Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Modulation of hippocampal activity in schizophrenia with levetiracetam: a randomized, double-blind, cross-over, placebo-controlled trial

Abstract

Hippocampal hyperactivity is a novel pharmacological target in the treatment of schizophrenia. We hypothesized that levetiracetam (LEV), a drug binding to the synaptic vesicle glycoprotein 2 A, normalizes hippocampal activity in persons with schizophrenia and can be measured using neuroimaging methods. Thirty healthy control participants and 30 patients with schizophrenia (28 treated with antipsychotic drugs), were randomly assigned to a double-blind, cross-over trial to receive a single administration of 500 mg oral LEV or placebo during two study visits. At each visit, we assessed hippocampal function using resting state fractional amplitude of low frequency fluctuations (fALFF), cerebral blood flow (CBF) with arterial spin labeling, and hippocampal blood-oxygen-level-dependent (BOLD) signal during a scene processing task. After placebo treatment, we found significant elevations in hippocampal fALFF in patients with schizophrenia, consistent with hippocampal hyperactivity. Additionally, hippocampal fALFF in patients with schizophrenia after LEV treatment did not significantly differ from healthy control participants receiving placebo, suggesting that LEV may normalize hippocampal hyperactivity. In contrast to our fALFF findings, we did not detect significant group differences or an effect of LEV treatment on hippocampal CBF. In the context of no significant group difference in BOLD signal, we found that hippocampal recruitment during scene processing is enhanced by LEV more significantly in schizophrenia. We conclude that pharmacological modulation of hippocampal hyperactivity in schizophrenia can be studied with some neuroimaging methods, but not others. Additional studies in different cohorts, employing alternate neuroimaging methods and study designs, are needed to establish levetiracetam as a treatment for schizophrenia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Study design.
Fig. 2: Hippocampal fALFF, but not rCBF or BOLD PSC, is increased in schizophrenia.
Fig. 3: LEV enhances recruitment in scene processing in schizophrenia.
Fig. 4: Hippocampal activity does not differ between patients treated with LEV and controls treated with placebo.

Similar content being viewed by others

References

  1. Schobel SA, Chaudhury NH, Khan UA, Paniagua B, Styner MA, Asllani I. et al. Imaging Patients with Psychosis and a Mouse Model Establishes a Spreading Pattern of Hippocampal Dysfunction and Implicates Glutamate as a Driver. Neuron. 2013;78:81–93. https://doi.org/10.1016/j.neuron.2013.02.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Modinos G, Şimşek F, Azis M, Bossong M, Bonoldi I, Samson C. et al. Prefrontal GABA levels, hippocampal resting perfusion and the risk of psychosis. Neuropsychopharmacology. 2018;43:2652–9. https://doi.org/10.1038/s41386-017-0004-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Schobel SA, Lewandowski NM, Corcoran CM, Moore H, Brown T, Malaspina D. et al. Differential targeting of the CA1 subfield of the hippocampal formation by schizophrenia and related psychotic disorders. Arch Gen Psychiatry. 2009;66:938–46. https://doi.org/10.1001/archgenpsychiatry.2009.115.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Talati P, Rane S, Kose S, Blackford JU, Gore J, Donahue MJ. et al. Increased hippocampal CA1 cerebral blood volume in schizophrenia. Neuroimage Clin. 2014;5:359–64. https://doi.org/10.1016/j.nicl.2014.07.004.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Stan AD, Ghose S, Zhao C, Hulsey K, Mihalakos P, Yanagi M. et al. Magnetic resonance spectroscopy and tissue protein concentrations together suggest lower glutamate signaling in dentate gyrus in schizophrenia. Mol Psychiatry. 2015;20:433–9. https://doi.org/10.1038/mp.2014.54.

    Article  CAS  PubMed  Google Scholar 

  6. Benes FM. Evidence for altered trisynaptic circuitry in schizophrenic hippocampus. Biol Psychiatry. 1999;46:589–99. https://doi.org/10.1016/S0006-3223(99)00136-5.

    Article  CAS  PubMed  Google Scholar 

  7. Heckers S, Konradi C. GABAergic mechanisms of hippocampal hyperactivity in schizophrenia. Schizophr Res. 2015;167:4–11. https://doi.org/10.1016/j.schres.2014.09.041.

    Article  PubMed  Google Scholar 

  8. Lodge DJ, Behrens MM, Grace AA. A loss of parvalbumin-containing interneurons is associated with diminished oscillatory activity in an animal model of schizophrenia. J Neurosci. 2009;29:2344–54. https://doi.org/10.1523/JNEUROSCI.5419-08.2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Grace AA, Gomes FV. The Circuitry of Dopamine System Regulation and its Disruption in Schizophrenia: Insights Into Treatment and Prevention. Schizophr Bull. 2018. https://doi.org/10.1093/schbul/sbx199.

  10. Kiemes A, Serrano Navacerrada ME, Kim E, Randall K, Simmons C, Rojo Gonzalez L. et al. Erbb4 Deletion From Inhibitory Interneurons Causes Psychosis-Relevant Neuroimaging Phenotypes. Schizophr Bull. 2023;49:569–80. https://doi.org/10.1093/SCHBUL/SBAC192.

    Article  PubMed  Google Scholar 

  11. Lisman JE, Coyle JT, Green RW, Javitt DC, Benes FM, Heckers S. et al. Circuit-based framework for understanding neurotransmitter and risk gene interactions in schizophrenia. Trends Neurosci. 2008;31:234–42. https://doi.org/10.1016/j.tins.2008.02.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Briend F, Nelson EA, Maximo O, Armstrong WP, Kraguljac NV, Lahti AC. Hippocampal glutamate and hippocampus subfield volumes in antipsychotic-naive first episode psychosis subjects and relationships to duration of untreated psychosis. Transl Psychiatry 2020;10. https://doi.org/10.1038/s41398-020-0812-z.

  13. Tamminga CA, Stan AD, Wagner AD. The hippocampal formation in schizophrenia. Am J Psychiatry. 2010;167:1178–93. https://doi.org/10.1176/appi.ajp.2010.09081187.

    Article  PubMed  Google Scholar 

  14. Lieberman JA, Girgis RR, Brucato G, Moore H, Provenzano F, Kegeles L. et al. Hippocampal dysfunction in the pathophysiology of schizophrenia: a selective review and hypothesis for early detection and intervention. Mol Psychiatry. 2018;23:1764–72. https://doi.org/10.1038/mp.2017.249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Roiser JP, Howes OD, Chaddock CA, Joyce EM, McGuire P. Neural and behavioral correlates of aberrant salience in individuals at risk for psychosis. Schizophr Bull. 2013;39:1328–36. https://doi.org/10.1093/schbul/sbs147.

    Article  PubMed  Google Scholar 

  16. Wolthusen RPF, Coombs G, Boeke EA, Ehrlich S, DeCross SN, Nasr S. et al. Correlation Between Levels of Delusional Beliefs and Perfusion of the Hippocampus and an Associated Network in a Non–Help-Seeking Population. Biol Psychiatry Cogn Neurosci Neuroimaging. 2018;3:178–86. https://doi.org/10.1016/j.bpsc.2017.06.007.

    Article  PubMed  Google Scholar 

  17. Makowski C, Bodnar M, Shenker JJ, Malla AK, Joober R, Chakravarty MM, et al. Linking persistent negative symptoms to amygdala–hippocampus structure in first-episode psychosis. Transl Psychiatry 2017;7. https://doi.org/10.1038/tp.2017.168.

  18. Achim AM, Lepage M. Episodic memory-related activation in schizophrenia: Meta-analysis. Br J Psychiatry. 2005;187:500–9. https://doi.org/10.1192/bjp.187.6.500.

    Article  PubMed  Google Scholar 

  19. Ranganath C, Minzenberg MJ, Ragland JD. The Cognitive Neuroscience of Memory Function and Dysfunction in Schizophrenia. Biol Psychiatry. 2008;64:18–25. https://doi.org/10.1016/j.biopsych.2008.04.011.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Guo JY, Ragland JD, Carter CS. Memory and cognition in schizophrenia. Mol Psychiatry. 2019;24:633–42. https://doi.org/10.1038/s41380-018-0231-1.

    Article  CAS  PubMed  Google Scholar 

  21. Heckers S, Rauch SL, Goff D, Savage CR, Schacter DL, Fischman AJ. et al. Impaired recruitment of the hippocampus during conscious recollection in schizophrenia. Nat Neurosci. 1998. 10.1038/1137.

  22. McHugo M, Talati P, Armstrong K, Vandekar SN, Blackford JU, Woodward ND. et al. Hyperactivity and reduced activation of anterior hippocampus in early psychosis. Am J Psychiatry. 2019;176:1030–8. https://doi.org/10.1176/appi.ajp.2019.19020151.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Tregellas JR. Neuroimaging biomarkers for early drug development in schizophrenia. Biol Psychiatry. 2014;76:111–9. https://doi.org/10.1016/j.biopsych.2013.08.025.

    Article  CAS  PubMed  Google Scholar 

  24. Löscher W, Gillard M, Sands ZA, Kaminski RM, Klitgaard H. Synaptic Vesicle Glycoprotein 2A Ligands in the Treatment of Epilepsy and Beyond. CNS Drugs. 2016;30:1055–77. https://doi.org/10.1007/S40263-016-0384-X.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lynch BA, Lambeng N, Nocka K, Kensel-Hammes P, Bajjalieh SM, Matagne A. et al. The synaptic vesicle is the protein SV2A is the binding site for the antiepileptic drug levetiracetam. Proc Natl Acad Sci USA. 2004;101:9861–6. https://doi.org/10.1073/pnas.0308208101.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Koh MT, Shao Y, Rosenzweig-Lipson S, Gallagher M. Treatment with levetiracetam improves cognition in a ketamine rat model of schizophrenia. Schizophr Res. 2018;193:119–25. https://doi.org/10.1016/j.schres.2017.06.027.

    Article  PubMed  Google Scholar 

  27. Cavichioli AM, Santos-Silva T, Grace AA, Guimarães FS, Gomes FV. Levetiracetam Attenuates Adolescent Stress-induced Behavioral and Electrophysiological Changes Associated With Schizophrenia in Adult Rats. Schizophr Bull 2022. https://doi.org/10.1093/schbul/sbac106.

  28. Behdani F, Hassanzadeh B, Eslamzadeh M, Moradi M, Hebrani P, Dadgarmoghaddam M. et al. Can levetiracetam improve clinical symptoms in schizophrenic patients? A randomized placebo-controlled clinical trial. Int Clin Psychopharmacol. 2022;37:159–65. https://doi.org/10.1097/YIC.0000000000000405.

    Article  PubMed  Google Scholar 

  29. McHugo M, Rogers BP, Avery SN, Armstrong K, Blackford JU, Vandekar SN. et al. Increased amplitude of hippocampal low frequency fluctuations in early psychosis: A two-year follow-up study. Schizophr Res. 2022;241:260–6. https://doi.org/10.1016/J.SCHRES.2022.02.003.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Mathalon DH, Sohal VS. Neural Oscillations and Synchrony in Brain Dysfunction and Neuropsychiatric Disorders: It’s About Time. JAMA Psychiatry. 2015;72:840–4. https://doi.org/10.1001/JAMAPSYCHIATRY.2015.0483.

    Article  PubMed  Google Scholar 

  31. Niessing J, Ebisch B, Schmidt KE, Niessing M, Singer W, Galuske RAW. Neuroscience: Hemodynamic signals correlate tightly with synchronized gamma oscillations. Science. 2005;309:948–51. https://doi.org/10.1126/SCIENCE.1110948/SUPPL_FILE/NIESSING.SOM.PDF.

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Hare SM, Law AS, Ford JM, Mathalon DH, Ahmadi A, Damaraju E. et al. Disrupted Network Cross Talk, Hippocampal Dysfunction and Hallucinations in Schizophrenia. Schizophr Res. 2018;199:226 https://doi.org/10.1016/J.SCHRES.2018.03.004.

    Article  PubMed  PubMed Central  Google Scholar 

  33. McHugo M, Rogers BP, Talati P, Woodward ND, Heckers S. Increased amplitude of low frequency fluctuations but normal hippocampal-default mode network connectivity in schizophrenia. Front Psychiatry. 2015;6:92 https://doi.org/10.3389/FPSYT.2015.00092/BIBTEX.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Tang Y, Zhou Q, Chang M, Chekroud A, Gueorguieva R, Jiang X. et al. Altered functional connectivity and low-frequency signal fluctuations in early psychosis and genetic high risk. Schizophr Res. 2019;210:172–9. https://doi.org/10.1016/J.SCHRES.2018.12.041.

    Article  PubMed  Google Scholar 

  35. Turner JA, Damaraju E, Van Erp TGM, Mathalon DH, Ford JM, Voyvodic J. et al. A multi-site resting state fMRI study on the amplitude of low frequency fluctuations in schizophrenia. Front Neurosci. 2013;7:47140 https://doi.org/10.3389/FNINS.2013.00137/BIBTEX.

    Article  Google Scholar 

  36. Hoptman MJ, Zuo XN, Butler PD, Javitt DC, D’Angelo D, Mauro CJ. et al. Amplitude of low-frequency oscillations in schizophrenia: A resting state fMRI study. Schizophr Res. 2010;117:13–20. https://doi.org/10.1016/J.SCHRES.2009.09.030.

    Article  PubMed  Google Scholar 

  37. Zou QH, Zhu CZ, Yang Y, Zuo XN, Long XY, Cao QJ. et al. An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: Fractional ALFF. J Neurosci Methods. 2008;172:137–41. https://doi.org/10.1016/J.JNEUMETH.2008.04.012.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Borogovac A, Asllani I. Arterial spin labeling (ASL) fMRI: Advantages, theoretical constrains and experimental challenges in neurosciences. Int J Biomed Imaging 2012;2012. https://doi.org/10.1155/2012/818456.

  39. Petcharunpaisan S, Ramalho J, Castillo M. Arterial spin labeling in neuroimaging. World J Radiol. 2010;2:384 https://doi.org/10.4329/WJR.V2.I10.384.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Scheef L, Manka C, Daamen M, Kühn KU, Maier W, Schild HH. et al. Resting-state perfusion in nonmedicated schizophrenic patients: A continuous arterial spin-labeling 3.0-T MR study. Radiology. 2010;256:253–60. https://doi.org/10.1148/radiol.10091224.

    Article  PubMed  Google Scholar 

  41. Pinkham A, Loughead J, Ruparel K, Wu WC, Overton E, Gur R. et al. Resting quantitative cerebral blood flow in schizophrenia measured by pulsed arterial spin labeling perfusion MRI. Psychiatry Res Neuroimaging. 2011;194:64–72. https://doi.org/10.1016/j.pscychresns.2011.06.013.

    Article  Google Scholar 

  42. Walther S, Federspiel A, Horn H, Razavi N, Wiest R, Dierks T. et al. Resting state cerebral blood flow and objective motor activity reveal basal ganglia dysfunction in schizophrenia. Psychiatry Res Neuroimaging. 2011;192:117–24. https://doi.org/10.1016/j.pscychresns.2010.12.002.

    Article  Google Scholar 

  43. Kindler J, Jann K, Homan P, Hauf M, Walther S, Strik W. et al. Static and dynamic characteristics of cerebral blood flow during the resting state in schizophrenia. Schizophr Bull. 2015;41:163–70. https://doi.org/10.1093/schbul/sbt180.

    Article  PubMed  Google Scholar 

  44. Ota M, Ishikawa M, Sato N, Okazaki M, Maikusa N, Hori H, et al. Pseudo-continuous arterial spin labeling MRI study of schizophrenic patients. Schizophr Res. 2014;154:113–8. https://doi.org/10.1016/j.schres.2014.01.035.

    Article  PubMed  Google Scholar 

  45. Selvaggi P, Jauhar S, Kotoula V, Pepper F, Veronese M, Santangelo B, et al. Reduced cortical cerebral blood flow in antipsychotic-free first-episode psychosis and relationship to treatment response. Psychol Med. 2022:1–11. https://doi.org/10.1017/S0033291722002288.

  46. Lahti AC, Holcomb HH, Weiler MA, Medoff DR, Tamminga CA. Functional effects of antipsychotic drugs: comparing clozapine with haloperidol. Biol Psychiatry. 2003;53:601–8. https://doi.org/10.1016/S0006-3223(02)01602-5.

    Article  CAS  PubMed  Google Scholar 

  47. Medoff DR, Holcomb HH, Lahti AC, Tamminga CA. Probing the human hippocampus using rCBF: Contrasts in schizophrenia. Hippocampus. 2001;11:543–50. https://doi.org/10.1002/HIPO.1070.

    Article  CAS  PubMed  Google Scholar 

  48. Alsop DC, Detre JA, Golay X, Günther M, Hendrikse J, Hernandez-Garcia L. et al. Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: A consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia. Magn Reson Med. 2015;73:102–16. https://doi.org/10.1002/mrm.25197.

    Article  PubMed  Google Scholar 

  49. Seldin K, Armstrong K, Schiff ML, Heckers S. Reducing the Diagnostic Heterogeneity of Schizoaffective Disorder. Front Psychiatry 2017;8. https://doi.org/10.3389/FPSYT.2017.00018.

  50. Dale AM, Fischl B, Sereno MI. Cortical surface-based analysis: I. Segmentation and surface reconstruction. Neuroimage. 1999;9:179–94. https://doi.org/10.1006/nimg.1998.0395.

    Article  CAS  PubMed  Google Scholar 

  51. Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C. et al. Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain. Neuron. 2002;33:341–55. https://doi.org/10.1016/S0896-6273(02)00569-X.

    Article  CAS  PubMed  Google Scholar 

  52. Iglesias JE, Augustinack JC, Nguyen K, Player CM, Player A, Wright M. et al. A computational atlas of the hippocampal formation using ex vivo, ultra-high resolution MRI: Application to adaptive segmentation of in vivo MRI. Neuroimage. 2015;115:117–37. https://doi.org/10.1016/j.neuroimage.2015.04.042.

    Article  PubMed  Google Scholar 

  53. Woolard AA, Heckers S. Anatomical and functional correlates of human hippocampal volume asymmetry. Psychiatry Res Neuroimaging. 2012;201:48–53. https://doi.org/10.1016/j.pscychresns.2011.07.016.

    Article  Google Scholar 

  54. Taylor PA, Saad ZS. FATCAT: (an efficient) Functional and Tractographic Connectivity Analysis Toolbox. Brain Connect. 2013;3:523–35. https://doi.org/10.1089/BRAIN.2013.0154.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Buxton RB, Frank LR, Wong EC, Siewert B, Warach S, Edelman RR. A general kinetic model for quantitative perfusion imaging with arterial spin labeling. Magn Reson Med. 1998. https://doi.org/10.1002/mrm.1910400308.

  56. McHugo M, Avery S, Armstrong K, Rogers BP, Vandekar SN, Woodward ND, et al. Anterior hippocampal dysfunction in early psychosis: a 2-year follow-up study. Psychol Med. 2021:1–10. https://doi.org/10.1017/S0033291721001318.

  57. Bates D, Machler M, Bolker B, Walker S. Fitting Linear Mixed-Effects Models Using lme4. J Stat Softw. 2015;67:1–48.

    Article  Google Scholar 

  58. Fox J, Weisberg S. Package ‘car’. Companion to Applied Regression, Second Edition. 2011.

  59. Kindler J, Schultze-Lutter F, Hauf M, Dierks T, Federspiel A, Walther S, et al. Increased Striatal and Reduced Prefrontal Cerebral Blood Flow in Clinical High Risk for Psychosis. Schizophr Bull. 2018;44:182 https://doi.org/10.1093/SCHBUL/SBX070.

    Article  PubMed  Google Scholar 

  60. Oliveira ÍAF, Guimarães TM, Souza RM, dos Santos AC, Machado-de-Sousa JP, Hallak JEC, et al. Brain functional and perfusional alterations in schizophrenia: an arterial spin labeling study. Psychiatry Res Neuroimaging. 2018;272:71–8. https://doi.org/10.1016/J.PSCYCHRESNS.2017.12.001.

    Article  PubMed  Google Scholar 

  61. Allen P, Chaddock CA, Egerton A, Howes OD, Bonoldi I, Zelaya F, et al. Resting hyperperfusion of the hippocampus, midbrain, and basal ganglia in people at high risk for psychosis. Am J Psychiatry. 2016;173:392–9. https://doi.org/10.1176/APPI.AJP.2015.15040485/ASSET/IMAGES/LARGE/APPI.AJP.2015.15040485F2.JPEG.

    Article  PubMed  Google Scholar 

  62. Allen P, Azis M, Modinos G, Bossong MG, Bonoldi I, Samson C, et al. Increased Resting Hippocampal and Basal Ganglia Perfusion in People at Ultra High Risk for Psychosis: Replication in a Second Cohort. Schizophr Bull. 2018;44:1323. https://doi.org/10.1093/SCHBUL/SBX169.

    Article  PubMed  Google Scholar 

  63. Handley R, Zelaya FO, Reinders AATS, Marques TR, Mehta MA, O’Gorman R, et al. Acute effects of single‐dose aripiprazole and haloperidol on resting cerebral blood flow (rCBF) in the human brain. Hum Brain Mapp. 2013;34:272. https://doi.org/10.1002/HBM.21436.

    Article  PubMed  Google Scholar 

  64. Ragland JD, Layher E, Hannula DE, Niendam TA, Lesh TA, Solomon M, et al. Impact of schizophrenia on anterior and posterior hippocampus during memory for complex scenes. Neuroimage Clin. 2017;13:82–8. https://doi.org/10.1016/J.NICL.2016.11.017.

    Article  CAS  PubMed  Google Scholar 

  65. Kelly AMC, Garavan H. Human functional neuroimaging of brain changes associated with practice. Cereb Cortex. 2005;15:1089–102. https://doi.org/10.1093/CERCOR/BHI005.

    Article  PubMed  Google Scholar 

  66. Onwordi EC, Halff EF, Whitehurst T, Mansur A, Cotel MC, Wells L, et al. Synaptic density marker SV2A is reduced in schizophrenia patients and unaffected by antipsychotics in rats. Nat Commun. 2020. https://doi.org/10.1038/s41467-019-14122-0.

  67. Radhakrishnan R, Skosnik PD, Ranganathan M, Naganawa M, Toyonaga T, Finnema S, et al. In vivo evidence of lower synaptic vesicle density in schizophrenia. Mol Psychiatry. 2021;26:7690–8. https://doi.org/10.1038/S41380-021-01184-0.

    Article  PubMed  Google Scholar 

  68. Howes OD, Cummings C, Chapman GE, Shatalina E. Neuroimaging in schizophrenia: an overview of findings and their implications for synaptic changes. Neuropsychopharmacology. 2022. https://doi.org/10.1038/s41386-022-01426-x.

  69. Onwordi EC, Whitehurst T, Shatalina E, Mansur A, Arumuham A, Osugo M, et al. Synaptic Terminal Density Early in the Course of Schizophrenia: an in vivo UCB-J Positron Emission Tomographic Imaging Study of Synaptic Vesicle Glycoprotein 2A (SV2A). Biol Psychiatry. 2023. https://doi.org/10.1016/J.BIOPSYCH.2023.05.022.

  70. Yoon JH, Zhang Z, Mormino E, Davidzon G, Minzenberg MJ, Ballon J, et al. Reductions in synaptic marker SV2A in early-course Schizophrenia. J Psychiatr Res. 2023;161:213–7. https://doi.org/10.1016/J.JPSYCHIRES.2023.02.026.

    Article  PubMed  Google Scholar 

  71. Bakker A, Krauss GL, Albert MS, Speck CL, Jones LR, Stark CE, et al. Reduction of Hippocampal Hyperactivity Improves Cognition in Amnestic Mild Cognitive Impairment. Neuron. 2012;74:467–74. https://doi.org/10.1016/j.neuron.2012.03.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bakker A, Albert MS, Krauss G, Speck CL, Gallagher M. Response of the medial temporal lobe network in amnestic mild cognitive impairment to therapeutic intervention assessed by fMRI and memory task performance. Neuroimage Clin. 2015;7:688–98. https://doi.org/10.1016/j.nicl.2015.02.009.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Lyseng-Williamson KA. Levetiracetam: A review of its use in epilepsy. Drugs. 2011;71:489–514. https://doi.org/10.2165/11204490-000000000-00000.

    Article  CAS  PubMed  Google Scholar 

  74. Smucny J, Olincy A, Rojas DC, Tregellas JR. Neuronal effects of nicotine during auditory selective attention in schizophrenia. Hum Brain Mapp. 2016;37:410–21. https://doi.org/10.1002/hbm.23040.

    Article  PubMed  Google Scholar 

  75. Kätzel D, Wolff AR, Bygrave AM, Bannerman DM. Hippocampal Hyperactivity as a Druggable Circuit-Level Origin of Aberrant Salience in Schizophrenia. Front Pharmacol 2020;11. https://doi.org/10.3389/FPHAR.2020.486811.

Download references

Funding

Funding

Research reported in this publication was supported by the Charlotte and Donald Test Fund, the Vanderbilt Psychiatric Genotype/Phenotype Project, the National Institute of Mental Health (NIMH) grants R01-MH70560 (SH) and F30-MH125507 (MJR), the National Institute of General Medical Sciences (NIGMS) grant T32-GM007347, and the Vanderbilt Institute for Clinical and Translational Research (through grant UL1-TR000445 from the National Center for Research Resources/NIH).

Author information

Authors and Affiliations

Authors

Contributions

Study concept, design, and acquisition of funding: MJR and SH. Participant recruitment: MJR, KA, and SH. Acquisition and processing of data: MJR, MM, BR, MD, and SH. Statistical analyses and interpretation of data: MJR, MM, SA, MD, SH. Drafting of manuscript: MJR and SH. Critical revision of manuscript: MJR, MM, BR, KA, SA, MD, SH. Study supervision: SH. All authors read and approve the manuscript and vouch for the adherence of the trial to the protocol, the accuracy of the data and analyses, and reporting of adverse events.

Corresponding author

Correspondence to Maxwell J. Roeske.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roeske, M.J., McHugo, M., Rogers, B. et al. Modulation of hippocampal activity in schizophrenia with levetiracetam: a randomized, double-blind, cross-over, placebo-controlled trial. Neuropsychopharmacol. 49, 681–689 (2024). https://doi.org/10.1038/s41386-023-01730-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41386-023-01730-0

Search

Quick links