AC, Cornelius DC, Amaral LM, Faulkner JL, Cunningham MW Jr, Wallace K, et al. The role of inflammation in the pathology of preeclampsia. Clin Sci (Lond). 2016;130:409–19.

    Article  CAS  PubMed  Google Scholar 

  80. Cornelius DC. Preeclampsia: From Inflammation to Immunoregulation. Clin Med Insights Blood Disord. 2018;11:1179545X17752325.

    PubMed  PubMed Central  Google Scholar 

  81. D’Souza MS, Seeley SL, Emerson N, Rose-Malkamaki MJ, Ho SP, Tsai YC, et al. Attenuation of nicotine-induced rewarding and antidepressant-like effects in male and female mice lacking regulator of G-protein signaling 2. Pharmacol Biochem Behav. 2022;213:173338.

    Article  PubMed  Google Scholar 

  82. Klonoff-Cohen HS, Cross JL, Pieper CF. Job stress and preeclampsia. Epidemiology. 1996;7:245–9.

    Article  CAS  PubMed  Google Scholar 

  83. Roberts AL, Lyall K, Rich-Edwards JW, Ascherio A, Weisskopf MG. Association of maternal exposure to childhood abuse with elevated risk for autism in offspring. JAMA Psych. 2013;70:508–15.

    Article  Google Scholar 

  84. Wang A, Rana S, Karumanchi SA. Preeclampsia: the role of angiogenic factors in its pathogenesis. Physiology (Bethesda). 2009;24:147–58.

    PubMed  Google Scholar 

  85. Villa PM, Marttinen P, Gillberg J, Lokki AI, Majander K, Orden MR, et al. Cluster analysis to estimate the risk of preeclampsia in the high-risk Prediction and Prevention of Preeclampsia and Intrauterine Growth Restriction (PREDO) study. PLoS One. 2017;12:e0174399.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Koenen KC, Amstadter AB, Ruggiero KJ, Acierno R, Galea S, Kilpatrick DG, et al. RGS2 and generalized anxiety disorder in an epidemiologic sample of hurricane-exposed adults. Depress Anxiety. 2009;26:309–15.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Heximer SP. RGS2-mediated regulation of Gqalpha. Methods Enzymol. 2004;390:65–82.

    Article  CAS  PubMed  Google Scholar 

  88. Osei-Owusu P, Sabharwal R, Kaltenbronn KM, Rhee MH, Chapleau MW, Dietrich HH, et al. Regulator of G protein signaling 2 deficiency causes endothelial dysfunction and impaired endothelium-derived hyperpolarizing factor-mediated relaxation by dysregulating Gi/o signaling. J Biol Chem. 2012;287:12541–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Tokudome T, Otani K, Mao Y, Jensen LJ, Arai Y, Miyazaki T, et al. Endothelial Natriuretic Peptide Receptor 1 Play Crucial Role for Acute and Chronic Blood Pressure Regulation by Atrial Natriuretic Peptide. Hypertension. 2022;79:1409–22.

    Article  CAS  PubMed  Google Scholar 

  90. D’Souza MS, Luu AN, Guisinger TC, Seeley SL, Waldschmidt RA, Chrissobolis S. Regulator of G-Protein Signaling 5 Protein Deficiency Differentially Influences Blood Pressure, Vascular and Behavioral Effects in Aged Male Mice. J Cardiovasc Pharmacol. 2022;80:305–13.

    Article  PubMed  Google Scholar 

  91. Yalcin B, Willis-Owen SA, Fullerton J, Meesaq A, Deacon RM, Rawlins JN, et al. Genetic dissection of a behavioral quantitative trait locus shows that Rgs2 modulates anxiety in mice. Nat Genet. 2004;36:1197–202.

    Article  CAS  PubMed  Google Scholar 

  92. Pham H, Sieg J, Seeley SL, D’Souza MS. Differential methamphetamine-induced behavioral effects in male and female mice lacking regulator of G Protein signaling 4. Behav Brain Res. 2022;423:113770.

    Article  CAS  PubMed  Google Scholar 

  93. Rorabaugh BR, Rose MJ, Stoops TS, Stevens AA, Seeley SL, D’Souza MS. Regulators of G-protein signaling 2 and 4 differentially regulate cocaine-induced rewarding effects. Physiol Behav. 2018;195:9–19.

    Article  CAS  PubMed  Google Scholar 

  94. Rempe RG, Hartz AMS, Bauer B. Matrix metalloproteinases in the brain and blood-brain barrier: Versatile breakers and makers. J Cereb Blood Flow Metab. 2016;36:1481–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Tsang CK, Liu Y, Thomas J, Zhang Y, Zheng XF. Superoxide dismutase 1 acts as a nuclear transcription factor to regulate oxidative stress resistance. Nat Commun. 2014;5:3446.

    Article  PubMed  Google Scholar 

  96. Eleutherio ECA, Silva Magalhaes RS, de Araujo Brasil A, Monteiro Neto JR, de Holanda Paranhos L. SOD1, more than just an antioxidant. Arch Biochem Biophys. 2021;697:108701.

    Article  CAS  PubMed  Google Scholar 

  97. Milani P, Amadio M, Laforenza U, Dell’Orco M, Diamanti L, Sardone V, et al. Posttranscriptional regulation of SOD1 gene expression under oxidative stress: Potential role of ELAV proteins in sporadic ALS. Neurobiol Dis. 2013;60:51–60.

    Article  CAS  PubMed  Google Scholar 

  98. Milani P, Gagliardi S, Cova E, Cereda C. SOD1 Transcriptional and Posttranscriptional Regulation and Its Potential Implications in ALS. Neurol Res Int. 2011;2011:458427.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Deng Y, Dickey JE, Saito K, Deng G, Singh U, Jiang J, et al. Elucidating the role of Rgs2 expression in the PVN for metabolic homeostasis in mice. Mol Metab. 2022;66:101622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lan N, Hellemans KG, Ellis L, Weinberg J. Exposure to Chronic Mild Stress Differentially Alters Corticotropin-Releasing Hormone and Arginine Vasopressin mRNA Expression in the Stress-Responsive Neurocircuitry of Male and Female Rats Prenatally Exposed to Alcohol. Alcohol Clin Exp Res. 2015;39:2414–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Taylor PV, Veenema AH, Paul MJ, Bredewold R, Isaacs S, de Vries GJ. Sexually dimorphic effects of a prenatal immune challenge on social play and vasopressin expression in juvenile rats. Biol Sex Differ. 2012;3:15.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Goel N, Philippe TJ, Chang J, Koblanski ME, Viau V. Cellular and serotonergic correlates of habituated neuroendocrine responses in male and female rats. Psychoneuroendocrinology. 2022;136:105599.

    Article  CAS  PubMed  Google Scholar 

  103. Rood BD, Stott RT, You S, Smith CJ, Woodbury ME, De Vries GJ. Site of origin of and sex differences in the vasopressin innervation of the mouse (Mus musculus) brain. J Comp Neurol. 2013;521:2321–58.

    Article  CAS  PubMed  Google Scholar 

  104. de Souza Villa P, Menani JV, de Arruda Camargo GM, de Arruda Camargo LA, Saad WA. Activation of the serotonergic 5-HT1A receptor in the paraventricular nucleus of the hypothalamus inhibits water intake and increases urinary excretion in water-deprived rats. Regul Pept. 2008;150:14–20.

    Article  PubMed  Google Scholar 

  105. Issotina Zibrila A, Li Y, Wang Z, Zhao G, Liu H, Leng J, et al. Acetylcholinesterase inhibition with Pyridostigmine attenuates hypertension and neuroinflammation in the paraventricular nucleus in rat model for Preeclampsia. Int Immunopharmacol. 2021;101:108365.

    Article  CAS  PubMed  Google Scholar 

  106. Matsuura T, Shinohara K, Iyonaga T, Hirooka Y, Tsutsui H. Prior exposure to placental ischemia causes increased salt sensitivity of blood pressure via vasopressin production and secretion in postpartum rats. J Hypertens. 2019;37:1657–67.

    Article  CAS  PubMed  Google Scholar 

  107. Kato TM, Fujimori-Tonou N, Mizukami H, Ozawa K, Fujisawa S, Kato T. Presynaptic dysregulation of the paraventricular thalamic nucleus causes depression-like behavior. Sci Rep. 2019;9:16506.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Stanton LM, Price AJ, Manning EE. Hypothalamic corticotrophin releasing hormone neurons in stress-induced psychopathology: Revaluation of synaptic contributions. J Neuroendocrinol. 2023;35:e13268.

    Article  CAS  PubMed  Google Scholar 

  109. Oliver DK, Intson K, Sargin D, Power SK, McNabb J, Ramsey AJ, et al. Chronic social isolation exerts opposing sex-specific consequences on serotonin neuronal excitability and behaviour. Neuropharmacology. 2020;168:108015.

    Article  CAS  PubMed  Google Scholar 

  110. McEuen JG, Semsar KA, Lim MA, Bale TL. Influence of sex and corticotropin-releasing factor pathways as determinants in serotonin sensitivity. Endocrinology. 2009;150:3709–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Murray EJ, Gumusoglu SB, Santillan DA, Santillan MK. Manipulating CD4+ T Cell Pathways to Prevent Preeclampsia. Front Bioeng Biotechnol. 2022;9:811417.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Taylor WD, Aizenstein HJ, Alexopoulos GS. The vascular depression hypothesis: mechanisms linking vascular disease with depression. Mol Psych. 2013;18:963–74.

    Article  CAS  Google Scholar 

Download references

Funding

Funding

This work was supported by the NIH (5T32HL007121-45 to SBG; HD089940, HD000849, RR024980, 3UL1TR002537, P50HD10355601A1 to MKS; T32 HL007344 to BMS), the American Heart Association (AHA) (18SCG34350001 and 19IPLOI34760288 to MKS; 22POST30908921 to SBG), a startup award from the University of Iowa Carver College of Medicine (SCG), and the Carver College of Medicine and Iowa Neuroscience Institute Carver Trust Early-Stage Investigator award (to SCG).

Author information

Authors and Affiliations

Authors

Contributions

SBG: Substantial contributions to the conception or design of the work; or the acquisition, analysis, or interpretation of data for the work; Drafting the work or revising it critically for important intellectual content; final approval of the version to be published; and agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. MKS: Substantial contributions to the conception or design of the work; or the acquisition, analysis, or interpretation of data for the work. AG: Substantial contributions to the conception or design of the work; or the acquisition, analysis, or interpretation of data for the work. BS: Substantial contributions to the conception or design of the work; or the acquisition, analysis, or interpretation of data for the work; Drafting the work or revising it critically for important intellectual content; final approval of the version to be published; KW: Substantial contributions to the conception or design of the work; or the acquisition, analysis, or interpretation of data for the work. ML: Substantial contributions to the conception or design of the work; or the acquisition, analysis, or interpretation of data for the work; Drafting the work or revising it critically for important intellectual content. Hannah Sullivan: Substantial contributions to the conception or design of the work; or the acquisition, analysis, or interpretation of data for the work. KC: Substantial contributions to the conception or design of the work; or the acquisition, analysis, or interpretation of data for the work. BB: Substantial contributions to the conception or design of the work; or the acquisition, analysis, or interpretation of data for the work. MKS: Substantial contributions to the conception or design of the work; or the acquisition, analysis, or interpretation of data for the work. YZ: Substantial contributions to the conception or design of the work; or the acquisition, analysis, or interpretation of data for the work. ED: Substantial contributions to the conception or design of the work; or the acquisition, analysis, or interpretation of data for the work; and final approval of the version to be published. DAS: Drafting the work or revising it critically for important intellectual content; final approval of the version to be published; and agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. SCG: Substantial contributions to the conception or design of the work; or the acquisition, analysis, or interpretation of data for the work; Drafting the work or revising it critically for important intellectual content; final approval of the version to be published; and agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. MKS: Drafting the work or revising it critically for important intellectual content; final approval of the version to be published; and agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Corresponding author

Correspondence to Mark K. Santillan.

Ethics declarations

Competing interests

MKS is a member of the Medical Advisory Board for Comanche Pharmaceuticals and EndPreeclampsia, LLC. DAS is a member of the Medical Advisory Board for EndPreeclampsia, LLC. DAS and MKS hold patents related to the prediction and treatment of preeclampsia: US 293 #9,937,182 (April 10, 2018), EU #2,954,324, and PCT/US2018/027152. All other authors report no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gumusoglu, S.B., Kiel, M.D., Gugel, A. et al. Anti-angiogenic mechanisms and serotonergic dysfunction in the Rgs2 knockout model for the study of psycho-obstetric risk. Neuropsychopharmacol. 49, 864–875 (2024). https://doi.org/10.1038/s41386-023-01749-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41386-023-01749-3

Search

Quick links