Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Novel mechanism-based treatments for pediatric anxiety and depressive disorders

Abstract

Pediatric anxiety and depressive disorders are common, can be highly impairing, and can persist despite the best available treatments. Here, we review research into novel treatments for childhood anxiety and depressive disorders designed to target underlying cognitive, emotional, and neural circuit mechanisms. We highlight three novel treatments lying along a continuum relating to clinical impact of the disorder and the intensity of clinical management required. We review cognitive training, which involves the lowest risk and may be applicable for problems with mild to moderate impact; psychotherapy, which includes a higher level of clinical involvement and may be sufficient for problems with moderate impact; and brain stimulation, which has the highest potential risks and is therefore most appropriate for problems with high impact. For each treatment, we review the specific underlying cognitive, emotional, and brain circuit mechanisms that are being targeted, whether treatments modify those underlying mechanisms, and efficacy in reducing symptoms. We conclude by highlighting future directions, including the importance of work that leverages developmental windows of high brain plasticity to time interventions to the specific epochs in childhood that have the largest and most enduring life-long impact.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Attention bias modification (ABM) as a mechanism-based treatment for anxiety disorders.
Fig. 2: Parent Child Interaction Therapy: Emotion Development (PCIT: ED) as a mechanism-based treatment for preschool onset depression.
Fig. 3: Key findings in research on the interface among resting state functional magnetic resonance imaging (rsfMRI), major depressive disorder (MDD), and transcranial magnetic stimulation (TMS).

Similar content being viewed by others

References

  1. Kessler RC, Berglund P, Demler O, Jin R, Merikangas KR, Walters EE. Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Arch Gen Psychiatry. 2005;62:593–602.

    Article  PubMed  Google Scholar 

  2. Merikangas KR, He J-P, Burstein M, Swanson SA, Avenevoli S, Cui L, et al. Lifetime prevalence of mental disorders in U.S. adolescents: results from the National Comorbidity Survey Replication-Adolescent Supplement (NCS-A). J Am Acad Child Adolesc Psychiatry. 2010;49:980–9.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Langley AK, Bergman RL, McCracken J, Piacentini JC. Impairment in childhood anxiety disorders: preliminary examination of the child anxiety impact scale-parent version. J Child Adolesc Psychopharmacol. 2004;14:105–14.

    Article  PubMed  Google Scholar 

  4. La Greca AM, Lopez N. Social anxiety among adolescents: linkages with peer relations and friendships. J Abnorm Child Psychol. 1998;26:83–94.

    Article  PubMed  Google Scholar 

  5. Franz L, Angold A, Copeland W, Costello EJ, Towe-Goodman N, Egger H. Preschool anxiety disorders in pediatric primary care: prevalence and comorbidity. J Am Acad Child Adolesc Psychiatry. 2013;52:1294–303.e1.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Piacentini J, Bennett S, Compton SN, Kendall PC, Birmaher B, Albano AM, et al. 24- and 36-Week Outcomes for the Child/Adolescent Anxiety Multimodal Study (CAMS). J Am Acad Child Adolesc Psychiatry. 2014;53:297–310.

    Article  PubMed  Google Scholar 

  7. Kessler RC, Avenevoli S, Costello EJ, Georgiades K, Green JG, Gruber MJ, et al. Prevalence, persistence, and sociodemographic correlates of DSM-IV disorders in the National Comorbidity Survey Replication Adolescent Supplement. Arch Gen Psychiatry. 2012;69:372–80.

    Article  PubMed  Google Scholar 

  8. Kessler RC, Ormel J, Petukhova M, McLaughlin KA, Green JG, Russo LJ, et al. Development of lifetime comorbidity in the World Health Organization world mental health surveys. Arch Gen Psychiatry. 2011;68:90–100.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sylvester CM, Smyser CD, Smyser T, Kenley J, Ackerman JJ Jr., Shimony JS, et al. Cortical Functional Connectivity Evident After Birth and Behavioral Inhibition at Age 2. Am J Psychiatry. 2018;175:180–87.

    Article  PubMed  Google Scholar 

  10. Sylvester CM, Myers MJ, Perino MT, Kaplan S, Kenley JK, Smyser TA, et al. Neonatal Brain Response to Deviant Auditory Stimuli and Relation to Maternal Trait Anxiety. Am J Psychiatry. 2021. https://doi.org/10.1176/appi.ajp.2020.20050672.

  11. Thomason ME. Development of Brain Networks In Utero: Relevance for Common Neural Disorders. Biol Psychiatry. 2020;88:40–50.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Pine DS. Research review: a neuroscience framework for pediatric anxiety disorders. J Child Psychol Psychiatry Allied Discip. 2007;48:631–48.

    Article  Google Scholar 

  13. Casey BJ, Oliveri ME, Insel T. A neurodevelopmental perspective on the research domain criteria (RDoC) framework. Biological Psychiatry. 2014;76:350–3.

  14. Walter HJ, Bukstein OG, Abright AR, Keable H, Ramtekkar U, Ripperger-Suhler J, et al. Clinical Practice Guideline for the Assessment and Treatment of Children and Adolescents With Anxiety Disorders. J Am Acad Child Adolesc Psychiatry. 2020;59:1107–24.

    Article  PubMed  Google Scholar 

  15. Walter HJ, Abright AR, Bukstein OG, Diamond J, Keable H, Ripperger-Suhler J, et al. Clinical Practice Guideline for the Assessment and Treatment of Children and Adolescents With Major and Persistent Depressive Disorders. J Am Acad Child Adolesc Psychiatry. 2023;62:479–502.

    Article  PubMed  Google Scholar 

  16. Locher C, Koechlin H, Zion SR, Werner C, Pine DS, Kirsch I, et al. Efficacy and Safety of Selective Serotonin Reuptake Inhibitors, Serotonin-Norepinephrine Reuptake Inhibitors, and Placebo for Common Psychiatric Disorders Among Children and Adolescents: A Systematic Review and Meta-analysis. JAMA Psychiatry. 2017;74:1011–20.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Cipriani A, Zhou X, Del Giovane C, Hetrick SE, Qin B, Whittington C, et al. Comparative efficacy and tolerability of antidepressants for major depressive disorder in children and adolescents: a network meta-analysis. Lancet. 2016;388:881–90.

    Article  CAS  PubMed  Google Scholar 

  18. Walkup JT, Albano AM, Piacentini J, Birmaher B, Compton SN, Sherrill JT, et al. Cognitive behavioral therapy, sertraline, or a combination in childhood anxiety. N. Engl J Med. 2008;359:2753–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Emslie GJ, Kennard BD, Mayes TL, Nightingale-Teresi J, Carmody T, Hughes CW, et al. Fluoxetine versus placebo in preventing relapse of major depression in children and adolescents. Am J Psychiatry. 2008;165:459–67.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Vostanis P, Feehan C, Grattan E, Bickerton WL. A randomised controlled out-patient trial of cognitive-behavioural treatment for children and adolescents with depression: 9-month follow-up. J Affect Disord. 1996;40:105–16.

    Article  CAS  PubMed  Google Scholar 

  21. Wendler D, Belsky L, Thompson KM, Emanuel EJ. Quantifying the federal minimal risk standard: implications for pediatric research without a prospect of direct benefit. JAMA. 2005;294:826–32.

    Article  CAS  PubMed  Google Scholar 

  22. Rid A, Abdoler E, Roberson-Nay R, Pine DS, Wendler D. Evaluating the risks of clinical research: direct comparative analysis. J Child Adolesc Psychopharmacol. 2014;24:390–8.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Schupmann W, Li X, Wendler D. Acceptable Risks in Pediatric Research: Views of the US Public. Pediatrics. 2022;149:e2021052687.

  24. Wherrett DK, Chiang JL, Delamater AM, DiMeglio LA, Gitelman SE, Gottlieb PA, et al. Defining pathways for development of disease-modifying therapies in children with type 1 diabetes: a consensus report. Diabetes Care. 2015;38:1975–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lepage S, Conway A, Goodson N, Wicks P, Flight L, Devane D. Online randomised trials with children: A scoping review. PLoS One. 2023;18:e0280965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pandina G, Busner J, Horrigan JP, McSherry C, Bateman-House A, Pani L, et al. Implications of Pediatric Initiatives on CNS Drug Development for All Ages-2020 and Beyond: Second of Three Sets of Expanded Proceedings from the 2020 ISCTM Autumn Conference on Pediatric Drug Development. Innov Clin Neurosci. 2023;20:18–24.

    PubMed  PubMed Central  Google Scholar 

  27. Schmiedek F, Lövdén M, Lindenberger U. Hundred Days of Cognitive Training Enhance Broad Cognitive Abilities in Adulthood: Findings from the COGITO Study. Front Aging Neurosci. 2010;2:27.

  28. Bar-Haim Y. Research review: Attention bias modification (ABM): a novel treatment for anxiety disorders. J Child Psychol Psychiatry, Allied Discip. 2010;51:859–70.

    Article  Google Scholar 

  29. Barlow DH. Anxiety and its disorders: The nature and treatment of anxiety and panic. Second ed. New York, NY: Guilford Press; 2002.

  30. Beck AT. The evolution of the cognitive model of depression and its neurobiological correlates. Am J Psychiatry. 2008;165:969–77.

    Article  PubMed  Google Scholar 

  31. Eysenck MW, Derakshan N, Santos R, Calvo MG. Anxiety and cognitive performance: attentional control theory. Emotion. 2007;7:336–53.

    Article  PubMed  Google Scholar 

  32. MacLeod C, Mathews A, Tata P. Attentional bias in emotional disorders. J Abnorm Psychol. 1986;95:15–20.

    Article  CAS  PubMed  Google Scholar 

  33. Mathews A, MacLeod C. Cognitive vulnerability to emotional disorders. Annu Rev Clin Psychol. 2005;1:167–95.

    Article  PubMed  Google Scholar 

  34. Bar-Haim Y, Lamy D, Pergamin L, Bakermans-Kranenburg MJ, van IJzendoorn MH. Threat-related attentional bias in anxious and nonanxious individuals: a meta-analytic study. Psychol Bull. 2007;133:1–24.

    Article  PubMed  Google Scholar 

  35. MacLeod C, Rutherford E, Campbell L, Ebsworthy G, Holker L. Selective attention and emotional vulnerability: assessing the causal basis of their association through the experimental manipulation of attentional bias. J Abnorm Psychol. 2002;111:107–23.

    Article  PubMed  Google Scholar 

  36. Hakamata Y, Lissek S, Bar-Haim Y, Britton JC, Fox NA, Leibenluft E, et al. Attention bias modification treatment: a meta-analysis toward the establishment of novel treatment for anxiety. Biol Psychiatry. 2010;68:982–90.

  37. Lowther H, Newman E. Attention bias modification (ABM) as a treatment for child and adolescent anxiety: a systematic review. J Affect Disord. 2014;168:125–35.

    Article  PubMed  Google Scholar 

  38. Mogg K, Waters AM, Bradley BP. Attention Bias Modification (ABM): Review of Effects of Multisession ABM Training on Anxiety and Threat-Related Attention in High-Anxious Individuals. Clin Psychol Sci. 2017;5:698–717.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Browning M, Holmes EA, Murphy SE, Goodwin GM, Harmer CJ. Lateral Prefrontal Cortex Mediates the Cognitive Modification of Attentional Bias. Biol Psychiatry. 2010;67:919–25.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Clarke PJF, Browning M, Hammond G, Notebaert L, MacLeod C. The causal role of the dorsolateral prefrontal cortex in the modification of attentional bias: evidence from transcranial direct current stimulation. Biol Psychiatry. 2014;76:946–52.

    Article  PubMed  Google Scholar 

  41. Hakamata Y, Mizukami S, Komi S, Sato E, Moriguchi Y, Motomura Y, et al. Attentional bias modification alters intrinsic functional network of attentional control: A randomized controlled trial. J Affect Disord. 2018;238:472–81.

    Article  PubMed  Google Scholar 

  42. Britton JC, Suway JG, Clementi MA, Fox NA, Pine DS, Bar-Haim Y. Neural changes with attention bias modification for anxiety: a randomized trial. Soc Cogn Affect Neurosci. 2015;10:913–20.

    Article  PubMed  Google Scholar 

  43. Shechner T, Rimon-Chakir A, Britton JC, Lotan D, Apter A, Bliese PD, et al. Attention bias modification treatment augmenting effects on cognitive behavioral therapy in children with anxiety: randomized controlled trial. J Am Acad Child Adolesc Psychiatry. 2014;53:61–71.

    Article  PubMed  Google Scholar 

  44. Britton JC, Bar-Haim Y, Clementi MA, Sankin LS, Chen G, Shechner T, et al. Training-associated changes and stability of attention bias in youth: Implications for Attention Bias Modification Treatment for pediatric anxiety. Dev Cogn Neurosci. 2013;4:52–64.

    Article  PubMed  Google Scholar 

  45. Pettit JW, Bechor M, Rey Y, Vasey MW, Abend R, Pine DS, et al. A Randomized Controlled Trial of Attention Bias Modification Treatment in Youth With Treatment-Resistant Anxiety Disorders. J Am Acad Child Adolesc Psychiatry. 2020;59:157–65.

    Article  PubMed  Google Scholar 

  46. Bechor M, Pettit JW, Silverman WK, Bar-Haim Y, Abend R, Pine DS, et al. Attention Bias Modification Treatment for children with anxiety disorders who do not respond to cognitive behavioral therapy: a case series. J Anxiety Disord. 2014;28:154–9.

    Article  PubMed  Google Scholar 

  47. Pettit JW, Rey Y, Bechor M, Melendez R, Vaclavik D, Buitron V, et al. Can less be more? Open trial of a stepped care approach for child and adolescent anxiety disorders. J Anxiety Disord. 2017;51:7–13.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lazarov A, Bar-Haim Y. Emerging Domain-Based Treatments for Pediatric Anxiety Disorders. Biol Psychiatry. 2021;89:716–25.

  49. Edwards EJ, Zec D, Campbell M, Hoorelbeke K, Koster EHW, Derakshan N, et al. Cognitive control training for children with anxiety and depression: A systematic review. J Affect Disord. 2022;300:158–71.

    Article  PubMed  Google Scholar 

  50. Rueda MR, Fan J, McCandliss BD, Halparin JD, Gruber DB, Lercari LP, et al. Development of attentional networks in childhood. Neuropsychologia 2004;42:1029–40.

    Article  PubMed  Google Scholar 

  51. Posner MI, Rothbart MK, Sheese BE, Voelker P. Developing Attention: Behavioral and Brain Mechanisms. Adv Neurosci. 2014;2014:405094.

    Article  Google Scholar 

  52. Field AP, Lester KJ. Is there room for ‘development’ in developmental models of information processing biases to threat in children and adolescents? Clin Child Fam Psychol Rev. 2010;13:315–32.

  53. Abend R, de Voogd L, Salemink E, Wiers RW, Perez-Edgar K, Fitzgerald A, et al. Association between attention bias to threat and anxiety symptoms in children and adolescents. Depress Anxiety. 2018;35:229–38.

    Article  PubMed  Google Scholar 

  54. Dudeney J, Sharpe L, Hunt C. Attentional bias towards threatening stimuli in children with anxiety: A meta-analysis. Clin Psychol Rev. 2015;40:66–75.

    Article  PubMed  Google Scholar 

  55. Jenness JL, Lambert HK, Bitran D, Blossom JB, Nook EC, Sasse SF, et al. Developmental Variation in the Associations of Attention Bias to Emotion with Internalizing and Externalizing Psychopathology. Res Child Adolesc Psychopathol. 2021;49:711–26.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Lau JYF, Waters AM. Annual Research Review: An expanded account of information-processing mechanisms in risk for child and adolescent anxiety and depression. J child Psychol psychiatry, allied Discip. 2017;58:387–407.

    Article  Google Scholar 

  57. Lisk S, Vaswani A, Linetzky M, Bar-Haim Y, Lau JYF. Systematic Review and Meta-Analysis: Eye-Tracking of Attention to Threat in Child and Adolescent Anxiety. J Am Acad Child Adolesc Psychiatry. 2020;59:88–99.e1.

    Article  PubMed  Google Scholar 

  58. Sylvester CM, Corbetta M, Raichle ME, Rodebaugh TL, Schlaggar BL, Sheline YI, et al. Functional network dysfunction in anxiety and anxiety disorders. Trends Neurosci. 2012;35:527–35.

  59. Klein R. Inhibition of return. Trends Cogn Sci. 2000;4:138–47.

    Article  CAS  PubMed  Google Scholar 

  60. Sylvester CM, Hudziak JJ, Gaffrey MS, Barch DM, Luby JL. Stimulus-Driven Attention, Threat Bias, and Sad Bias in Youth with a History of an Anxiety Disorder or Depression. J Abnorm Child Psychol. 2016;44:219–31.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Pérez-Edgar K, Mcdermott JNM, Korelitz K, Degnan KA, Curby TW, Pine DS, et al. Patterns of sustained attention in infancy shape the developmental trajectory of social behavior from toddlerhood through adolescence. Dev Psychol. 2010;46:1723–30.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Perino MT, Yu Q, Myers MJ, Harper JC, Baumel WT, Petersen SE, et al. Attention Alterations in Pediatric Anxiety: Evidence From Behavior and Neuroimaging. Biol Psychiatry. 2021;89:726–34.

  63. White LK, Britton JC, Sequeira S, Ronkin EG, Chen G, Bar-Haim Y, et al. Behavioral and neural stability of attention bias to threat in healthy adolescents. Neuroimage. 2016;136:84–93.

  64. Baumel WT, Lu L, Huang X, Drysdale AT, Sweeny JA, Gong Q, et al. Neurocircuitry of treatment in anxiety disorders. Biomark Neuropsychiatry. 2022;6:100052.

  65. Lenze EJ, Nicol GE, Barbour DL, Kannampallil T, Wong AWK, Piccirillo J, et al. Precision clinical trials: a framework for getting to precision medicine for neurobehavioural disorders. J Psychiatry Neurosci. 2021;46:E97–E110.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Price RB, Siegle GJ, Silk JS, Ladouceur CD, Mcfarland A, Dahl RE, et al. Looking under the hood of the dot-probe task: an fMRI study in anxious youth. Depression Anxiety. 2014;31:178–87.

    Article  PubMed  Google Scholar 

  67. McClure EB, Monk CS, Nelson EE, Parrish JM, Adler A, Blair RJR, et al. Abnormal attention modulation of fear circuit function in pediatric generalized anxiety disorder. Arch Gen Psychiatry. 2007;64:97–106.

    Article  PubMed  Google Scholar 

  68. Strawn JR, Bitter SM, Weber WA, Chu W-J, Whitsel RM, Adler C, et al. Neurocircuitry Of Generalized Anxiety Disorder In Adolescents: A Pilot Functional Neuroimaging And Functional Connectivity Study. Depression Anxiety. 2012;29:939–47.

    Article  PubMed  Google Scholar 

  69. Monk CS, Nelson EE, McClure EB, Mogg K, Bradley BP, Leibenluft E, et al. Ventrolateral prefrontal cortex activation and attentional bias in response to angry faces in adolescents with generalized anxiety disorder. Am J Psychiatry. 2006;163:1091–7.

    Article  PubMed  Google Scholar 

  70. Hare TA, Tottenham N, Galvan A, Voss HU, Glover GH, Casey BJ. Biological substrates of emotional reactivity and regulation in adolescence during an emotional go-nogo task. Biol Psychiatry. 2008;63:927–34.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Telzer EH, Mogg K, Bradley BP, Mai X, Ernst M, Pine DS, et al. Relationship between trait anxiety, prefrontal cortex, and attention bias to angry faces in children and adolescents. Biol Psychol. 2008;79:216–22.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Hamm LL, Jacobs RH, Johnson MW, Fitzgerald DA, Fitzgerald KD, Langenecker SA, et al. Aberrant amygdala functional connectivity at rest in pediatric anxiety disorders. Biol Mood Anxiety Disord. 2014;4:15.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Roy AK, Fudge JL, Kelly C, Perry JS, Daniele T, Carlisi C, et al. Intrinsic functional connectivity of amygdala-based networks in adolescent generalized anxiety disorder. J Am Acad Child Adolesc Psychiatry. 2013;52:290–99.e2.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Monk CS, Telzer EH, Mogg K, Bradley BP, Mai X, Louro HMC, et al. Amygdala and ventrolateral prefrontal cortex activation to masked angry faces in children and adolescents with generalized anxiety disorder. Arch Gen Psychiatry. 2008;65:568–76.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Tromp DPM, Williams LE, Fox AS, Oler JA, Roseboom PH, Rogers GM, et al. Altered Uncinate Fasciculus Microstructure in Childhood Anxiety Disorders in Boys But Not Girls. Am J Psychiatry. 2019;176:208–16.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Power Jonathan D, Cohen Alexander L, Nelson Steven M, Wig Gagan S, Barnes Kelly A, Church Jessica A, et al. Functional Network Organization of the Human Brain. Neuron. 2011;72:665–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Yeo BTT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106:1125–65.

    Article  PubMed  Google Scholar 

  78. Perino MT, Myers MJ, Wheelock MD, Yu Q, Harper JC, Manhart MF, et al. Whole-Brain Resting-State Functional Connectivity Patterns Associated With Pediatric Anxiety and Involuntary Attention Capture. Biol Psychiatry: Glob Open Sci. 2021;1:229–38.

    PubMed  Google Scholar 

  79. Hang Y, Zhang G, Wang C, Zhang N, Liu G. Attention bias modification for anxiety disorders in children and adolescents: A systematic review and meta-analysis. Psychiatry Res. 2021;300:113896.

    Article  PubMed  Google Scholar 

  80. Grist R, Croker A, Denne M, Stallard P. Technology Delivered Interventions for Depression and Anxiety in Children and Adolescents: A Systematic Review and Meta-analysis. Clin Child Fam Psychol Rev. 2019;22:147–71.

    Article  PubMed  Google Scholar 

  81. Chang SW, Kuckertz JM, Bose D, Carmona AR, Piacentini J, Amir N. Efficacy of Attention Bias Training for Child Anxiety Disorders: A Randomized Controlled Trial. Child Psychiatry Hum Dev. 2019;50:198–208.

    Article  PubMed  Google Scholar 

  82. Liu P, Taber-Thomas BC, Fu X, Perez-Edgar KE. Biobehavioral Markers of Attention Bias Modification in Temperamental Risk for Anxiety: A Randomized Control Trial. J Am Acad Child Adolesc Psychiatry. 2018;57:103–10.

    Article  PubMed  Google Scholar 

  83. Eldar S, Apter A, Lotan D, Edgar KP, Naim R, Fox NA, et al. Attention bias modification treatment for pediatric anxiety disorders: a randomized controlled trial. Am J Psychiatry. 2012;169:213–20.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Pettit JW, Rey Y, Marin CE, Bechor M, Lebowitz ER, Vasey MW, et al. Attention Training as a Low-Intensity Treatment for Concerning Anxiety in Clinic-Referred Youth. Behav Ther. 2023;54:77–90.

    Article  PubMed  Google Scholar 

  85. Pergamin-Hight L, Pine DS, Fox NA, Bar-Haim Y. Attention bias modification for youth with social anxiety disorder. J Child Psychol Psychiatry. 2016;57:1317–25.

    Article  PubMed  Google Scholar 

  86. Abend R, Naim R, Pergamin-Hight L, Fox NA, Pine DS, Bar-Haim Y. Age Moderates Link Between Training Effects and Treatment Response to Attention Bias Modification Treatment for Social Anxiety Disorder. J Abnorm Child Psychol. 2019;47:881–94.

    Article  PubMed  PubMed Central  Google Scholar 

  87. White LK, Sequeira S, Britton JC, Brotman MA, Gold AL, Berman E, et al. Complementary Features of Attention Bias Modification Therapy and Cognitive-Behavioral Therapy in Pediatric Anxiety Disorders. Am J Psychiatry. 2017;174:775–84.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Tan PZ, Rozenman M, Chang SW, Jurgiel J, Truong HV, Piacentini J, et al. The ERN as a neural index of changes in performance monitoring following attention training in pediatric obsessive-compulsive disorder. Biol Psychol. 2021;166:108206.

    Article  PubMed  Google Scholar 

  89. Nelson BD, Jackson F, Amir N, Hajcak G. Attention bias modification reduces neural correlates of response monitoring. Biol Psychol. 2017;129:103–10.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Waters AM, Cao Y, Kershaw R, Kerbler GM, Shum DHK, Zimmer-Gembeck MJ, et al. Changes in neural activation underlying attention processing of emotional stimuli following treatment with positive search training in anxious children. J Anxiety Disord. 2018;55:22–30.

    Article  PubMed  Google Scholar 

  91. Haller SP, Stoddard J, Botz-Zapp C, Clayton M, MacGillivray C, Perhamus G, et al. A Randomized Controlled Trial of Computerized Interpretation Bias Training for Disruptive Mood Dysregulation Disorder: A Fast-Fail Study. J Am Acad Child Adolesc Psychiatry. 2022;61:37–45.

    Article  PubMed  Google Scholar 

  92. Cortese S, Ferrin M, Brandeis D, Buitelaar J, Daley D, Dittmann RW, et al. Cognitive training for attention-deficit/hyperactivity disorder: meta-analysis of clinical and neuropsychological outcomes from randomized controlled trials. J Am Acad Child Adolesc Psychiatry. 2015;54:164–74.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Benyakorn S, Calub CA, Riley SJ, Schneider A, Iosif AM, Solomon M, et al. Computerized Cognitive Training in Children With Autism and Intellectual Disabilities: Feasibility and Satisfaction Study. JMIR Ment Health. 2018;5:e40.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Kollins SH, DeLoss DJ, Canadas E, Lutz J, Findling RL, Keefe RSE, et al. A novel digital intervention for actively reducing severity of paediatric ADHD (STARS-ADHD): a randomised controlled trial. Lancet Digit Health. 2020;2:e168–e78.

    Article  PubMed  Google Scholar 

  95. Lee S, Hill TR, Johnson B, Testa R, Priya V, Spencer-Smith M, et al. Can Neurocognitive Outcomes Assist Measurement-Based Care for Children with Attention-Deficit/Hyperactivity Disorder? A Systematic Review and Meta-Analyses of the Relationships Among the Changes in Neurocognitive Functions and Clinical Outcomes of Attention-Deficit/Hyperactivity Disorder in Pharmacological and Cognitive Training Interventions. J Child Adolesc Psychopharmacol. 2022;32:250–77.

    Article  PubMed  Google Scholar 

  96. Penuelas-Calvo I, Jiang-Lin LK, Girela-Serrano B, Delgado-Gomez D, Navarro-Jimenez R, Baca-Garcia E, et al. Video games for the assessment and treatment of attention-deficit/hyperactivity disorder: a systematic review. Eur Child Adolesc Psychiatry. 2022;31:5–20.

    Article  PubMed  Google Scholar 

  97. Karch D, Albers L, Renner G, Lichtenauer N, von Kries R. The efficacy of cognitive training programs in children and adolescents: a meta-analysis. Dtsch Arztebl Int. 2013;110:643–52.

    PubMed  PubMed Central  Google Scholar 

  98. Badura-Brack AS, Naim R, Ryan TJ, Levy O, Abend R, Khanna MM, et al. Effect of Attention Training on Attention Bias Variability and PTSD Symptoms: Randomized Controlled Trials in Israeli and U.S. Combat Veterans. The. Am J Psychiatry. 2015;172:1233–41.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Wald I, Fruchter E, Ginat K, Stolin E, Dagan D, Bliese PD, et al. Selective prevention of combat-related post-traumatic stress disorder using attention bias modification training: a randomized controlled trial. Psychol Med. 2016;46:2627–36.

  100. Price RB, Wallace M, Kuckertz JM, Amir N, Graur S, Cummings L, et al. Pooled patient-level meta-analysis of children and adults completing a computer-based anxiety intervention targeting attentional bias. Clin Psychol Rev. 2016;50:37–49.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Oud M, de Winter L, Vermeulen-Smit E, Bodden D, Nauta M, Stone L, et al. Effectiveness of CBT for children and adolescents with depression: A systematic review and meta-regression analysis. Eur Psychiatry. 2019;57:33–45.

    Article  PubMed  Google Scholar 

  102. Mufson L, Sills R. Interpersonal Psychotherapy for depressed adolescents (IPT-A): an overview. Nord J Psychiatry. 2006;60:431–7.

    Article  PubMed  Google Scholar 

  103. Weisz J, Bearman SK, Santucci LC, Jensen-Doss A. Initial Test of a Principle-Guided Approach to Transdiagnostic Psychotherapy With Children and Adolescents. J Clin Child Adolesc Psychol. 2017;46:44–58.

    Article  PubMed  Google Scholar 

  104. Peris TS, Caporino NE, O’Rourke S, Kendall PC, Walkup JT, Albano AM, et al. Therapist-Reported Features of Exposure Tasks That Predict Differential Treatment Outcomes for Youth With Anxiety. J Am Acad Child Adolesc Psychiatry. 2017;56:1043–52.

    Article  PubMed  Google Scholar 

  105. Richter L. The importance of caregiver-child interactions for survival and healthy development of young children: a review. Geneva: World Health Organization; 2004.

  106. Britto PR, Lye SJ, Proulx K, Yousafzai AK, Matthews SG, Vaivada T, et al. Nurturing care: promoting early childhood development. Lancet. 2017;389:91–102.

    Article  PubMed  Google Scholar 

  107. Lunkenheimer E, Hamby CM, Lobo FM, Cole PM, Olson SL. The role of dynamic, dyadic parent-child processes in parental socialization of emotion. Dev Psychol. 2020;56:566–77.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Timmer SG, Urquiza AJ, Zebell NM, McGrath JM. Parent-child interaction therapy: application to maltreating parent-child dyads. Child Abus Negl. 2005;29:825–42.

    Article  Google Scholar 

  109. Monga S, Rosenbloom BN, Tanha A, Owens M, Young A. Comparison of child-parent and parent-only cognitive-behavioral therapy programs for anxious children aged 5 to 7 years: short- and long-term outcomes. J Am Acad Child Adolesc Psychiatry. 2015;54:138–46.

    Article  PubMed  Google Scholar 

  110. Dawson G, Zanolli K. Early intervention and brain plasticity in autism. Novartis Found Symp. 2003;251:266-74; discussion 74-80, 81-97.

  111. Eyberg S, Funderburk B, Hembree-Kigin T, McNeil C, Querido J, Hood K. Parent-child interaction therapy with behavior problem children: One and two year maintenance of treatment effects in the family. Child Fam Behav Ther. 2001;23:1–20.

    Article  Google Scholar 

  112. Luby JL, Barch DM, Whalen D, Tillman R, Freedland KE. A Randomized Controlled Trial of Parent-Child Psychotherapy Targeting Emotion Development for Early Childhood Depression. Am J Psychiatry. 2018;175:1102–10.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Luby JL, Gilbert K, Whalen D, Tillman R, Barch DM. The Differential Contribution of the Components of Parent-Child Interaction Therapy Emotion Development for Treatment of Preschool Depression. J Am Acad Child Adolesc Psychiatry. 2020;59:868–79.

    Article  PubMed  Google Scholar 

  114. Luby J, Donohue MR, Gilbert K, Tillman R, Barch DM. Sustained remission of child depression despite drift in parent emotion management skills 18 weeks following Parent Child Interaction Therapy: emotion development. Eur Child Adolesc Psychiatry. 2021;30:369–79.

    Article  PubMed  Google Scholar 

  115. Whalen DJ, Gilbert KE, Luby JL. Changes in self-reported and observed parenting following a randomized control trial of parent-child interaction therapy for the treatment of preschool depression. J Child Psychol Psychiatry. 2021;62:86–96.

    Article  PubMed  Google Scholar 

  116. Donohue MR, Yin J, Quinones-Camacho L, Hennefield L, Tillman R, Gilbert K, et al. Children’s Maternal Representations Moderate the Efficacy of Parent-Child Interaction Therapy-Emotion Development (PCIT-ED) Treatment For Preschool Depression. Res Child Adolesc Psychopathol. 2022;50:1233–46.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Belden AC, Irvin K, Hajcak G, Kappenman ES, Kelly D, Karlow S, et al. Neural Correlates of Reward Processing in Depressed and Healthy Preschool-Age Children. J Am Acad Child Adolesc Psychiatry. 2016;55:1081–89.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Barch DM, Whalen D, Gilbert K, Kelly D, Kappenman ES, Hajcak G, et al. Neural Indicators of Anhedonia: Predictors and Mechanisms of Treatment Change in a Randomized Clinical Trial in Early Childhood Depression. Biol Psychiatry. 2020;88:879–87.

    Article  PubMed  Google Scholar 

  119. Nelson CA. Neural plasticity and human development: the role of early experience in sculpting memory systems. Dev Sci. 2000;3:115–36.

    Article  Google Scholar 

  120. Werker JF, Hensch TK. Critical periods in speech perception: new directions. Annu Rev Psychol. 2015;66:173–96.

    Article  PubMed  Google Scholar 

  121. Reh RK, Dias BG, Nelson CA 3rd, Kaufer D, Werker JF, Kolb B, et al. Critical period regulation across multiple timescales. Proc Natl Acad Sci USA. 2020;117:23242–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Dawson G. Early behavioral intervention, brain plasticity, and the prevention of autism spectrum disorder. Dev Psychopathol. 2008;20:775–803.

    Article  PubMed  Google Scholar 

  123. Pidano AE, Allen AR. The Incredible Year series: A review of the independent research base. J Child Fam Stud. 2015;24:1898–916.

    Article  Google Scholar 

  124. Funderburk B, Eyberg S. Parent-child interaction therapy. In: Norcross JC, VandenBos GR, Freedheim DK, editors. History of psychotherapy: Continuity and change. 2nd Ed. Washington DC: American Psychological Association; 2011. p. 415-20.

  125. Benoit D, Monga S. Taming sneaky fears. Victoria, British Columbia: Friesen Press; 2018.

  126. Willsey HR, Willsey AJ, Wang B, State MW. Genomics, convergent neuroscience and progress in understanding autism spectrum disorder. Nat Rev Neurosci. 2022;23:323–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Murray CJ, Vos T, Lozano R, Naghavi M, Flaxman AD, Michaud C, et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380:2197–223.

    Article  PubMed  Google Scholar 

  128. Copeland W, Shanahan L, Costello EJ, Angold A. Cumulative prevalence of psychiatric disorders by young adulthood: a prospective cohort analysis from the Great Smoky Mountains Study. J Am Acad Child Adolesc Psychiatry. 2011;50:252–61.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Costello EJ, Pine DS, Hammen C, March JS, Plotsky PM, Weissman MM, et al. Development and natural history of mood disorders. Biol Psychiatry. 2002;52:529–42.

    Article  PubMed  Google Scholar 

  130. Pine DS, Cohen E, Cohen P, Brook J. Adolescent depressive symptoms as predictors of adult depression: moodiness or mood disorder? Am J Psychiatry. 1999;156:133–5.

    Article  CAS  PubMed  Google Scholar 

  131. Pine DS, Cohen P, Gurley D, Brook J, Ma Y. The risk for early-adulthood anxiety and depressive disorders in adolescents with anxiety and depressive disorders. Arch Gen Psychiatry. 1998;55:56–64.

    Article  CAS  PubMed  Google Scholar 

  132. Dwyer JB, Stringaris A, Brent DA, Bloch MH. Annual Research Review: Defining and treating pediatric treatment-resistant depression. J Child Psychol Psychiatry. 2020;61:312–32.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Cuijpers P, Karyotaki E, Eckshtain D, Ng MY, Corteselli KA, Noma H, et al. Psychotherapy for Depression Across Different Age Groups: A Systematic Review and Meta-analysis. JAMA Psychiatry. 2020;77:694–702.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Eckshtain D, Kuppens S, Ugueto A, Ng MY, Vaughn-Coaxum R, Corteselli K, et al. Meta-Analysis: 13-Year Follow-up of Psychotherapy Effects on Youth Depression. J Am Acad Child Adolesc Psychiatry. 2020;59:45–63.

    Article  PubMed  Google Scholar 

  135. Ng MY, Weisz JR. Annual Research Review: Building a science of personalized intervention for youth mental health. J Child Psychol Psychiatry. 2016;57:216–36.

    Article  PubMed  Google Scholar 

  136. Zhou X, Teng T, Del Giovane C, Furukawa TA, Weisz JR, Cipriani A, et al. Treatment of depression in children and adolescents - Authors’ reply. Lancet Psychiatry. 2021;8:97–98.

    Article  PubMed  Google Scholar 

  137. March J, Silva S, Petrycki S, Curry J, Wells K, Fairbank J, et al. Fluoxetine, cognitive-behavioral therapy, and their combination for adolescents with depression: Treatment for Adolescents With Depression Study (TADS) randomized controlled trial. JAMA 2004;292:807–20.

    Article  CAS  PubMed  Google Scholar 

  138. Zhou X, Teng T, Zhang Y, Del Giovane C, Furukawa TA, Weisz JR, et al. Comparative efficacy and acceptability of antidepressants, psychotherapies, and their combination for acute treatment of children and adolescents with depressive disorder: a systematic review and network meta-analysis. Lancet Psychiatry. 2020;7:581–601.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Brent D, Emslie G, Clarke G, Wagner KD, Asarnow JR, Keller M, et al. Switching to another SSRI or to venlafaxine with or without cognitive behavioral therapy for adolescents with SSRI-resistant depression: the TORDIA randomized controlled trial. JAMA. 2008;299:901–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Marwaha S, Palmer E, Suppes T, Cons E, Young AH, Upthegrove R. Novel and emerging treatments for major depression. Lancet. 2023;401:141–53.

    Article  CAS  PubMed  Google Scholar 

  141. Dwyer JB, Landeros-Weisenberger A, Johnson JA, Londono Tobon A, Flores JM, Nasir M, et al. Efficacy of intravenous ketamine in adolescent treatment-resistant depression: a randomized midazolam-controlled trial. Focus. 2022;20:241–51.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Jones G, Arias D, Nock M. Associations between MDMA/ecstasy, classic psychedelics, and suicidal thoughts and behaviors in a sample of U.S. adolescents. Sci Rep. 2022;12:21927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Shah K, Trivedi C, Kamrai D, Akbar M, Tankersley W. Association of Psilocybin Use in Adolescents with Major Depressive Episode. European Psychiatry. 2022;65(S1), S329-S329.

  144. Lapate RC, Samaha J, Rokers B, Hamzah H, Postle BR, Davidson RJ. Inhibition of Lateral Prefrontal Cortex Produces Emotionally Biased First Impressions: A Transcranial Magnetic Stimulation and Electroencephalography Study. Psychol Sci. 2017;28:942–53.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Davidson RJ, Pizzagalli D, Nitschke JB, Putnam K. Depression: perspectives from affective neuroscience. Annu Rev Psychol. 2002;53:545–74.

    Article  PubMed  Google Scholar 

  146. Padmanabhan JL, Cooke D, Joutsa J, Siddiqi SH, Ferguson M, Darby RR, et al. A Human Depression Circuit Derived From Focal Brain Lesions. Biol Psychiatry. 2019;86:749–58.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Kentgen LM, Tenke CE, Pine DS, Fong R, Klein RG, Bruder GE. Electroencephalographic asymmetries in adolescents with major depression: influence of comorbidity with anxiety disorders. J Abnorm Psychol. 2000;109:797–802.

    Article  CAS  PubMed  Google Scholar 

  148. Pine DS, Kentgen LM, Bruder GE, Leite P, Bearman K, Ma Y, et al. Cerebral laterality in adolescent major depression. Psychiatry Res. 2000;93:135–44.

    Article  CAS  PubMed  Google Scholar 

  149. Kisely S, Li A, Warren N, Siskind D. A systematic review and meta-analysis of deep brain stimulation for depression. Depress Anxiety. 2018;35:468–80.

    Article  PubMed  Google Scholar 

  150. Chen JJ, Zhao LB, Liu YY, Fan SH, Xie P. Comparative efficacy and acceptability of electroconvulsive therapy versus repetitive transcranial magnetic stimulation for major depression: A systematic review and multiple-treatments meta-analysis. Behav Brain Res. 2017;320:30–36.

    Article  PubMed  Google Scholar 

  151. Li H, Cui L, Li J, Liu Y, Chen Y. Comparative efficacy and acceptability of neuromodulation procedures in the treatment of treatment-resistant depression: a network meta-analysis of randomized controlled trials. J Affect Disord. 2021;287:115–24.

    Article  PubMed  Google Scholar 

  152. Sonmez AI, Camsari DD, Nandakumar AL, Voort JLV, Kung S, Lewis CP, et al. Accelerated TMS for Depression: A systematic review and meta-analysis. Psychiatry Res. 2019;273:770–81.

    Article  PubMed  Google Scholar 

  153. Ferrarelli F, Phillips MLExamining. and Modulating Neural Circuits in Psychiatric Disorders With Transcranial Magnetic Stimulation and Electroencephalography: Present Practices and Future Developments. Am J Psychiatry. 2021;178:400–13.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Modak A, Fitzgerald PB. Personalising transcranial magnetic stimulation for depression using neuroimaging: A systematic review. World J Biol Psychiatry. 2021;22:647–69.

    Article  PubMed  Google Scholar 

  155. Fox MD, Buckner RL, White MP, Greicius MD, Pascual-Leone A. Efficacy of transcranial magnetic stimulation targets for depression is related to intrinsic functional connectivity with the subgenual cingulate. Biol Psychiatry. 2012;72:595–603.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Price JL, Drevets WC. Neurocircuitry of mood disorders. Neuropsychopharmacology. 2010;35:192–216.

    Article  PubMed  Google Scholar 

  157. Raichle ME. The brain’s default mode network. Annu Rev Neurosci. 2015;38:433–47.

    Article  CAS  PubMed  Google Scholar 

  158. Wang JX, Rogers LM, Gross EZ, Ryals AJ, Dokucu ME, Brandstatt KL, et al. Targeted enhancement of cortical-hippocampal brain networks and associative memory. Science. 2014;345:1054–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Oberman LM, Hynd M, Nielson DM, Towbin KE, Lisanby SH, Stringaris A. Repetitive Transcranial Magnetic Stimulation for Adolescent Major Depressive Disorder: A Focus on Neurodevelopment. Front Psychiatry. 2021;12:642847.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Croarkin PE, Elmaadawi AZ, Aaronson ST, Schrodt GR Jr., Holbert RC, Verdoliva S, et al. Left prefrontal transcranial magnetic stimulation for treatment-resistant depression in adolescents: a double-blind, randomized, sham-controlled trial. Neuropsychopharmacology. 2021;46:462–69.

    Article  CAS  PubMed  Google Scholar 

  161. Gordon EM, Laumann TO, Gilmore AW, Newbold DJ, Greene DJ, Berg JJ, et al. Precision Functional Mapping of Individual Human Brains. Neuron. 2017;95:791–807.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Sylvester CM, Yu Q, Srivastava AB, Marek S, Zheng A, Alexopoulos D, et al. Individual-specific functional connectivity of the amygdala: A substrate for precision psychiatry. Proc Natl Acad Sci USA. 2020;117:3808–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Macedo MA, Sato JR, Bressan RA, Pan PM. Adolescent depression and resting-state fMRI brain networks: a scoping review of longitudinal studies. Braz J Psychiatry. 2022;44:420–33.

    PubMed  PubMed Central  Google Scholar 

  164. Braund TA, Breukelaar IA, Griffiths K, Tillman G, Palmer DM, Bryant R, et al. Intrinsic Functional Connectomes Characterize Neuroticism in Major Depressive Disorder and Predict Antidepressant Treatment Outcomes. Biol Psychiatry Cogn Neurosci Neuroimaging. 2022;7:276–84.

    PubMed  Google Scholar 

  165. Brandl F, Weise B, Mulej Bratec S, Jassim N, Hoffmann Ayala D, Bertram T, et al. Common and specific large-scale brain changes in major depressive disorder, anxiety disorders, and chronic pain: a transdiagnostic multimodal meta-analysis of structural and functional MRI studies. Neuropsychopharmacology. 2022;47:1071–80.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Lynch CJ, Elbau IG, Ng TH, Wolk D, Zhu S, Ayaz A, et al. Automated optimization of TMS coil placement for personalized functional network engagement. Neuron. 2022;110:3263–77.e4.

    Article  CAS  PubMed  Google Scholar 

  167. Elbau IG, Lynch CJ, Downar J, Vila-Rodriguez F, Power JD, Solomonov N, et al. Functional Connectivity Mapping for rTMS Target Selection in Depression. Am J Psychiatry. 2023;180:230–40.

  168. Nosek BA, Hardwicke TE, Moshontz H, Allard A, Corker KS, Dreber A, et al. Replicability, Robustness, and Reproducibility in Psychological Science. Annu Rev Psychol. 2022;73:719–48.

    Article  PubMed  Google Scholar 

  169. Shrout PE. Measurement reliability and agreement in psychiatry. Stat Methods Med Res. 1998;7:301–17.

    Article  CAS  PubMed  Google Scholar 

  170. Drysdale AT, Grosenick L, Downar J, Dunlop K, Mansouri F, Meng Y, et al. Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nat Med. 2017;23:28–38.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Funding is through the National Institute of Mental Health (R01MH122389 and R01MH131584 to CMS; R01MH098454 to JLL) and the Taylor Family Foundation (to CMS); NIMH Intramural Research Program ZIA-MH002781.

Author information

Authors and Affiliations

Authors

Contributions

All three authors contributed to the conception and interpretations offered in this review. The authors worked together to draft the work, make revisions, and approval the final version. All authors agree that they are accountable for all aspects of the work.

Corresponding author

Correspondence to Chad M. Sylvester.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sylvester, C.M., Luby, J.L. & Pine, D.S. Novel mechanism-based treatments for pediatric anxiety and depressive disorders. Neuropsychopharmacol. 49, 262–275 (2024). https://doi.org/10.1038/s41386-023-01709-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41386-023-01709-x

Search

Quick links