Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Delayed estrogen actions diminish food consumption without changing food approach, motor activity, or hypothalamic activation elicited by corticostriatal µ-opioid signaling

Abstract

Mu-opioid receptor (μ-OR) signaling in forebrain sites including nucleus accumbens (Acb) and ventromedial prefrontal cortex (vmPFC) modulates reward-driven feeding and may play a role in the pathophysiology of disordered eating. In preclinical models, intra-Acb or intra-vmPFC μ-OR stimulation causes overeating and vigorous responding for food rewards. These effects have been studied mainly in male animals, despite demonstrated sex differences and estrogen modulation of central reward systems. Hence, the present study investigated sex differences and estrogen modulation of intra-Acb and intra-vmPFC μ-OR-driven feeding behaviors. First, the dose-related effects of intra-Acb and intra-vmPFC infusions of the μ-OR-selective agonist, DAMGO, were compared among intact female, ovariectomized (OVX) female, and intact male rats. The DAMGO feeding dose-effect function was flattened in intact females relative to the robust, dose-dependent effects observed in OVX females and intact males. Thus, in intact females, intra-Acb DAMGO failed to elevate food intake relative to vehicle, while intra-vmPFC DAMGO elevated food intake, but to a smaller degree compared to males and OVX females. Next, to explore the possible role of estrogen in mediating the diminished DAMGO response observed in intact females, OVX rats were given intra-Acb or intra-vmPFC infusions of DAMGO either immediately after a subcutaneous injection of 17-beta-estradiol 3-benzoate (EB; 5 μg/0.1 mL) or 24 h after EB injection. Intra-Acb DAMGO effects were not changed at the immediate post-EB time point. At the delayed post-EB timepoint, significant lordosis was noted and the duration of intra-Acb DAMGO-driven feeding bouts was significantly reduced, with no change in the number of bouts initiated, locomotor hyperactivity, or Fos immunoreactivity in hypothalamic feeding and arousal systems. Similarly, EB failed to alter the motor-activational effects of intra-vmPFC DAMGO while reducing feeding. These findings indicate that delayed, presumably genomically mediated estrogen actions modulate the μ-OR-generated motivational state by reducing consummatory activity while sparing goal-approach and general arousal/activity. The results additionally suggest that EB regulation of consummatory activity occurs outside of forebrain-μ-OR control of hypothalamic systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: DAMGO microinfusion sites.
Fig. 2: DAMGO dose–response profiles in intact female, OVX female, and intact male rats.
Fig. 3: EB modulation of DAMGO-driven feeding in OVX female rats.
Fig. 4: Effects of EB and DAMGO on non-ingestive behaviors in OVX female rats.
Fig. 5: Intra-Acb DAMGO-driven Fos immunoreactivity in the hypothalamus of OVX female rats, 24 h after EB.

Similar content being viewed by others

References

  1. Bodnar RJ, Lamonte N, Israel Y, Kandov Y, Ackerman TF, Khaimova E. Reciprocal opioid–opioid interactions between the ventral tegmental area and nucleus accumbens regions in mediating μ agonist-induced feeding in rats. Peptides. 2005;26:621–9.

    CAS  PubMed  Google Scholar 

  2. Zhang M, Kelley AE. Enhanced intake of high-fat food following striatal mu-opioid stimulation: microinjection mapping and Fos expression. Neuroscience. 2000;99:267–77.

    CAS  PubMed  Google Scholar 

  3. Peciña S, Berridge KC. Hedonic hot spot in nucleus accumbens shell: where do -opioids cause increased hedonic impact of sweetness? J Neurosci. 2005;25:11777–86.

    PubMed  PubMed Central  Google Scholar 

  4. Stratford TR, Wirtshafter D. Effects of muscimol, amphetamine, and DAMGO injected into the nucleus accumbens shell on food-reinforced lever pressing by undeprived rats. Pharm Biochem Behav. 2012;101:499–503.

    CAS  Google Scholar 

  5. Zhang M, Balmadrid C, Kelley AE. Nucleus accumbens opioid, GABAergic, and dopaminergic modulation of palatable food motivation: contrasting effects revealed by a progressive ratio study in the rat. Behav Neurosci. 2003;117:202–11.

    CAS  PubMed  Google Scholar 

  6. Castro DC, Berridge KC. Opioid and orexin hedonic hotspots in rat orbitofrontal cortex and insula. Proc Natl Acad Sci. 2017;114:E9125–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Mena JD, Sadeghian K, Baldo BA. Induction of hyperphagia and carbohydrate intake by μ-opioid receptor stimulation in circumscribed regions of frontal cortex. J Neurosci. 2011;31:3249–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Selleck RA, Lake C, Estrada V, Riederer J, Andrzejewski M, Sadeghian K, et al. Endogenous opioid signaling in the medial prefrontal cortex is required for the expression of hunger-induced impulsive action. Neuropsychopharmacology. 2015;40:2464.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Tuulari JJ, Tuominen L, Boer FE, de, Hirvonen J, Helin S, Nuutila P, et al. Feeding releases endogenous opioids in humans. J Neurosci. 2017;37:8284–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Nummenmaa L, Saanijoki T, Tuominen L, Hirvonen J, Tuulari JJ, Nuutila P, et al. μ-opioid receptor system mediates reward processing in humans. Nat Commun. 2018;9:1500.

    PubMed  PubMed Central  Google Scholar 

  11. Bencherif B, Guarda AS, Colantuoni C, Ravert HT, Dannals RF, Frost JJ. Regional mu-opioid receptor binding in insular cortex is decreased in bulimia nervosa and correlates inversely with fasting behavior. J Nucl Med. 2005;46:1349–51.

    CAS  PubMed  Google Scholar 

  12. Karlsson HK, Tuominen L, Tuulari JJ, Hirvonen J, Parkkola R, Helin S, et al. Obesity is associated with decreased μ-opioid but unaltered dopamine D2 receptor availability in the brain. J Neurosci. 2015;35:3959–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Serdarevic M, Striley CW, Cottler LB. Sex differences in prescription opioid use. Curr Opin Psychiatr. 2017;30:238–46.

    Google Scholar 

  14. Hernandez-Avila CA, Rounsaville BJ, Kranzler HR. Opioid-, cannabis- and alcohol-dependent women show more rapid progression to substance abuse treatment. Drug Alcohol Depend. 2004;74:265–72.

    CAS  PubMed  Google Scholar 

  15. Barbosa-Leiker C, McPherson S, Layton ME, Burduli E, Roll JM, Ling W. Sex differences in opioid use and medical issues during buprenorphine/naloxone treatment. Am J Drug Alcohol Abus. 2018;44:488–96.

    Google Scholar 

  16. Kennedy AP, Epstein DH, Phillips KA, Preston KL. Sex differences in cocaine/heroin users: drug-use triggers and craving in daily life. Drug Alcohol Depend. 2013;132:29–37.

    PubMed  PubMed Central  Google Scholar 

  17. Dahan A, Kest B, Waxman AR, Sarton E. Sex-specific responses to opiates: animal and human studies. Anesthesia Analg. 2008;107:83–95.

    CAS  Google Scholar 

  18. Yoest KE, Cummings JA, Becker JB. Estradiol, dopamine and motivation. Cent Nerv Syst Agents Med Chem. 2014;14:83–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Yoest KE, Cummings JA, Becker JB. Oestradiol influences on dopamine release from the nucleus accumbens shell: sex differences and the role of selective oestradiol receptor subtypes. Br J Pharm. 2019;176:4136–48.

    CAS  Google Scholar 

  20. Yoest KE, Quigley JA, Becker JB. Rapid effects of ovarian hormones in dorsal striatum and nucleus accumbens. Horm Behav. 2018;104:119–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Becker JB, Beer ME. The influence of estrogen on nigrostriatal dopamine activity behavioral and neurochemical evidence for both pre- and postsynaptic components. Behav Brain Res. 1986;19:27–33.

    CAS  PubMed  Google Scholar 

  22. Becker JB. Direct effect of 17β‐estradiol on striatum: sex differences in dopamine release. Synapse 1990;5:157–64.

    CAS  PubMed  Google Scholar 

  23. Becker JB. Estrogen rapidly potentiates amphetamine-induced striatal dopamine release and rotational behavior during microdialysis. Neurosci Lett. 1990;118:169–71.

    CAS  PubMed  Google Scholar 

  24. Peart DR, Andrade AK, Logan CN, Knackstedt LA, Murray JE. Regulation of cocaine-related behaviours by estrogen and progesterone. Neurosci Biobehav Rev. 2022;135:104584.

    CAS  PubMed  Google Scholar 

  25. Hanlon EC, Baldo BA, Sadeghian K, Kelley AE. Increases in food intake or food-seeking behavior induced by GABAergic, opioid, or dopaminergic stimulation of the nucleus accumbens: is it hunger? Psychopharmacology. 2004;172:241–7.

    CAS  PubMed  Google Scholar 

  26. Berridge KC, Venier IL, Robinson TE. Taste reactivity analysis of 6-hydroxydopamine-induced aphagia: implications for arousal and anhedonia hypotheses of dopamine function. Behav Neurosci. 1989;103:36–45.

    CAS  PubMed  Google Scholar 

  27. Castro DC, Berridge KC. Opioid hedonic hotspot in nucleus accumbens shell: Mu, Delta, and Kappa maps for enhancement of sweetness “liking” and “wanting”. J Neurosci. 2014;34:4239–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Castro DC, Cole SL, Berridge KC. Lateral hypothalamus, nucleus accumbens, and ventral pallidum roles in eating and hunger: interactions between homeostatic and reward circuitry. Front Syst Neurosci. 2015;9:90.

    PubMed  PubMed Central  Google Scholar 

  29. Baldo BA, Kelley AE. Discrete neurochemical coding of distinguishable motivational processes: insights from nucleus accumbens control of feeding. Psychopharmacology. 2007;191:439–59.

    CAS  PubMed  Google Scholar 

  30. Newman S, Pascal L, Sadeghian K, Baldo BA. Sweetened-fat intake sensitizes gamma-aminobutyric acid—mediated feeding responses elicited from the nucleus accumbens shell. Biol Psychiatry. 2013;73:843–50.

    CAS  PubMed  Google Scholar 

  31. Balthazart J, Choleris E, Remage-Healey L. Steroids and the brain: 50 years of research, conceptual shifts and the ascent of non-classical and membrane-initiated actions. Horm Behav. 2018;99:1–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Vasudevan N, Pfaff DW. Non-genomic actions of estrogens and their interaction with genomic actions in the brain. Front Neuroendocr. 2008;29:238–57.

    CAS  Google Scholar 

  33. Taxier LR, Gross KS, Frick KM. Oestradiol as a neuromodulator of learning and memory. Nat Rev Neurosci. 2020;21:535–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Xiao L, Becker JB. Effects of estrogen agonists on amphetamine‐stimulated striatal dopamine release. Synapse. 1998;29:379–91.

    CAS  PubMed  Google Scholar 

  35. Bryant DN, Bosch MA, Rønnekleiv OK, Dorsa DM. 17-β Estradiol rapidly enhances extracellular signal-regulated kinase 2 phosphorylation in the rat brain. Neuroscience. 2005;133:343–52.

    CAS  PubMed  Google Scholar 

  36. Asarian L, Geary N. Modulation of appetite by gonadal steroid hormones. Philos Trans R Soc B Biol Sci. 2006;361:1251–63.

    CAS  Google Scholar 

  37. Zheng H, Corkern M, Stoyanova I, Patterson LM, Tian R, Berthoud H-R. Appetite-inducing accumbens manipulation activates hypothalamic orexin neurons and inhibits POMC neurons. Am J Physiol-Regul Integr Comp Physiol. 2003;284:R1436–44.

    CAS  PubMed  Google Scholar 

  38. Zheng H, Patterson LM, Berthoud H-R. Orexin signaling in the ventral tegmental area is required for high-fat appetite induced by opioid stimulation of the nucleus accumbens. J Neurosci. 2007;27:11075–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Will MJ, Franzblau EB, Kelley AE. Nucleus accumbens μ-opioids regulate intake of a high-fat diet via activation of a distributed brain network. J Neurosci. 2003;23:2882–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Mena JD, Selleck RA, Baldo BA. Mu-opioid stimulation in rat prefrontal cortex engages hypothalamic orexin/hypocretin-containing neurons, and reveals dissociable roles of nucleus accumbens and hypothalamus in cortically driven feeding. J Neurosci. 2013;33:18540–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Almey A, Milner TA, Brake WG. Estrogen receptors in the central nervous system and their implication for dopamine-dependent cognition in females. Horm Behav. 2015;74:125–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Shughrue PJ, Lane MV, Merchenthaler I. Comparative distribution of estrogen receptor-? and -? mRNA in the rat central nervous system. J Comp Neurol. 1997;388:507–25.

    CAS  PubMed  Google Scholar 

  43. Simerly RB, Swanson LW, Chang C, Muramatsu M. Distribution of androgen and estrogen receptor mRNA‐containing cells in the rat brain: an in situ hybridization study. J Comp Neurol. 1990;294:76–95.

    CAS  PubMed  Google Scholar 

  44. Yamaguchi-Shima N, Yuri K. Age-related changes in the expression of ER-beta mRNA in the female rat brain. Brain Res. 2007;1155:34–41.

    CAS  PubMed  Google Scholar 

  45. Chavez C, Hollaus M, Scarr E, Pavey G, Gogos A, van den Buuse M. The effect of estrogen on dopamine and serotonin receptor and transporter levels in the brain: an autoradiography study. Brain Res. 2010;1321:51–59.

    CAS  PubMed  Google Scholar 

  46. Martinez LA, Peterson BM, Meisel RL, Mermelstein PG. Estradiol facilitation of cocaine-induced locomotor sensitization in female rats requires activation of mGluR5. Behav Brain Res. 2014;271:39–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Saux ML, Morissette M, Paolo TD. ERβ mediates the estradiol increase of D2 receptors in rat striatum and nucleus accumbens. Neuropharmacology. 2006;50:451–7.

    PubMed  Google Scholar 

  48. Bakshi V, Kelley A. Striatal regulation of morphine-induced hyperphagia: an anatomical mapping study. Psychopharmacology. 1993;111:207–14.

    CAS  PubMed  Google Scholar 

  49. Giacomini JL, Geiduschek E, Selleck RA, Sadeghian K, Baldo BA. Dissociable control of μ-opioid-driven hyperphagia vs. food impulsivity across subregions of medial prefrontal, orbitofrontal, and insular cortex. Neuropsychopharmacology. 2021;46:1981–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Giacomini JL, Sadeghian K, Baldo BA. Eating driven by the gustatory insula: contrasting regulation by infralimbic vs. prelimbic cortices. Neuropsychopharmacology. 2022;47:1358–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Chang L, Kigar SL, Ho JH, Cuarenta A, Gunderson HC, Baldo BA, et al. Early life stress alters opioid receptor mRNA levels within the nucleus accumbens in a sex-dependent manner. Brain Res. 2019;1710:102–8.

    CAS  PubMed  Google Scholar 

  52. Gugusheff JR, Bae SE, Rao A, Clarke IJ, Poston L, Taylor PD, et al. Sex and age-dependent effects of a maternal junk food diet on the mu-opioid receptor in rat offspring. Behav Brain Res. 2016;301:124–31.

    CAS  PubMed  Google Scholar 

  53. Smith CJW, Ratnaseelan AM, Veenema AH. Robust age, but limited sex, differences in mu-opioid receptors in the rat brain: relevance for reward and drug-seeking behaviors in juveniles. Brain Struct Funct. 2018;223:475–88.

    CAS  PubMed  Google Scholar 

  54. Becker JB, Rudick CN. Rapid effects of estrogen or progesterone on the amphetamine-induced increase in striatal dopamine are enhanced by estrogen priming. Pharm Biochem Behav. 1999;64:53–57.

    CAS  Google Scholar 

  55. Corona R, Camacho FJ, García-Horsman P, Guerrero A, Ogando A, Paredes RG. Different doses of estradiol benzoate induce conditioned place preference after paced mating. Horm Behav. 2011;60:264–8.

    CAS  PubMed  Google Scholar 

  56. Frick KM, Fernandez SM, Bulinski SC. Estrogen replacement improves spatial reference memory and increases hippocampal synaptophysin in aged female mice. Neuroscience. 2002;115:547–58.

    CAS  PubMed  Google Scholar 

  57. Hu M, Becker JB. Effects of sex and estrogen on behavioral sensitization to cocaine in rats. J Neurosci. 2003;23:693–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Jackson LR, Robinson TE, Becker JB. Sex differences and hormonal influences on acquisition of cocaine self-administration in rats. Neuropsychopharmacology. 2006;31:129–38.

    CAS  PubMed  Google Scholar 

  59. Sandberg D, David S, Stewart J. Effects of estradiol benzoate on the pattern of eating and ethanol consumption. Physiol Behav. 1982;29:61–65.

    CAS  PubMed  Google Scholar 

  60. Sinopoli KJ, Floresco SB, Galea LAM. Systemic and local administration of estradiol into the prefrontal cortex or hippocampus differentially alters working memory. Neurobiol Learn Mem. 2006;86:293–304.

    CAS  PubMed  Google Scholar 

  61. Wide JK, Hanratty K, Ting J, Galea LAM. High level estradiol impairs and low level estradiol facilitates non-spatial working memory. Behav Brain Res. 2004;155:45–53.

    CAS  PubMed  Google Scholar 

  62. Hardy DF, DeBold JF. The relationship between levels of exogenous hormones and the display of lordosis by the female rat. Horm Behav. 1971;2:287–97.

    CAS  Google Scholar 

  63. Laessig SA, Auger AP, McCarthy MM, Silbergeld EK. Effects of prenatal chlordecone on sexually differentiated behavior in adult rats. Neurotoxicol Teratol. 2007;29:255–63.

    CAS  PubMed  Google Scholar 

  64. Hudson AE. Genetic reporters of neuronal activity: c-Fos and G-CaMP6. Methods Enzymol. 2018:197–220.

  65. Paxinos G, Watson C. The rat brain in stereotaxic coordinates. sixth London: Academic Press; 2007.

    Google Scholar 

  66. Friard O, Gamba M. BORIS: a free, versatile open‐source event‐logging software for video/audio coding and live observations. Methods Ecol Evol. 2016;7:1325–30.

    Google Scholar 

  67. Baldo BA, Gual‐Bonilla L, Sijapati K, Daniel RA, Landry CF, Kelley AE. Activation of a subpopulation of orexin/hypocretin‐containing hypothalamic neurons by GABAA receptor‐mediated inhibition of the nucleus accumbens shell, but not by exposure to a novel environment. Eur J Neurosci. 2004;19:376–86.

    PubMed  Google Scholar 

  68. Maldonado-Irizarry C, Swanson C, Kelley A. Glutamate receptors in the nucleus accumbens shell control feeding behavior via the lateral hypothalamus. J Neurosci. 1995;15:6779–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Asarian L, Geary N. Cyclic estradiol treatment normalizes body weight and restores physiological patterns of spontaneous feeding and sexual receptivity in ovariectomized rats. Horm Behav. 2002;42:461–71.

    CAS  PubMed  Google Scholar 

  70. Geary N, Asarian L. Cyclic estradiol treatment normalizes body weight and test meal size in ovariectomized rats. Physiol Behav. 1999;67:141–7.

    CAS  PubMed  Google Scholar 

  71. Tarttelin MF, Gorski RA. Variations in food and water intake in the normal and acyclic female rat. Physiol Behav. 1971;7:847–52.

    CAS  PubMed  Google Scholar 

  72. Tarttelin MF, Gorski RA. The effects of ovarian steroids on food and water intake and body weight in the female rat. Acta Endocrinol. 1973;72:551–68.

    CAS  Google Scholar 

  73. Ferreira JA, Foley AM, Brown M. Sex hormones differentially influence voluntary running activity, food intake and body weight in aging female and male rats. Eur J Appl Physiol. 2012;112:3007–18.

    CAS  PubMed  Google Scholar 

  74. McNaughton N. Statistics for behavioral neuroscience. In: Saghal A, editor. Behavioral neuroscience: a practical approach. Oxford: Oxford University Press; 1993. p. 169–88.

    Google Scholar 

  75. Parker KE, McCabe MP, Johns HW, Lund DK, Odu F, Sharma R, et al. Neural activation patterns underlying basolateral amygdala influence on intra-accumbens opioid-driven consummatory versus appetitive high-fat feeding behaviors in the rat. Behav Neurosci. 2015;129:812–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Kelley A, Bakshi V, Fleming S, Holahan M. A pharmacological analysis of the substrates underlying conditioned feeding induced by repeated opioid stimulation of the nucleus accumbens. Neuropsychopharmacology. 2000;23:455–67.

    CAS  PubMed  Google Scholar 

  77. Bakshi VP, Kelley AE. Sensitization and conditioning of feeding following multiple morphine microinjections into the nucleus accumbens. Brain Res. 1994;648:342–6.

    CAS  PubMed  Google Scholar 

  78. Becker JB, Koob GF. Sex differences in animal models: focus on addiction. Pharm Rev. 2016;68:242–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Baldo BA, Pratt WE, Will MJ, Hanlon EC, Bakshi VP, Cador M. Principles of motivation revealed by the diverse functions of neuropharmacological and neuroanatomical substrates underlying feeding behavior. Neurosci Biobehav Rev. 2013;37:1985–98.

    PubMed  PubMed Central  Google Scholar 

  80. Salamone JD, Correa M, Farrar A, Mingote SM. Effort-related functions of nucleus accumbens dopamine and associated forebrain circuits. Psychopharmacology. 2007;191:461–82.

    CAS  PubMed  Google Scholar 

  81. Ragnauth A, Znamensky V, Moroz M, Bodnar RJ. Analysis of dopamine receptor antagonism upon feeding elicited by mu and delta opioid agonists in the shell region of the nucleus accumbens. Brain Res. 2000;877:65–72.

    CAS  PubMed  Google Scholar 

  82. Quiñones-Jenab V, Jenab S, Ogawa S, Inturrisi C, Pfaff DW. Estrogen regulation of μ-opioid receptor mRNA in the forebrain of female rats. Mol Brain Res. 1997;47:134–8.

    PubMed  Google Scholar 

  83. Asarian L, Geary N. Sex differences in the physiology of eating. Am J Physiol-Regul Integr Comp Physiol. 2013;305:R1215–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Geary N. Estradiol, CCK and satiation. Peptides 2001;22:1251–63.

    CAS  PubMed  Google Scholar 

  85. Eckel LA, Houpt TA, Geary N. Estradiol treatment increases CCK-induced c-Fos expression in the brains of ovariectomized rats. Am J Physiol-Regul Integr Comp Physiol. 2002;283:R1378–85.

    CAS  PubMed  Google Scholar 

  86. Alhadeff AL, Rupprecht LE, Hayes MR. GLP-1 neurons in the nucleus of the solitary tract project directly to the ventral tegmental area and nucleus accumbens to control for food intake. Endocrinology. 2012;153:647–58.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Juliana Giacomini and Alexius Lampkin for assistance with general laboratory tasks, and Joyce Borde for excellent care of the rat colony.

Funding

This work was supported by NIH grant MH074723 from the National Institute for Mental Health (PI: BAB). JCD was supported by the Science and Medicine Research Scholars Advanced Opportunity Fellowship of the University of Wisconsin-Madison. A subset of these data was presented in abstract form at the annual meeting of the Society for Neuroscience, 2018.

Author information

Authors and Affiliations

Authors

Contributions

JD: Writing original draft, Investigation, Formal analysis, Data curation, Visualization. KD: Investigation, Data curation. CZ: Investigation. ES: Investigation. KS: Investigation. AA: Conceptualization, Resources. BAB: Conceptualization, Supervision & project administration, Writing review & editing, Formal analysis, funding acquisition.

Corresponding author

Correspondence to Brian A. Baldo.

Ethics declarations

Competing interests

The authors have no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diaz, J.C., Dunaway, K., Zuniga, C. et al. Delayed estrogen actions diminish food consumption without changing food approach, motor activity, or hypothalamic activation elicited by corticostriatal µ-opioid signaling. Neuropsychopharmacol. 48, 1952–1962 (2023). https://doi.org/10.1038/s41386-023-01711-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41386-023-01711-3

Search

Quick links