Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Direct paraventricular thalamus-basolateral amygdala circuit modulates neuropathic pain and emotional anxiety

Abstract

The comorbidity of chronic pain and mental dysfunctions such as anxiety disorders has long been recognized, but the underlying mechanisms remained poorly understood. Here, using a mouse model of neuropathic pain, we demonstrated that the thalamic paraventricular nucleus (PVT) played a critical role in chronic pain-induced anxiety-like behavioral abnormalities. Fiber photometry and electrophysiology demonstrated that chronic pain increased the activities in PVT glutamatergic neurons. Chemogenetic manipulation revealed that suppression of PVT glutamatergic neurons relieved pain-like behavior and anxiety-like behaviors. Conversely, selective activation of PVT glutamatergic neurons showed algesic and anxiogenic effects. Furthermore, the elevated excitability of PVT glutamatergic neurons resulted in increased excitatory inputs to the basolateral complex (BLA) neurons. Optogenetic manipulation of the PVT-BLA pathway bilaterally modulates both the pain-like behavior and anxiety-like phenotypes. These findings shed light on how the PVT-BLA pathway contributed to the processing of pain-like behavior and maladaptive anxiety, and targeting this pathway might be a straightforward therapeutic strategy to both alleviate nociceptive hypersensitivity and rescue anxiety behaviors in chronic pain conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Increased activity of PVT glutamatergic neurons in neuropathic pain mice comorbid with anxiety-like phenotypes.
Fig. 2: Inhibition of PVT glutamatergic neurons ameliorated nociceptive hypersensitivity and anxiety-like behaviors in nerve-injured mice.
Fig. 3: Chemogenetic activation of glutamatergic neurons in the PVT enhanced pain response and anxiety-related behaviors.
Fig. 4: Optogenetic manipulation of PVT-BLA projection bilaterally modulated nociceptive hypersensitivity and anxiety-like phenotypes.
Fig. 5: Inhibition of postsynaptic BLA neurons of the PVT attenuated nociceptive hypersensitivity and anxiety-like phenotypes in CCI mice.
Fig. 6: Blockage of glutamatergic receptors in the BLA reversed nociceptive hypersensitivity and anxiety-like behaviors induced by chemogenetic activation of PVT-BLA projection.

Similar content being viewed by others

References

  1. McWilliams LA, Cox BJ, Enns MW. Mood and anxiety disorders associated with chronic pain: an examination in a nationally representative sample. Pain. 2003;106:127–33.

    Article  PubMed  Google Scholar 

  2. Blackburn-Munro G, Blackburn-Munro RE. Chronic pain, chronic stress and depression: coincidence or consequence? J Neuroendocrinol. 2001;13:1009–23.

    Article  CAS  PubMed  Google Scholar 

  3. Koga K, Descalzi G, Chen T, Ko HG, Lu J, Li S, et al. Coexistence of two forms of LTP in ACC provides a synaptic mechanism for the interactions between anxiety and chronic pain. Neuron. 2015;86:1109.

    Article  CAS  PubMed  Google Scholar 

  4. Michaelides A, Zis P. Depression, anxiety and acute pain: links and management challenges. Postgrad Med. 2019;131:438–44.

    Article  PubMed  Google Scholar 

  5. Liu Y, Yang L, Yu J, Zhang YQ. Persistent, comorbid pain and anxiety can be uncoupled in a mouse model. Physiol Behav. 2015;151:55–63.

    Article  CAS  PubMed  Google Scholar 

  6. Wang GQ, Cen C, Li C, Cao S, Wang N, Zhou Z, et al. Deactivation of excitatory neurons in the prelimbic cortex via Cdk5 promotes pain sensation and anxiety. Nat Commun. 2015;6:7660.

    Article  CAS  PubMed  Google Scholar 

  7. Liu D, Tang QQ, Yin C, Song Y, Liu Y, Yang JX, et al. Brain-derived neurotrophic factor-mediated projection-specific regulation of depressive-like and nociceptive behaviors in the mesolimbic reward circuitry. Pain. 2018;159:175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chang YT, Chen WH, Shih HC, Min MY, Shyu BC, Chen CC. Anterior nucleus of paraventricular thalamus mediates chronic mechanical hyperalgesia. Pain. 2019;160:1208–23.

    Article  PubMed  Google Scholar 

  9. Hsu DT, Kirouac GJ, Zubieta JK, Bhatnagar S. Contributions of the paraventricular thalamic nucleus in the regulation of stress, motivation, and mood. Front Behav Neurosci. 2014;8:73.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Penzo MA, Robert V, Tucciarone J, De Bundel D, Wang M, Van Aelst L, et al. The paraventricular thalamus controls a central amygdala fear circuit. Nature. 2015;519:455–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li L, Zhang H, Zheng Z, Ma N, Zhang Y, Liu Y, et al. Perioperative sleep deprivation activates the paraventricular thalamic nucleus resulting in persistent postoperative incisional pain in mice. Front Neuroanat. 2022;16:1074310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Michl T, Jocic M, Heinemann A, Schuligoi R, Holzer P. Vagal afferent signaling of a gastric mucosal acid insult to medullary, pontine, thalamic, hypothalamic and limbic, but not cortical, nuclei of the rat brain. Pain. 2001;92:19–27.

    Article  CAS  PubMed  Google Scholar 

  13. Jurik A, Auffenberg E, Klein S, Deussing JM, Schmid RM, Wotjak CT, et al. Roles of prefrontal cortex and paraventricular thalamus in affective and mechanical components of visceral nociception. Pain. 2015;156:2479–91.

    Article  CAS  PubMed  Google Scholar 

  14. Huang J, Gadotti VM, Chen L, Souza IA, Huang S, Wang D, et al. A neuronal circuit for activating descending modulation of neuropathic pain. Nat Neurosci. 2019;22:1659–68.

    Article  CAS  PubMed  Google Scholar 

  15. Tye KM, Prakash R, Kim SY, Fenno LE, Grosenick L, Zarabi H, et al. Amygdala circuitry mediating reversible and bidirectional control of anxiety. Nature. 2011;471:358–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Janak PH, Tye KM. From circuits to behaviour in the amygdala. Nature. 2015;517:284–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li Z, Wang J, Chen L, Zhang M, Wan Y. Basolateral amygdala lesion inhibits the development of pain chronicity in neuropathic pain rats. PLoS One. 2013;8:e70921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Felix-Ortiz AC, Beyeler A, Seo C, Leppla CA, Wildes CP, Tye KM. BLA to vHPC inputs modulate anxiety-related behaviors. Neuron. 2013;79:658–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Corder G, Ahanonu B, Grewe BF, Wang D, Schnitzer MJ, Scherrer G. An amygdalar neural ensemble that encodes the unpleasantness of pain. Science. 2019;363:276–81.

    Article  CAS  PubMed  Google Scholar 

  20. Bennett GJ, Xie YK. A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain. 1988;33:87–107.

    Article  PubMed  Google Scholar 

  21. Donnelly CR, Jiang C, Andriessen AS, Wang K, Wang Z, Ding H, et al. STING controls nociception via type I interferon signalling in sensory neurons. Nature. 2021;591:275–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen G, Kim YH, Li H, Luo H, Liu DL, Zhang ZJ, et al. PD-L1 inhibits acute and chronic pain by suppressing nociceptive neuron activity via PD-1. Nat Neurosci. 2017;20:917–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Han Q, Liu D, Convertino M, Wang Z, Jiang C, Kim YH, et al. miRNA-711 binds and activates TRPA1 extracellularly to evoke acute and chronic pruritus. Neuron. 2018;99:449–63.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yin JB, Liang SH, Li F, Zhao WJ, Bai Y, Sun Y, et al. dmPFC-vlPAG projection neurons contribute to pain threshold maintenance and antianxiety behaviors. J Clin Invest. 2020;130:6555–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chaudhury D, Walsh JJ, Friedman AK, Juarez B, Ku SM, Koo JW, et al. Rapid regulation of depression-related behaviours by control of midbrain dopamine neurons. Nature. 2013;493:532–6.

    Article  CAS  PubMed  Google Scholar 

  26. Ren S, Wang Y, Yue F, Cheng X, Dang R, Qiao Q, et al. The paraventricular thalamus is a critical thalamic area for wakefulness. Science. 2018;362:429–34.

    Article  CAS  PubMed  Google Scholar 

  27. Luo X, Fitzsimmons B, Mohan A, Zhang L, Terrando N, Kordasiewicz H, et al. Intrathecal administration of antisense oligonucleotide against p38alpha but not p38beta MAP kinase isoform reduces neuropathic and postoperative pain and TLR4-induced pain in male mice. Brain Behav Immun. 2018;72:34–44.

    Article  CAS  PubMed  Google Scholar 

  28. Armbruster BN, Li X, Pausch MH, Herlitze S, Roth BL. Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc Natl Acad Sci USA. 2007;104:5163–8.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Petreanu L, Huber D, Sobczyk A, Svoboda K. Channelrhodopsin-2-assisted circuit mapping of long-range callosal projections. Nat Neurosci. 2007;10:663–8.

    Article  CAS  PubMed  Google Scholar 

  30. Chen J, Song Y, Yang J, Zhang Y, Zhao P, Zhu XJ, et al. The contribution of TNF-alpha in the amygdala to anxiety in mice with persistent inflammatory pain. Neurosci Lett. 2013;541:275–80.

    Article  CAS  PubMed  Google Scholar 

  31. Yalcin I, Bohren Y, Waltisperger E, Sage-Ciocca D, Yin JC, Freund-Mercier MJ, et al. A time-dependent history of mood disorders in a murine model of neuropathic pain. Biol Psychiatry. 2011;70:946–53.

    Article  PubMed  Google Scholar 

  32. Kroenke K, Spitzer RL. Gender differences in the reporting of physical and somatoform symptoms. Psychosom Med. 1998;60:150–5.

    Article  CAS  PubMed  Google Scholar 

  33. Myers CD, Riley JL 3rd, Robinson ME. Psychosocial contributions to sex-correlated differences in pain. Clin J Pain. 2003;19:225–32.

    Article  PubMed  Google Scholar 

  34. McCracken LM, Houle T. Sex-specific and general roles of pain-related anxiety in adjustment to chronic pain: a reply to Edwards et al. Clin J Pain. 2000;16:275–6.

    Article  CAS  PubMed  Google Scholar 

  35. Moore DJ, Eccleston C, Keogh E. Does sex moderate the relationship between anxiety and pain? Psychol Health. 2013;28:746–64.

    Article  PubMed  Google Scholar 

  36. Zang KK, Xiao X, Chen LQ, Yang Y, Cao QL, Tang YL, et al. Distinct function of estrogen receptors in the rodent anterior cingulate cortex in pain-related aversion. Anesthesiology. 2020;133:165–84.

    Article  CAS  PubMed  Google Scholar 

  37. Millecamps M, Sotocinal SG, Austin JS, Stone LS, Mogil JS. Sex-specific effects of neuropathic pain on long-term pain behavior and mortality in mice. Pain. 2023;164:577–86.

    Article  CAS  PubMed  Google Scholar 

  38. Kirouac GJ. Placing the paraventricular nucleus of the thalamus within the brain circuits that control behavior. Neurosci Biobehav Rev. 2015;56:315–29.

    Article  PubMed  Google Scholar 

  39. Silveira MC, Zangrossi H, de Barros Viana M, Silveira R, Graeff FG. Differential expression of Fos protein in the rat brain induced by performance of avoidance or escape in the elevated T-maze. Behav Brain Res. 2001;126:13–21.

    Article  CAS  PubMed  Google Scholar 

  40. Salome N, Salchner P, Viltart O, Sequeira H, Wigger A, Landgraf R, et al. Neurobiological correlates of high (HAB) versus low anxiety-related behavior (LAB): differential Fos expression in HAB and LAB rats. Biol Psychiatry. 2004;55:715–23.

    Article  PubMed  Google Scholar 

  41. Liang HY, Chen ZJ, Xiao H, Lin YH, Hu YY, Chang L, et al. nNOS-expressing neurons in the vmPFC transform pPVT-derived chronic pain signals into anxiety behaviors. Nat Commun. 2020;11:2501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bhatnagar S, Huber R, Lazar E, Pych L, Vining C. Chronic stress alters behavior in the conditioned defensive burying test: role of the posterior paraventricular thalamus. Pharmacol Biochem Behav. 2003;76:343–9.

    Article  CAS  PubMed  Google Scholar 

  43. Dong X, Li S, Kirouac GJ. A projection from the paraventricular nucleus of the thalamus to the shell of the nucleus accumbens contributes to footshock stress-induced social avoidance. Neurobiol Stress. 2020;13:100266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kirouac GJ. The paraventricular nucleus of the thalamus as an integrating and relay node in the brain anxiety network. Front Behav Neurosci. 2021;15:627633.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Johnson PL, Shekhar A. An animal model of panic vulnerability with chronic disinhibition of the dorsomedial/perifornical hypothalamus. Physiol Behav. 2012;107:686–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Li S, Kirouac GJ. Sources of inputs to the anterior and posterior aspects of the paraventricular nucleus of the thalamus. Brain Struct Funct. 2012;217:257–73.

    Article  PubMed  Google Scholar 

  47. Wall VL, Fischer EK, Bland ST. Isolation rearing attenuates social interaction-induced expression of immediate early gene protein products in the medial prefrontal cortex of male and female rats. Physiol Behav. 2012;107:440–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shimizu T, Minami C, Mitani A. Effect of electrical stimulation of the infralimbic and prelimbic cortices on anxiolytic-like behavior of rats during the elevated plus-maze test, with particular reference to multiunit recording of the behavior-associated neural activity. Behav Brain Res. 2018;353:168–75.

    Article  PubMed  Google Scholar 

  49. Zhu YB, Wang Y, Hua XX, Xu L, Liu MZ, Zhang R, et al. PBN-PVT projections modulate negative affective states in mice. Elife. 2022;11:e68372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Keay KA, Bandler R. Parallel circuits mediating distinct emotional coping reactions to different types of stress. Neurosci Biobehav Rev. 2001;25:669–78.

    Article  CAS  PubMed  Google Scholar 

  51. Cheng SJ, Chen CC, Yang HW, Chang YT, Bai SW, Chen CC, et al. Role of extracellular signal-regulated kinase in synaptic transmission and plasticity of a nociceptive input on capsular central amygdaloid neurons in normal and acid-induced muscle pain mice. J Neurosci. 2011;31:2258–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cheng YF, Chang YT, Chen WH, Shih HC, Chen YH, Shyu BC, et al. Cardioprotection induced in a mouse model of neuropathic pain via anterior nucleus of paraventricular thalamus. Nat Commun. 2017;8:826.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Vertes RP, Hoover WB. Projections of the paraventricular and paratenial nuclei of the dorsal midline thalamus in the rat. J Comp Neurol. 2008;508:212–37.

    Article  PubMed  Google Scholar 

  54. Zhang WT, Sha WL, Zhu Q, Wu XB, He C. Plasticity of neuronal excitability and synaptic balance in the anterior nucleus of paraventricular thalamus after nerve injury. Brain Res Bull. 2022;188:1–10.

    Article  PubMed  Google Scholar 

  55. Moga MM, Weis RP, Moore RY. Efferent projections of the paraventricular thalamic nucleus in the rat. J Comp Neurol. 1995;359:221–38.

    Article  CAS  PubMed  Google Scholar 

  56. Frassoni C, Spreafico R, Bentivoglio M. Glutamate, aspartate and co-localization with calbindin in the medial thalamus. An immunohistochemical study in the rat. Exp Brain Res. 1997;115:95–104.

    Article  CAS  PubMed  Google Scholar 

  57. Ahmed N, Headley DB, Pare D. Optogenetic study of central medial and paraventricular thalamic projections to the basolateral amygdala. J Neurophysiol. 2021;126:1234–47.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Fenster RJ, Lebois LAM, Ressler KJ, Suh J. Brain circuit dysfunction in post-traumatic stress disorder: from mouse to man. Nat Rev Neurosci. 2018;19:535–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Liang SH, Zhao WJ, Yin JB, Chen YB, Li JN, Feng B, et al. A neural circuit from thalamic paraventricular nucleus to central amygdala for the facilitation of neuropathic pain. J Neurosci. 2020;40:7837–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ji G, Sun H, Fu Y, Li Z, Pais-Vieira M, Galhardo V, et al. Cognitive impairment in pain through amygdala-driven prefrontal cortical deactivation. J Neurosci. 2010;30:5451–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhang MM, Geng AQ, Chen K, Wang J, Wang P, Qiu XT, et al. Glutamatergic synapses from the insular cortex to the basolateral amygdala encode observational pain. Neuron. 2022;110:1993–2008 e6.

    Article  CAS  PubMed  Google Scholar 

  62. Meng X, Yue L, Liu A, Tao W, Shi L, Zhao W, et al. Distinct basolateral amygdala excitatory inputs mediate the somatosensory and aversive-affective components of pain. J Biol Chem. 2022;298:102207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Luongo L, de Novellis V, Gatta L, Palazzo E, Vita D, Guida F, et al. Role of metabotropic glutamate receptor 1 in the basolateral amygdala-driven prefrontal cortical deactivation in inflammatory pain in the rat. Neuropharmacology. 2013;66:317–29.

    Article  CAS  PubMed  Google Scholar 

  64. Namburi P, Beyeler A, Yorozu S, Calhoon GG, Halbert SA, Wichmann R, et al. A circuit mechanism for differentiating positive and negative associations. Nature. 2015;520:675–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the following grants: the Clinical Science and Technology Innovation Program from Shanghai Shen Kang Hospital Development Center SHDC12016225 (to ZX), the National Natural Science Foundation of China 82001174 (to DL), and Shanghai Sailing Program 20YF1439100 (to DL).

Author information

Authors and Affiliations

Authors

Contributions

QQT, DL, and ZX designed the study; QQT, YW, QT, YS, and DL collected the data; QQT, YW, QT, and XA analyzed the data, DL and ZX revised paper critically for important intellectual content.

Corresponding authors

Correspondence to Di Liu or Zifeng Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, QQ., Wu, Y., Tao, Q. et al. Direct paraventricular thalamus-basolateral amygdala circuit modulates neuropathic pain and emotional anxiety. Neuropsychopharmacol. 49, 455–466 (2024). https://doi.org/10.1038/s41386-023-01748-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41386-023-01748-4

Search

Quick links