Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Psychosocial moderators of polygenic risk scores of inflammatory biomarkers in relation to GrimAge

A Correction to this article was published on 05 January 2024

This article has been updated

Abstract

GrimAge acceleration has previously predicted age-related morbidities and mortality. In the current study, we sought to examine how GrimAge is associated with genetic predisposition for systemic inflammation and whether psychosocial factors moderate this association. Military veterans from the National Health and Resilience in Veterans study, which surveyed a nationally representative sample of European American male veterans, provided saliva samples for genotyping (N = 1135). We derived polygenic risk scores (PRS) from the UK Biobank as markers of genetic predisposition to inflammation. Results revealed that PRS for three inflammatory PRS markers—HDL (lower), apolipoprotein B (lower), and gamma-glutamyl transferase (higher)—were associated with accelerated GrimAge. Additionally, these PRS interacted with a range of potentially modifiable psychosocial variables, such as exercise and gratitude, previously identified as associated with accelerated GrimAge. Using gene enrichment, we identified anti-inflammatory and antihistamine drugs that perturbate pathways of genes highly represented in the inflammatory PRS, laying the groundwork for future work to evaluate the potential of these drugs in mitigating epigenetic aging.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Scatterplots for PRS x environment interactions.

Similar content being viewed by others

Change history

References

  1. Kennedy BK, Berger SL, Brunet A, Campisi J, Cuervo AM, Epel ES, et al. Aging: a common driver of chronic diseases and a target for novel interventions. Cell. 2014;159:709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda S, et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell. 2013;49:359–67.

    Article  CAS  PubMed  Google Scholar 

  3. Horvath S. DNA methylation age of human tissues and cell types. Genome Biol. 2013;14:1–20.

    Article  Google Scholar 

  4. McCrory C, Fiorito G, Hernandez B, Polidoro S, O’Halloran AM, Hever A, et al. GrimAge outperforms other epigenetic clocks in the prediction of age-related clinical phenotypes and all-cause mortality. J Gerontol A Biol Sci Med Sci. 2021;76:741–9.

    Article  PubMed  Google Scholar 

  5. Oblak L, van der Zaag J, Higgins-Chen AT, Levine ME, Boks MP. A systematic review of biological, social and environmental factors associated with epigenetic clock acceleration. Ageing Res Rev. 2021;69:101348.

    Article  CAS  PubMed  Google Scholar 

  6. Lu AT, Quach A, Wilson JG, Reiner AP, Aviv A, Raj K, et al. DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging (Albany NY). 2019;11:303.

    Article  CAS  PubMed  Google Scholar 

  7. Li X, Ploner A, Wang Y, Magnusson PK, Reynolds C, Finkel D, et al. Longitudinal trajectories, correlations and mortality associations of nine biological ages across 20-years follow-up. Elife. 2020;9:e51507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tamman AJF, Nagamatsu S, Krystal JH, Gelernter J, Montalvo-Ortiz JL, Pietrzak RH. Psychosocial factors associated with accelerated GrimAge in male U.S. military veterans. Am J Geriatr Psychiatry. 2023;31:97–109.

    Article  PubMed  Google Scholar 

  9. Wolf EJ, Logue MW, Morrison FG, Wilcox ES, Stone A, Schichman SA, et al. Posttraumatic psychopathology and the pace of the epigenetic clock: a longitudinal investigation. Psychol Med. 2019;49:791–800.

    Article  PubMed  Google Scholar 

  10. Declerck K, Berghe WV. Back to the future: epigenetic clock plasticity towards healthy aging. Mech Ageing Dev. 2018;174:18–29.

    Article  PubMed  Google Scholar 

  11. Baylis D, Bartlett DB, Patel HP, Roberts HC. Understanding how we age: insights into inflammaging. Longev Healthspan. 2013;2:1–8.

    Article  Google Scholar 

  12. Dugué P-A, Hodge AM, Ulvik A, Ueland PM, Midttun Ø, Rinaldi S, et al. Association of markers of inflammation, the kynurenine pathway and B vitamins with age and mortality, and a signature of inflammaging. J Gerontol A Biol Sci Med Sci. 2022;77:826–36.

    Article  PubMed  Google Scholar 

  13. Ziv-Baran T, Shenhar-Tsarfaty S, Etz-Hadar I, Goldiner I, Gottreich A, Alcalay Y, et al. The ability of the wide range CRP assay to classify individuals with low grade inflammation into cardiovascular risk groups. Clin Chim Acta. 2017;471:185–90.

    Article  CAS  PubMed  Google Scholar 

  14. Miller AH. Beyond depression: the expanding role of inflammation in psychiatric disorders. World Psychiatry. 2020;19:108.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sommershof A, Aichinger H, Engler H, Adenauer H, Catani C, Boneberg E-M, et al. Substantial reduction of naive and regulatory T cells following traumatic stress. Brain Behav Immun. 2009;23:1117–24.

    Article  CAS  PubMed  Google Scholar 

  16. Miller MW, Lin AP, Wolf EJ, Miller DR. Oxidative stress, inflammation, and neuroprogression in chronic PTSD. Harv Rev Psychiatry. 2018;26:57.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Quach A, Levine ME, Tanaka T, Lu AT, Chen BH, Ferrucci L, et al. Epigenetic clock analysis of diet, exercise, education, and lifestyle factors. Aging (Albany NY). 2017;9:419.

    Article  CAS  PubMed  Google Scholar 

  18. Wolf EJ, Maniates H, Nugent N, Maihofer AX, Armstrong D, Ratanatharathorn A, et al. Traumatic stress and accelerated DNA methylation age: a meta-analysis. Psychoneuroendocrinology. 2018;92:123–34.

    Article  CAS  PubMed  Google Scholar 

  19. Horsburgh S, Robson-Ansley P, Adams R, Smith C. Exercise and inflammation-related epigenetic modifications: focus on DNA methylation. Exerc Immunol Rev. 2015;21:26–41.

    PubMed  Google Scholar 

  20. Irwin MR. Sleep and inflammation: partners in sickness and in health. Nat Rev Immunol. 2019;19:702–15.

    Article  CAS  PubMed  Google Scholar 

  21. Namba MD, Leyrer-Jackson JM, Nagy EK, Olive MF, Neisewander JL. Neuroimmune mechanisms as novel treatment targets for substance use disorders and associated comorbidities. Front Neurosci. 2021;15:427.

    Article  Google Scholar 

  22. Costello EJ, Copeland WE, Shanahan L, Worthman CM, Angold A. C-reactive protein and substance use disorders in adolescence and early adulthood: a prospective analysis. Drug Alcohol Depend. 2013;133:712–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Levine ME, Lu AT, Quach A, Chen BH, Assimes TL, Bandinelli S, et al. An epigenetic biomarker of aging for lifespan and healthspan. Aging (Albany NY). 2018;10:573.

    Article  PubMed  Google Scholar 

  24. Irvin MR, Aslibekyan S, Do A, Zhi D, Hidalgo B, Claas SA, et al. Metabolic and inflammatory biomarkers are associated with epigenetic aging acceleration estimates in the GOLDN study. Clin Epigenetics. 2018;10:9.

    Article  Google Scholar 

  25. Stevenson AJ, McCartney DL, Harris SE, Taylor AM, Redmond P, Starr JM, et al. Trajectories of inflammatory biomarkers over the eighth decade and their associations with immune cell profiles and epigenetic ageing. Clin Epigenetics. 2018;10:10.

    Article  Google Scholar 

  26. Cribb L, Hodge AM, Yu C, Li SX, English DR, Makalic E, et al. Inflammation and epigenetic aging are largely independent markers of biological aging and mortality. J Gerontol A Biol Sci Med Sci. 2022;77:2378–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hawn SE, Zhao X, Sullivan DR, Logue M, Fein-Schaffer D, Milberg W, et al. For whom the bell tolls: psychopathological and neurobiological correlates of a DNA methylation index of time-to-death. Transl Psychiatry. 2022;12:406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Verschoor CP, Vlasschaert C, Rauh MJ, Paré G. A DNA methylation based measure outperforms circulating CRP as a marker of chronic inflammation and partly reflects the monocytic response to long‐term inflammatory exposure: A Canadian longitudinal study of aging analysis. Aging Cell. 2023;22:e13863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shields GS, Slavich GM, Perlman G, Klein DN, Kotov R. The short-term reliability and long-term stability of salivary immune markers. Brain Behav Immun. 2019;81:650–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mason NL, Szabo A, Kuypers KP, Mallaroni PA, de la Torre R, Reckweg JT, et al. Psilocybin induces acute and persisting alterations in immune status in healthy volunteers: An experimental, placebo-controlled study. Brain Behav Immun. 2023;114:299–310.

  31. Mellner C, Dahlen M, Simonsson O. Association between lifetime classic psychedelic use and sick leave in a population-based sample. Int J Environ Res Public Health. 2022;19:11353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lee D-H, Ha M-H, Kim J-H, Christiani D, Gross M, Steffes M, et al. Gamma-glutamyltransferase and diabetes—a 4 year follow-up study. Diabetologia. 2003;46:359–64.

    Article  CAS  PubMed  Google Scholar 

  33. Jiang S, Jiang D, Tao Y. Role of gamma-glutamyltransferase in cardiovascular diseases. Exp Clin Cardiol. 2013;18:53.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Lee D-H, Blomhoff R, Jacobs DR. Review is serum gamma glutamyltransferase a marker of oxidative stress? Free Radic Res. 2004;38:535–9.

    Article  CAS  PubMed  Google Scholar 

  35. Silva IS, Ferraz MLC, Perez RM, Lanzoni VP, Figueiredo VM, Silva AE. Role of γ‐glutamyl transferase activity in patients with chronic hepatitis C virus infection. J Gastroenterol Hepatol. 2004;19:314–8.

    Article  CAS  PubMed  Google Scholar 

  36. Ndrepepa G, Colleran R, Kastrati A. Gamma-glutamyl transferase and the risk of atherosclerosis and coronary heart disease. Clin Chim Acta. 2018;476:130–8.

    Article  CAS  PubMed  Google Scholar 

  37. Kazemi-Shirazi L, Endler G, Winkler S, Schickbauer T, Wagner O, Marsik C. Gamma glutamyltransferase and long-term survival: is it just the liver? Clin Chem. 2007;53:940–6.

    Article  CAS  PubMed  Google Scholar 

  38. Ibrahim HA, Zhu Y, Wu C, Lu C, Ezekwe MO, Liao SF, et al. Selenium-enriched probiotics improves murine male fertility compromised by high fat diet. Biol Trace Elem Res. 2012;147:251–60.

    Article  CAS  PubMed  Google Scholar 

  39. Sedes L, Thirouard L, Maqdasy S, Garcia M, Caira F, Lobaccaro J-MA, et al. Cholesterol: a gatekeeper of male fertility? Front Endocrinol (Lausanne). 2018;9:369.

    Article  PubMed  Google Scholar 

  40. Miettinen HE, Rayburn H, Krieger M. Abnormal lipoprotein metabolism and reversible female infertility in HDL receptor (SR-BI)–deficient mice. J Clin Investig. 2001;108:1717–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bacchetti T, Morresi C, Vignini A, Tiano L, Orlando P, Montik N, et al. HDL functionality in follicular fluid in normal-weight and obese women undergoing assisted reproductive treatment. J Assist Reprod Genet. 2019;36:1657–64.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Rader DJ, Hovingh GK. HDL and cardiovascular disease. Lancet. 2014;384:618–25.

    Article  CAS  PubMed  Google Scholar 

  43. Bilski J, Mazur-Bialy A, Wojcik D, Zahradnik-Bilska J, Brzozowski B, Magierowski M, et al. The role of intestinal alkaline phosphatase in inflammatory disorders of gastrointestinal tract. Mediators Inflamm. 2017;2017:9074601.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Lallès J-P. Recent advances in intestinal alkaline phosphatase, inflammation, and nutrition. Nutr Rev. 2019;77:710–24.

    Article  PubMed  Google Scholar 

  45. Sheinenzon A, Shehadeh M, Michelis R, Shaoul E, Ronen O. Serum albumin levels and inflammation. Int J Biol Macromol. 2021;184:857–62.

    Article  CAS  PubMed  Google Scholar 

  46. Don BR, Kaysen G. Poor nutritional status and inflammation: serum albumin: relationship to inflammation and nutrition. In Seminars in dialysis. Oxford, UK: Blackwell Science Inc.; 2004. Vol. 17, pp. 432–37.

  47. Burger D, Dayer J-M. High-density lipoprotein-associated apolipoprotein AI: the missing link between infection and chronic inflammation? Autoimmun Rev. 2002;1:111–7.

    Article  CAS  PubMed  Google Scholar 

  48. Georgila K, Vyrla D, Drakos E. Apolipoprotein AI (ApoA-I), immunity, inflammation and cancer. Cancers (Basel). 2019;11:1097.

    Article  CAS  PubMed  Google Scholar 

  49. Singh D, Whooley MA, Ix JH, Ali S, Shlipak MG. Association of cystatin C and estimated GFR with inflammatory biomarkers: the Heart and Soul Study. Nephrol Dial Transplant. 2007;22:1087–92.

    Article  CAS  PubMed  Google Scholar 

  50. Yamada J, Tomiyama H, Yambe M, Koji Y, Motobe K, Shiina K, et al. Elevated serum levels of alanine aminotransferase and gamma glutamyltransferase are markers of inflammation and oxidative stress independent of the metabolic syndrome. Atherosclerosis. 2006;189:198–205.

    Article  CAS  PubMed  Google Scholar 

  51. Pelosi L, Giacinti C, Nardis C, Borsellino G, Rizzuto E, Nicoletti C, et al. Local expression of IGF‐1 accelerates muscle regeneration by rapidly modulating inflammatory cytokines and chemokines. FASEB J. 2007;21:1393–402.

    Article  CAS  PubMed  Google Scholar 

  52. Lang F, Leibrock C, Pandyra AA, Stournaras C, Wagner CA, Föller M. Phosphate homeostasis, inflammation and the regulation of FGF-23. Kidney Blood Press Res. 2018;43:1742–8.

    Article  CAS  PubMed  Google Scholar 

  53. Sokolove J, Johnson DS, Lahey LJ, Wagner CA, Cheng D, Thiele GM, et al. Rheumatoid factor as a potentiator of anti–citrullinated protein antibody–mediated inflammation in rheumatoid arthritis. Arthritis Rheumatol. 2014;66:813–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Liao C-H, Li H-Y, Yu H-J, Chiang H-S, Lin M-S, Hua C-H, et al. Low serum sex hormone-binding globulin: marker of inflammation? Clin Chim Acta. 2012;413:803–7.

    Article  CAS  PubMed  Google Scholar 

  55. Marioni RE, Shah S, McRae AF, Chen BH, Colicino E, Harris SE, et al. DNA methylation age of blood predicts all-cause mortality in later life. Genome Biol. 2015;16:1–12.

    Article  CAS  Google Scholar 

  56. Christiansen L, Lenart A, Tan Q, Vaupel JW, Aviv A, McGue M, et al. DNA methylation age is associated with mortality in a longitudinal Danish twin study. Aging Cell. 2016;15:149–54.

    Article  CAS  PubMed  Google Scholar 

  57. Perna L, Zhang Y, Mons U, Holleczek B, Saum K-U, Brenner H. Epigenetic age acceleration predicts cancer, cardiovascular, and all-cause mortality in a German case cohort. Clin Epigenetics. 2016;8:1–7.

    Article  Google Scholar 

  58. Tamman AJ, Nagamatsu S, Krystal JH, Gelernter J, Montalvo-Ortiz JL, Pietrzak RH. Psychosocial factors associated with accelerated GrimAge in male US military veterans. Am J Geriatr Psychiatry. 2023;31:97–109.

    Article  PubMed  Google Scholar 

  59. Nelson BW, Wright DB, Allen NB, Laurent HK. Maternal stress and social support prospectively predict infant inflammation. Brain Behav Immun. 2020;86:14–21.

    Article  PubMed  Google Scholar 

  60. Runsten S, Korkeila K, Koskenvuo M, Rautava P, Vainio O, Korkeila J. Can social support alleviate inflammation associated with childhood adversities? Nord J Psychiatry. 2014;68:137–44.

    Article  PubMed  Google Scholar 

  61. Tomfohr LM, Edwards KM, Madsen JW, Mills PJ. Social support moderates the relationship between sleep and inflammation in a population at high risk for developing cardiovascular disease. Psychophysiology. 2015;52:1689–97.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Yang YC, Schorpp K, Harris KM. Social support, social strain and inflammation: evidence from a national longitudinal study of US adults. Soc Sci Med. 2014;107:124–35.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Fogle BM, Tsai J, Mota N, Harpaz-Rotem I, Krystal JH, Southwick SM, et al. The national health and resilience in veterans study: a narrative review and future directions. Front Psychiatry. 2020;11:538218.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Consortium GP. A global reference for human genetic variation. Nature. 2015;526:68.

    Article  ADS  Google Scholar 

  65. Fuchsberger C, Abecasis GR, Hinds DA. minimac2: faster genotype imputation. Bioinformatics. 2014;31:782–4.

    Article  PubMed  PubMed Central  Google Scholar 

  66. McCarthy S, Das S, Kretzschmar W, Delaneau O, Wood AR, Teumer A, et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat Genet. 2016;48:1279–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Das S, Forer L, Schonherr S, Sidore C, Locke AE, Kwong A, et al. Next-generation genotype imputation service and methods. Nat Genet. 2016;48:1284–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, et al. The UK Biobank resource with deep phenotyping and genomic data. Nature. 2018;562:203–9.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  69. Choi SW, O’Reilly PF. PRSice-2: polygenic risk score software for biobank-scale data. Gigascience. 2019;8:giz082.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Chen W, Zeng Y, Suo C, Yang H, Chen Y, Hou C, et al. Genetic predispositions to psychiatric disorders and the risk of COVID-19. BMC Med. 2022;20:1–9.

    Article  Google Scholar 

  71. Mishra A, Macgregor S. VEGAS2: software for more flexible gene-based testing. Twin Res Hum Genet. 2015;18:86–91.

    Article  PubMed  Google Scholar 

  72. Napolitano F, Carrella D, Mandriani B, Pisonero-Vaquero S, Sirci F, Medina DL, et al. gene2drug: a computational tool for pathway-based rational drug repositioning. Bioinformatics. 2018;34:1498–505.

    Article  CAS  PubMed  Google Scholar 

  73. Subramanian A, Narayan R, Corsello S, Peck D, Natoli T, Lu X, et al. A next generation connectivity map: L1000 Platform and the first 1,000,000 profiles. Cell. 2017;171:1437–1452.e17.

  74. Tamman AJ, Nagamatsu S, Krystal JH, Gelernter J, Montalvo-Ortiz JL, Pietrzak RH. Psychosocial factors associated with accelerated GrimAge in male US military veterans. Am J Geriatric Psychiatry. 2022;31:97–109.

  75. Supek F, Bošnjak M, Škunca N, Šmuc T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One. 2011;6:e21800.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  76. Richardson TG, Wang Q, Sanderson E, Mahajan A, McCarthy MI, Frayling TM, et al. Effects of apolipoprotein B on lifespan and risks of major diseases including type 2 diabetes: a mendelian randomisation analysis using outcomes in first-degree relatives. Lancet Healthy Longev. 2021;2:e317–e26.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Lehavot K, Hoerster KD, Nelson KM, Jakupcak M, Simpson TL. Health indicators for military, veteran, and civilian women. Am J Prev Med. 2012;42:473–80.

    Article  PubMed  Google Scholar 

  78. Hoerster KD, Lehavot K, Simpson T, McFall M, Reiber G, Nelson KM. Health and health behavior differences: US Military, veteran, and civilian men. Am J Prev Med. 2012;43:483–9.

    Article  PubMed  Google Scholar 

  79. Fagundes CP, Brown RL, Chen MA, Murdock KW, Saucedo L, LeRoy A, et al. Grief, depressive symptoms, and inflammation in the spousally bereaved. Psychoneuroendocrinology. 2019;100:190–7.

    Article  PubMed  Google Scholar 

  80. Zannas AS, Arloth J, Carrillo-Roa T, Iurato S, Röh S, Ressler KJ, et al. Correction to: Lifetime stress accelerates epigenetic aging in an urban, African American cohort: relevance of glucocorticoid signaling. Genome Biol. 2018;19:1–1.

    Article  Google Scholar 

  81. Davis E, Humphreys K, McEwen L, Sacchet M, Camacho M, MacIsaac J, et al. Accelerated DNA methylation age in adolescent girls: associations with elevated diurnal cortisol and reduced hippocampal volume. Transl Psychiatry. 2017;7:e1223–e23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Silverman MN, Sternberg EM. Glucocorticoid regulation of inflammation and its functional correlates: from HPA axis to glucocorticoid receptor dysfunction. Ann N Y Acad Sci. 2012;1261:55–63.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  83. Tamman AJ, Wendt FR, Pathak GA, Krystal JH, Montalvo-Ortiz JL, Southwick SM, et al. Attachment style moderates polygenic risk for posttraumatic stress in United States military veterans: results from the national health and resilience in veterans study. Biol Psychiatry. 2021;89:878–87.

    Article  CAS  PubMed  Google Scholar 

  84. Higgins-Chen AT, Boks MP, Vinkers CH, Kahn RS, Levine ME. Schizophrenia and epigenetic aging biomarkers: increased mortality, reduced cancer risk, and unique clozapine effects. Biol Psychiatry. 2020;88:224–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Du J, Nakachi Y, Fujii A, Fujii S, Bundo M, Iwamoto K. Antipsychotics function as epigenetic age regulators in human neuroblastoma cells. Schizophrenia. 2022;8:69.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Fitzgerald KN, Hodges R, Hanes D, Stack E, Cheishvili D, Szyf M, et al. Potential reversal of epigenetic age using a diet and lifestyle intervention: a pilot randomized clinical trial. Aging (Albany NY). 2021;13:9419.

    Article  CAS  PubMed  Google Scholar 

  87. Fiorito G, Caini S, Palli D, Bendinelli B, Saieva C, Ermini I, et al. DNA methylation‐based biomarkers of aging were slowed down in a two‐year diet and physical activity intervention trial: the DAMA study. Aging Cell. 2021;20:e13439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Fahy GM, Brooke RT, Watson JP, Good Z, Vasanawala SS, Maecker H, et al. Reversal of epigenetic aging and immunosenescent trends in humans. Aging Cell. 2019;18:e13028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Cunningham JE, Shapiro CM. Cognitive behavioural therapy for insomnia (CBT-I) to treat depression: a systematic review. J Psychosom Res. 2018;106:1–12.

    Article  PubMed  Google Scholar 

  90. Irwin MR, Olmstead R, Breen EC, Witarama T, Carrillo C, Sadeghi N, et al. Cognitive behavioral therapy and tai chi reverse cellular and genomic markers of inflammation in late-life insomnia: a randomized controlled trial. Biol Psychiatry. 2015;78:721–29.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Simons RL, Lei M-K, Klopack E, Beach SR, Gibbons FX, Philibert RA. The effects of social adversity, discrimination, and health risk behaviors on the accelerated aging of African Americans: further support for the weathering hypothesis. Soc Sci Med. 2021;282:113169.

    Article  PubMed  Google Scholar 

  92. Sinnott-Armstrong N, Tanigawa Y, Amar D, Mars N, Benner C, Aguirre M, et al. Genetics of 35 blood and urine biomarkers in the UK Biobank. Nat Genet. 2021;53:185–94.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

RP would like to acknowledge the following funding sources: Horizon 2020 Marie Sklodowska-Curie Individual Fellowship (101028810), the National Institutes of Drug Abuse (R33 DA047527), the National Institute of Mental Health (RF1 MH132337).

Author information

Authors and Affiliations

Authors

Contributions

Formal analysis: AJFT, DK, RP, and SN; Investigation: RHP; Resources: RHP; Writing – original draft: AJFT, DK, and RHP; Visualization: AJFT, DK, and RHP; Writing – review and editing: RHP, JK, JG, JLMO, SN, CA, RP, and BCM; Supervision: RHP; Funding acquisition: RHP; Conceptualization: JK, AJFT, and RHP; Methodology: RP and JG.

Corresponding author

Correspondence to Amanda J. F. Tamman.

Ethics declarations

Competing interests

This manuscript contains original research, has not been published elsewhere and has not been submitted simultaneously for publication elsewhere. We have the following disclosures to report: JG is named as an inventor on PCT patent application #15/878,640 entitled: “Genotype-guided dosing of opioid agonists,” filed January 24, 2018. JG and RP are paid for their editorial work on the journal Complex Psychiatry. RP received a research grant from Alkermes. JHK has served as a scientific consultant to the following companies (the Individual Consultant Agreements listed are less than $5000 per year): AMGEN; AstraZeneca Pharmaceuticals; Bigen, Idec, MA; Biomedisyn Corporation; Forum Pharmaceuticals; Janssen Research & Development; Otsuka America Pharmaceutical, Inc.; Sunovion Pharmaceuticals, Inc.; Takeda Industries; Taisho Pharmaceutical Co., Ltd. He is on the Scientific Advisory Board for the following companies: Biohaven Pharmaceuticals; Blackthorn Therapeutics,Inc.; Lohocla Research Corporation; Luc Therapeutics, Inc.; Pfizer Pharmaceuticals; TRImaran Pharma. He holds stock in Biohaven Pharmaceuticals Medical Sciences and stock options in Blackthorn Therapeutics, Inc. and Luc Therapeutics, Inc. He is the editor of Biological Psychiatry (Income greater than $10,000). CGA has served as a consultant and/or on advisory boards for Aptinyx, Genentech, Janssen, Psilocybin Labs, Lundbeck, Guidepoint, and FSV7, and as editor of Chronic Stress for Sage Publications, Inc. He also filed a patent for using mTORC1 inhibitors to augment the effects of antidepressants (Aug 20, 2018). AJFT, BCM, DK, RHP, SN, and JLMO reported no biomedical financial interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: the author name Sheila Nagamatsu was incorrectly given as ‘Sheila Nagamastu’.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamman, A.J.F., Koller, D., Nagamatsu, S. et al. Psychosocial moderators of polygenic risk scores of inflammatory biomarkers in relation to GrimAge. Neuropsychopharmacol. 49, 699–708 (2024). https://doi.org/10.1038/s41386-023-01747-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41386-023-01747-5

Search

Quick links