Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Therapeutic mechanisms of psychedelics and entactogens

Abstract

Recent clinical and preclinical evidence suggests that psychedelics and entactogens may produce both rapid and sustained therapeutic effects across several indications. Currently, there is a disconnect between how these compounds are used in the clinic and how they are studied in preclinical species, which has led to a gap in our mechanistic understanding of how these compounds might positively impact mental health. Human studies have emphasized extra-pharmacological factors that could modulate psychedelic-induced therapeutic responses including set, setting, and integration—factors that are poorly modelled in current animal experiments. In contrast, animal studies have focused on changes in neuronal activation and structural plasticity—outcomes that are challenging to measure in humans. Here, we describe several hypotheses that might explain how psychedelics rescue neuropsychiatric disease symptoms, and we propose ways to bridge the gap between human and rodent studies. Given the diverse pharmacological profiles of psychedelics and entactogens, we suggest that their rapid and sustained therapeutic mechanisms of action might best be described by the collection of circuits that they modulate rather than their actions at any single molecular target. Thus, approaches focusing on selective circuit modulation of behavioral phenotypes might prove more fruitful than target-based methods for identifying novel compounds with rapid and sustained therapeutic effects similar to psychedelics and entactogens.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Potential circuits mediating the effects of psychedelics and entactogens.
Fig. 2: Candidate processes mediating therapeutic outcomes.

References

  1. Mitchell JM, Bogenschutz M, Lilienstein A, Harrison C, Kleiman S, Parker-Guilbert K, et al. MDMA-assisted therapy for severe PTSD: a randomized, double-blind, placebo-controlled phase 3 study. Nat Med. 2021. https://doi.org/10.1038/s41591-021-01336-3.

  2. Mithoefer MC, Wagner MT, Mithoefer AT, Jerome L, Martin SF, Yazar-Klosinski B, et al. Durability of improvement in post-traumatic stress disorder symptoms and absence of harmful effects or drug dependency after 3,4-methylenedioxymethamphetamine-assisted psychotherapy: a prospective long-term follow-up study. J Psychopharmacol. 2013;27:28–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Davis AK, Barrett FS, May DG, Cosimano MP, Sepeda ND, Johnson MW, et al. Effects of Psilocybin-Assisted Therapy on Major Depressive Disorder: A Randomized Clinical Trial. JAMA Psychiatry. 2020. https://doi.org/10.1001/jamapsychiatry.2020.3285.

  4. Carhart-Harris RL, Bolstridge M, Rucker J, Day CMJ, Erritzoe D, Kaelen M, et al. Psilocybin with psychological support for treatment-resistant depression: an open-label feasibility study. Lancet Psychiatry. 2016;3:619–27.

    Article  PubMed  Google Scholar 

  5. Griffiths RR, Johnson MW, Carducci MA, Umbricht A, Richards WA, Richards BD, et al. Psilocybin produces substantial and sustained decreases in depression and anxiety in patients with life-threatening cancer: A randomized double-blind trial. J Psychopharmacol. 2016;30:1181–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. von Rotz R, Schindowski EM, Jungwirth J, Schuldt A, Rieser NM, Zahoranszky K, et al. Single-dose psilocybin-assisted therapy in major depressive disorder: A placebo-controlled, double-blind, randomised clinical trial. EClinicalMedicine. 2023;56:101809.

    Article  Google Scholar 

  7. Ross S, Bossis A, Guss J, Agin-Liebes G, Malone T, Cohen B, et al. Rapid and sustained symptom reduction following psilocybin treatment for anxiety and depression in patients with life-threatening cancer: a randomized controlled trial. J Psychopharmacol. 2016;30:1165–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Goodwin GM, Aaronson ST, Alvarez O, Arden PC, Baker A, Bennett JC, et al. Single-Dose Psilocybin for a Treatment-Resistant Episode of Major Depression. N Engl J Med. 2022;387:1637–48.

    Article  CAS  PubMed  Google Scholar 

  9. Doss MK, Považan M, Rosenberg MD, Sepeda ND, Davis AK, Finan PH, et al. Psilocybin therapy increases cognitive and neural flexibility in patients with major depressive disorder. Transl Psychiatry. 2021;11:574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Family N, Maillet EL, Williams LTJ, Krediet E, Carhart-Harris RL, Williams TM, et al. Safety, tolerability, pharmacokinetics, and pharmacodynamics of low dose lysergic acid diethylamide (LSD) in healthy older volunteers. Psychopharmacol (Berl). 2020;237:841–53.

    Article  CAS  Google Scholar 

  11. De Gregorio D, Aguilar-Valles A, Preller KH, Heifets BD, Hibicke M, Mitchell J, et al. Hallucinogens in Mental Health: Preclinical and Clinical Studies on LSD, Psilocybin, MDMA, and Ketamine. J Neurosci. 2021;41:891–900.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Harman WW, McKim RH, Mogar RE, Fadiman J, Stolaroff MJ. Psychedelic Agents in Creative Problem-Solving: A Pilot Study. Psychol Rep. 1966;19:211–27.

    Article  CAS  PubMed  Google Scholar 

  13. Szabó Í, Varga VÉ, Dvorácskó S, Farkas AE, Körmöczi T, Berkecz R, et al. N,N-Dimethyltryptamine attenuates spreading depolarization and restrains neurodegeneration by sigma-1 receptor activation in the ischemic rat brain. Neuropharmacology 2021;192:108612.

    Article  PubMed  Google Scholar 

  14. McClain H. Temporary Placement of 3,4,-Methyelendioxymethamphetamine (MDMA) into Schedule 1. 1985. https://maps.org/wp-content/uploads/1988/11/0079.pdf. Accessed 19 July 2023.

  15. Marseille E, Mitchell JM, Kahn JG. Updated cost-effectiveness of MDMA-assisted therapy for the treatment of posttraumatic stress disorder in the United States: Findings from a phase 3 trial. PLoS ONE. 2022;17:e0263252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. McCann UD, Ricaurte GA. Effects of MDMA on the Human Nervous System. The Effects of Drug Abuse on the Human Nervous System, Amsterdam: Elsevier; 2014. p. 475–97.

  17. Vargas MV, Meyer R, Avanes AA, Rus M, Olson DE. Psychedelics and Other Psychoplastogens for Treating Mental Illness. Front Psychiatry. 2021;12:727117.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Phelps J, Shah RN, Lieberman JA. The Rapid Rise in Investment in Psychedelics—Cart Before the Horse. JAMA Psychiatry. 2022. https://doi.org/10.1001/jamapsychiatry.2021.3972.

  19. Hyman SE. Revitalizing Psychiatric Therapeutics. Neuropsychopharmacol. 2014;39:220–9.

    Article  CAS  Google Scholar 

  20. Pankevich DE, Altevogt BM, Dunlop J, Gage FH, Hyman SE. Improving and accelerating drug development for nervous system disorders. Neuron 2014;84:546–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bale TL, Abel T, Akil H, Carlezon WA Jr., Moghaddam B, Nestler EJ, et al. The critical importance of basic animal research for neuropsychiatric disorders. Neuropsychopharmacol. 2019;44:1349–53.

    Article  Google Scholar 

  22. Nestler EJ, Hyman SE. Animal models of neuropsychiatric disorders. Nat Neurosci. 2010;13:1161–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Heifets BD, Malenka RC. Disruptive Psychopharmacology. JAMA Psychiatry. 2019. https://doi.org/10.1001/jamapsychiatry.2019.1145.

  24. Nichols DE. Entactogens: How the Name for a Novel Class of Psychoactive Agents Originated. Front Psychiatry. 2022;13:863088.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Nichols DE, Hoffman AJ, Oberlender RA, Jacob P, Shulgin AT. Derivatives of 1-(1,3-benzodioxol-5-yl)-2-butanamine: representatives of a novel therapeutic class. J Med Chem. 1986;29:2009–15.

    Article  CAS  PubMed  Google Scholar 

  26. Peroutka SJ, Newman H, Harris H. Subjective effects of 3,4-methylenedioxymethamphetamine in recreational users. Neuropsychopharmacology 1988;1:273–7.

    CAS  PubMed  Google Scholar 

  27. Vollenweider FX, Gamma A, Liechti M, Huber T. Psychological and cardiovascular effects and short-term sequelae of MDMA (‘ecstasy’) in MDMA-naïve healthy volunteers. Neuropsychopharmacology 1998;19:241–51.

    Article  CAS  PubMed  Google Scholar 

  28. Kamilar-Britt P, Bedi G. The prosocial effects of 3,4-methylenedioxymethamphetamine (MDMA): Controlled studies in humans and laboratory animals. Neurosci Biobehav Rev. 2015;57:433–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Oeri HE. Beyond ecstasy: Alternative entactogens to 3,4-methylenedioxymethamphetamine with potential applications in psychotherapy. J Psychopharmacol. 2021;35:512–36.

  30. Nichols DE. Differences between the mechanism of action of MDMA, MBDB, and the classic hallucinogens. Identification of a new therapeutic class: entactogens. J Psychoact Drugs. 1986;18:305–13.

    Article  CAS  Google Scholar 

  31. Poyatos L, Pérez-Mañá C, Hladun O, Núñez-Montero M, de la Rosa G, Martín S, et al. Pharmacological effects of methylone and MDMA in humans. Front Pharm. 2023;14:1122861.

    Article  CAS  Google Scholar 

  32. Studerus E, Gamma A, Vollenweider FX. Psychometric evaluation of the altered states of consciousness rating scale (OAV). PLoS ONE. 2010;5:e12412.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Dai R, Larkin TE, Huang Z, Tarnal V, Picton P, Vlisides PE, et al. Classical and non-classical psychedelic drugs induce common network changes in human cortex. Neuroimage 2023;273:120097.

    Article  PubMed  Google Scholar 

  34. Li D, Mashour GA. Cortical dynamics during psychedelic and anesthetized states induced by ketamine. Neuroimage 2019;196:32–40.

    Article  CAS  PubMed  Google Scholar 

  35. Krystal JH, Kavalali ET, Monteggia LM. Ketamine and rapid antidepressant action: new treatments and novel synaptic signaling mechanisms. Neuropsychopharmacol. 2023. https://doi.org/10.1038/s41386-023-01629-w.

  36. Hartogsohn I. Constructing drug effects: A history of set and setting. Drug Sci Policy Law. 2017;3:2050324516683325.

    Article  Google Scholar 

  37. Leary T. Drug, set, and suggestibility. Program of the sixty-ninth Annual Convention of the American Psychological Association., vol. 16, 1961. p. 456.

  38. Johnson M, Richards W, Griffiths R. Human hallucinogen research: guidelines for safety. J Psychopharmacol. 2008;22:603–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Badiani A, Anagnostaras SG, Robinson TE. The development of sensitization to the psychomotor stimulant effects of amphetamine is enhanced in a novel environment. Psychopharmacol (Berl). 1995;117:443–52.

    Article  CAS  Google Scholar 

  40. Badiani A, Oates MM, Robinson TE. Modulation of morphine sensitization in the rat by contextual stimuli. Psychopharmacol (Berl). 2000;151:273–82.

    Article  CAS  Google Scholar 

  41. Ahmed SH, Badiani A, Miczek KA, Müller CP. Non-pharmacological factors that determine drug use and addiction. Neurosci Biobehav Rev. 2020;110:3–27.

    Article  CAS  PubMed  Google Scholar 

  42. Badiani A, Caprioli D, De Pirro S. Opposite environmental gating of the experienced utility ('liking’) and decision utility ('wanting’) of heroin versus cocaine in animals and humans: implications for computational neuroscience. Psychopharmacol (Berl). 2019;236:2451–71.

    Article  CAS  Google Scholar 

  43. Yaden DB, Griffiths RR. The Subjective Effects of Psychedelics Are Necessary for Their Enduring Therapeutic Effects. ACS Pharmacol Transl Sci. 2020. https://doi.org/10.1021/acsptsci.0c00194.

  44. Olson DE. The Subjective Effects of Psychedelics May Not Be Necessary for Their Enduring Therapeutic Effects. ACS Pharmacol Transl Sci. 2020. https://doi.org/10.1021/acsptsci.0c00192.

  45. Olson DE. Psychoplastogens: A Promising Class of Plasticity-Promoting Neurotherapeutics. J Exp Neurosci. 2018;12:1179069518800508.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Preller KH, Burt JB, Ji JL, Schleifer CH, Adkinson BD, Stämpfli P, et al. Changes in global and thalamic brain connectivity in LSD-induced altered states of consciousness are attributable to the 5-HT2A receptor. Elife. 2018;7:e35082.

  47. Madsen MK, Fisher PM, Burmester D, Dyssegaard A, Stenbæk DS, Kristiansen S, et al. Psychedelic effects of psilocybin correlate with serotonin 2A receptor occupancy and plasma psilocin levels. Neuropsychopharmacol. 2019;44:1328–34.

    Article  CAS  Google Scholar 

  48. Moda-Sava RN, Murdock MH, Parekh PK, Fetcho RN, Huang BS, Huynh TN, et al. Sustained rescue of prefrontal circuit dysfunction by antidepressant-induced spine formation. Science. 2019;364:eaat8078.

  49. Cao D, Yu J, Wang H, Luo Z, Liu X, He L, et al. Structure-based discovery of nonhallucinogenic psychedelic analogs. Science 2022;375:403–11.

    Article  CAS  PubMed  Google Scholar 

  50. Dunlap LE, Azinfar A, Ly C, Cameron LP, Viswanathan J, Tombari RJ, et al. Identification of Psychoplastogenic N,N-Dimethylaminoisotryptamine (isoDMT) Analogues through Structure-Activity Relationship Studies. J Med Chem. 2020;63:1142–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cameron LP, Tombari RJ, Lu J, Pell AJ, Hurley ZQ, Ehinger Y, et al. A non-hallucinogenic psychedelic analogue with therapeutic potential. Nature. 2020. https://doi.org/10.1038/s41586-020-3008-z.

  52. Dong C, Ly C, Dunlap LE, Vargas MV, Sun J, Hwang I-W, et al. Psychedelic-inspired drug discovery using an engineered biosensor. Cell. 2021;184:2779–92.e18.

  53. Lu J, Tjia M, Mullen B, Cao B, Lukasiewicz K, Shah-Morales S, et al. An analog of psychedelics restores functional neural circuits disrupted by unpredictable stress. Mol Psychiatry. 2021. https://doi.org/10.1038/s41380-021-01159-1.

  54. Kaplan AL, Confair DN, Kim K, Barros-Álvarez X, Rodriguiz RM, Yang Y, et al. Bespoke library docking for 5-HT2A receptor agonists with antidepressant activity. Nature 2022;610:582–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Qu Y, Chang L, Ma L, Wan X, Hashimoto K. Rapid antidepressant-like effect of non-hallucinogenic psychedelic analog lisuride, but not hallucinogenic psychedelic DOI, in lipopolysaccharide-treated mice. Pharm Biochem Behav. 2023;222:173500.

    Article  CAS  Google Scholar 

  56. Cunningham MJ, Bock HA, Serrano IC, Bechand B, Vidyadhara DJ, Bonniwell EM, et al. Pharmacological Mechanism of the Non-hallucinogenic 5-HT2A Agonist Ariadne and Analogs. ACS Chem Neurosci. 2023;14:119–35.

    Article  CAS  PubMed  Google Scholar 

  57. Lewis V, Bonniwell EM, Lanham JK, Ghaffari A, Sheshbaradaran H, Cao AB, et al. A non-hallucinogenic LSD analog with therapeutic potential for mood disorders. Cell Rep. 2023;42:112203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mithoefer MC, Grob CS, Brewerton TD. Novel psychopharmacological therapies for psychiatric disorders: psilocybin and MDMA. Lancet Psychiatry. 2016;3:481–8.

    Article  PubMed  Google Scholar 

  59. Bedi G, Hyman D, de Wit H. Is ecstasy an ‘empathogen’? Effects of ±3,4-methylenedioxymethamphetamine on prosocial feelings and identification of emotional states in others. Biol Psychiatry. 2010;68:1134–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hysek CM, Schmid Y, Simmler LD, Domes G, Heinrichs M, Eisenegger C, et al. MDMA enhances emotional empathy and prosocial behavior. Soc Cogn Affect Neurosci. 2014;9:1645–52.

    Article  PubMed  Google Scholar 

  61. Schmid Y, Hysek CM, Simmler LD, Crockett MJ, Quednow BB, Liechti ME. Differential effects of MDMA and methylphenidate on social cognition. J Psychopharmacol. 2014;28:847–56.

    Article  CAS  PubMed  Google Scholar 

  62. Kuypers KPC, de la Torre R, Farre M, Yubero-Lahoz S, Dziobek I, Van den Bos W, et al. No evidence that MDMA-induced enhancement of emotional empathy is related to peripheral oxytocin levels or 5-HT1a receptor activation. PLoS ONE. 2014;9:e100719.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Dolder PC, Müller F, Schmid Y, Borgwardt SJ, Liechti ME. Direct comparison of the acute subjective, emotional, autonomic, and endocrine effects of MDMA, methylphenidate, and modafinil in healthy subjects. Psychopharmacol (Berl). 2018;235:467–79.

    Article  CAS  Google Scholar 

  64. Vizeli P, Straumann I, Duthaler U, Varghese N, Eckert A, Paulus MP, et al. Effects of 3,4-Methylenedioxymethamphetamine on Conditioned Fear Extinction and Retention in a Crossover Study in Healthy Subjects. Front Pharm. 2022;13:906639.

    Article  CAS  Google Scholar 

  65. Carhart-Harris RL, Friston KJ. REBUS and the Anarchic Brain: Toward a Unified Model of the Brain Action of Psychedelics. Pharm Rev. 2019;71:316–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Torrado Pacheco A, Olson RJ, Garza G, Moghaddam B. Acute psilocybin enhances cognitive flexibility in rats. Neuropsychopharmacology. 2023. https://doi.org/10.1038/s41386-023-01545-z.

  67. Kanen JW, Luo Q, Rostami Kandroodi M, Cardinal RN, Robbins TW, Nutt DJ, et al. Effect of lysergic acid diethylamide (LSD) on reinforcement learning in humans. Psychol Med. 2022:1–12. Online ahead of print.

  68. Heifets BD, Salgado JS, Taylor MD, Hoerbelt P, Cardozo Pinto DF, Steinberg EE, et al. Distinct neural mechanisms for the prosocial and rewarding properties of MDMA. Sci Transl Med. 2019;11:eaaw6435.

  69. Curry DW, Young MB, Tran AN, Daoud GE, Howell LL. Separating the agony from ecstasy: R(-)-3,4-methylenedioxymethamphetamine has prosocial and therapeutic-like effects without signs of neurotoxicity in mice. Neuropharmacology 2018;128:196–206.

    Article  CAS  PubMed  Google Scholar 

  70. Morley KC, Arnold JC, McGregor IS. Serotonin (1A) receptor involvement in acute 3,4-methylenedioxymethamphetamine (MDMA) facilitation of social interaction in the rat. Prog Neuro-Psychopharmacol Biol Psychiatry. 2005;29:648–57.

    Article  CAS  Google Scholar 

  71. Feduccia AA, Holland J, Mithoefer MC. Progress and promise for the MDMA drug development program. Psychopharmacol (Berl). 2018;235:561–71.

    Article  CAS  Google Scholar 

  72. Heifets BD, Malenka RC. MDMA as a Probe and Treatment for Social Behaviors. Cell 2016;166:269–72.

    Article  CAS  PubMed  Google Scholar 

  73. Pitts EG, Curry DW, Hampshire KN, Young MB, Howell LL. (±)-MDMA and its enantiomers: potential therapeutic advantages of R(-)-MDMA. Psychopharmacol (Berl). 2018;235:377–92.

    Article  CAS  Google Scholar 

  74. Walsh JJ, Christoffel DJ, Heifets BD, Ben-Dor GA, Selimbeyoglu A, Hung LW, et al. 5-HT release in nucleus accumbens rescues social deficits in mouse autism model. Nature 2018;560:589–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Young MB, Andero R, Ressler KJ, Howell LL. 3,4-Methylenedioxymethamphetamine facilitates fear extinction learning. Transl Psychiatry. 2015;5:e634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Arluk S, Matar MA, Carmi L, Arbel O, Zohar J, Todder D, et al. MDMA treatment paired with a trauma-cue promotes adaptive stress responses in a translational model of PTSD in rats. Transl Psychiatry. 2022;12:181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Maples-Keller JL, Norrholm SD, Burton M, Reiff C, Coghlan C, Jovanovic T, et al. A randomized controlled trial of 3,4-methylenedioxymethamphetamine (MDMA) and fear extinction retention in healthy adults. J Psychopharmacol. 2022;36:368–77.

  78. De Jongh A, Resick PA, Zoellner LA, van Minnen A, Lee CW, Monson CM, et al. Critical Analysis of the Current Treatment Guidelines for Complex Ptsd in Adults. Depress Anxiety. 2016;33:359–69.

    Article  PubMed  Google Scholar 

  79. Roth BL, Gumpper RH. Psychedelics: preclinical insights provide directions for future research. Neuropsychopharmacol. 2023. https://doi.org/10.1038/s41386-023-01567-7.

  80. Vargas MV, Dunlap LE, Dong C, Carter SJ, Tombari RJ, Jami SA, et al. Psychedelics promote neuroplasticity through the activation of intracellular 5-HT2A receptors. Science 2023;379:700–6.

    Article  CAS  PubMed  Google Scholar 

  81. González-Maeso J, Ang RL, Yuen T, Chan P, Weisstaub NV, López-Giménez JF, et al. Identification of a serotonin/glutamate receptor complex implicated in psychosis. Nature 2008;452:93–97.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Kwan AC, Olson DE, Preller KH, Roth BL. The neural basis of psychedelic action. Nat Neurosci. 2022;25:1407–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Carhart-Harris R, Giribaldi B, Watts R, Baker-Jones M, Murphy-Beiner A, Murphy R, et al. Trial of Psilocybin versus Escitalopram for Depression. N Engl J Med. 2021;384:1402–11.

  84. Bogenschutz MP, Ross S, Bhatt S, Baron T, Forcehimes AA, Laska E, et al. Percentage of Heavy Drinking Days Following Psilocybin-Assisted Psychotherapy vs Placebo in the Treatment of Adult Patients With Alcohol Use Disorder: A Randomized Clinical Trial. JAMA Psychiatry. 2022. https://doi.org/10.1001/jamapsychiatry.2022.2096.

  85. Bogenschutz MP, Forcehimes AA, Pommy JA, Wilcox CE, Barbosa PCR, Strassman RJ. Psilocybin-assisted treatment for alcohol dependence: a proof-of-concept study. J Psychopharmacol (Oxf). 2015;29:289–99.

    Article  CAS  Google Scholar 

  86. Johnson MW, Garcia-Romeu A, Cosimano MP, Griffiths RR. Pilot study of the 5-HT2AR agonist psilocybin in the treatment of tobacco addiction. J Psychopharmacol (Oxf). 2014;28:983–92.

    Article  Google Scholar 

  87. Olson DE. Biochemical Mechanisms Underlying Psychedelic-Induced Neuroplasticity. Biochemistry 2022;61:127–36.

    Article  CAS  PubMed  Google Scholar 

  88. Aleksandrova LR, Phillips AG. Neuroplasticity as a convergent mechanism of ketamine and classical psychedelics. Trends Pharm Sci. 2021;42:929–42.

    Article  CAS  PubMed  Google Scholar 

  89. Davoudian PA, Shao L-X, Kwan AC. Shared and Distinct Brain Regions Targeted for Immediate Early Gene Expression by Ketamine and Psilocybin. ACS Chem Neurosci. 2023;14:468–80.

    Article  CAS  PubMed  Google Scholar 

  90. González-Maeso J, Weisstaub NV, Zhou M, Chan P, Ivic L, Ang R, et al. Hallucinogens recruit specific cortical 5-HT(2A) receptor-mediated signaling pathways to affect behavior. Neuron 2007;53:439–52.

    Article  PubMed  Google Scholar 

  91. Martin DA, Nichols CD. The Effects of Hallucinogens on Gene Expression. Curr Top Behav Neurosci. 2018;36:137–58.

    Article  CAS  PubMed  Google Scholar 

  92. Leslie RA, Moorman JM, Coulson A, Grahame-Smith DG. Serotonin2/1C receptor activation causes a localized expression of the immediate-early gene c-fos in rat brain: evidence for involvement of dorsal raphe nucleus projection fibres. Neuroscience 1993;53:457–63.

    Article  CAS  PubMed  Google Scholar 

  93. Frankel PS, Cunningham KA. The hallucinogen d-lysergic acid diethylamide (d-LSD) induces the immediate-early gene c-Fos in rat forebrain. Brain Res. 2002;958:251–60.

    Article  CAS  PubMed  Google Scholar 

  94. Erdtmann-Vourliotis M, Mayer P, Riechert U, Höllt V. Acute injection of drugs with low addictive potential (delta(9)-tetrahydrocannabinol, 3,4-methylenedioxymethamphetamine, lysergic acid diamide) causes a much higher c-fos expression in limbic brain areas than highly addicting drugs (cocaine and morphine). Brain Res Mol Brain Res. 1999;71:313–24.

    Article  CAS  PubMed  Google Scholar 

  95. Gresch PJ, Strickland LV, Sanders-Bush E. Lysergic acid diethylamide-induced Fos expression in rat brain: role of serotonin-2A receptors. Neuroscience 2002;114:707–13.

    Article  CAS  PubMed  Google Scholar 

  96. González-Maeso J, Yuen T, Ebersole BJ, Wurmbach E, Lira A, Zhou M, et al. Transcriptome fingerprints distinguish hallucinogenic and nonhallucinogenic 5-hydroxytryptamine 2A receptor agonist effects in mouse somatosensory cortex. J Neurosci. 2003;23:8836–43.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Martin DA, Nichols CD. Psychedelics Recruit Multiple Cellular Types and Produce Complex Transcriptional Responses Within the Brain. EBioMedicine 2016;11:262–77.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Pei Q, Lewis L, Sprakes ME, Jones EJ, Grahame-Smith DG, Zetterström TS. Serotonergic regulation of mRNA expression of Arc, an immediate early gene selectively localized at neuronal dendrites. Neuropharmacology 2000;39:463–70.

    Article  CAS  PubMed  Google Scholar 

  99. Pei Q, Tordera R, Sprakes M, Sharp T. Glutamate receptor activation is involved in 5-HT2 agonist-induced Arc gene expression in the rat cortex. Neuropharmacology 2004;46:331–9.

    Article  CAS  PubMed  Google Scholar 

  100. Nichols CD, Sanders-Bush E. A single dose of lysergic acid diethylamide influences gene expression patterns within the mammalian brain. Neuropsychopharmacology 2002;26:634–42.

    Article  CAS  PubMed  Google Scholar 

  101. Nichols CD, Garcia EE, Sanders-Bush E. Dynamic changes in prefrontal cortex gene expression following lysergic acid diethylamide administration. Brain Res Mol Brain Res. 2003;111:182–8.

    Article  CAS  PubMed  Google Scholar 

  102. Nichols CD, Sanders-Bush E. Molecular genetic responses to lysergic acid diethylamide include transcriptional activation of MAP kinase phosphatase-1, C/EBP-beta and ILAD-1, a novel gene with homology to arrestins. J Neurochem. 2004;90:576–84.

    Article  CAS  PubMed  Google Scholar 

  103. Malenka RC, Bear MF. LTP and LTD: an embarrassment of riches. Neuron 2004;44:5–21.

    Article  CAS  PubMed  Google Scholar 

  104. Jones KA, Srivastava DP, Allen JA, Strachan RT, Roth BL, Penzes P. Rapid modulation of spine morphology by the 5-HT2A serotonin receptor through kalirin-7 signaling. Proc Natl Acad Sci USA. 2009;106:19575–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Mi Z, Si T, Kapadia K, Li Q, Muma NA. Receptor-stimulated transamidation induces activation of Rac1 and Cdc42 and the regulation of dendritic spines. Neuropharmacology 2017;117:93–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Yoshida H, Kanamaru C, Ohtani A, Li F, Senzaki K, Shiga T. Subtype specific roles of serotonin receptors in the spine formation of cortical neurons in vitro. Neurosci Res. 2011;71:311–4.

    Article  CAS  PubMed  Google Scholar 

  107. Ohtani A, Kozono N, Senzaki K, Shiga T. Serotonin 2A receptor regulates microtubule assembly and induces dynamics of dendritic growth cones in rat cortical neurons in vitro. Neurosci Res. 2014;81–82:11–20.

    Article  PubMed  Google Scholar 

  108. Ly C, Greb AC, Cameron LP, Wong JM, Barragan EV, Wilson PC, et al. Psychedelics Promote Structural and Functional Neural Plasticity. Cell Rep. 2018;23:3170–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ly C, Greb AC, Vargas MV, Duim WC, Grodzki ACG, Lein PJ, et al. Transient Stimulation with Psychoplastogens Is Sufficient to Initiate Neuronal Growth. ACS Pharm Transl Sci. 2021;4:452–60.

    Article  CAS  Google Scholar 

  110. de la Fuente Revenga M, Zhu B, Guevara CA, Naler LB, Saunders JM, Zhou Z, et al. Prolonged epigenomic and synaptic plasticity alterations following single exposure to a psychedelic in mice. Cell Rep. 2021;37:109836.

    Article  PubMed  Google Scholar 

  111. De Gregorio D, Inserra A, Enns JP, Markopoulos A, Pileggi M, El Rahimy Y, et al. Repeated lysergic acid diethylamide (LSD) reverses stress-induced anxiety-like behavior, cortical synaptogenesis deficits and serotonergic neurotransmission decline. Neuropsychopharmacol. 2022. https://doi.org/10.1038/s41386-022-01301-9.

  112. De Gregorio D, Popic J, Enns JP, Inserra A, Skalecka A, Markopoulos A, et al. Lysergic acid diethylamide (LSD) promotes social behavior through mTORC1 in the excitatory neurotransmission. Proc Natl Acad Sci USA. 2021;118:e2020705118.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Cameron LP, Tombari RJ, Lu J, Pell AJ, Hurley ZQ, Ehinger Y, et al. A non-hallucinogenic psychedelic analogue with therapeutic potential. Nature 2021;589:474–9.

    Article  CAS  PubMed  Google Scholar 

  114. Shao L-X, Liao C, Gregg I, Davoudian PA, Savalia NK, Delagarza K, et al. Psilocybin induces rapid and persistent growth of dendritic spines in frontal cortex in vivo. Neuron 2021;S0896-6273:00423–2.

    Google Scholar 

  115. Phoumthipphavong V, Barthas F, Hassett S, Kwan AC. Longitudinal Effects of Ketamine on Dendritic Architecture In Vivo in the Mouse Medial Frontal Cortex. ENeuro. 2016;3:ENEURO.0133-15.2016.

  116. Jefferson SJ, Gregg I, Dibbs M, Liao C, Wu H, Davoudian PA, et al. 5-MeO-DMT modifies innate behaviors and promotes structural neural plasticity in mice. Neuropsychopharmacology. 2023. https://doi.org/10.1038/s41386-023-01572-w.

  117. Wojtas A, Herian M, Skawski M, Sobocińska M, González-Marín A, Noworyta-Sokołowska K, et al. Neurochemical and Behavioral Effects of a New Hallucinogenic Compound 25B-NBOMe in Rats. Neurotox Res. 2021;39:305–26.

    Article  CAS  PubMed  Google Scholar 

  118. Stone JM, Dietrich C, Edden R, Mehta MA, De Simoni S, Reed LJ, et al. Ketamine effects on brain GABA and glutamate levels with 1H-MRS: relationship to ketamine-induced psychopathology. Mol Psychiatry. 2012;17:664–5.

    Article  CAS  PubMed  Google Scholar 

  119. Moghaddam B, Adams B, Verma A, Daly D. Activation of glutamatergic neurotransmission by ketamine: a novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex. J Neurosci. 1997;17:2921–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Muschamp JW, Regina MJ, Hull EM, Winter JC, Rabin RA. Lysergic acid diethylamide and [-]-2,5-dimethoxy-4-methylamphetamine increase extracellular glutamate in rat prefrontal cortex. Brain Res. 2004;1023:134–40.

    Article  CAS  PubMed  Google Scholar 

  121. Scruggs JL, Patel S, Bubser M, Deutch AY. DOI-Induced activation of the cortex: dependence on 5-HT2A heteroceptors on thalamocortical glutamatergic neurons. J Neurosci. 2000;20:8846–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Fuchikami M, Thomas A, Liu R, Wohleb ES, Land BB, DiLeone RJ, et al. Optogenetic stimulation of infralimbic PFC reproduces ketamine’s rapid and sustained antidepressant actions. Proc Natl Acad Sci USA. 2015;112:8106–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Covington HE, Lobo MK, Maze I, Vialou V, Hyman JM, Zaman S, et al. Antidepressant effect of optogenetic stimulation of the medial prefrontal cortex. J Neurosci. 2010;30:16082–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Warden MR, Selimbeyoglu A, Mirzabekov JJ, Lo M, Thompson KR, Kim S-Y, et al. A prefrontal cortex-brainstem neuronal projection that controls response to behavioural challenge. Nature 2012;492:428–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Adhikari A, Lerner TN, Finkelstein J, Pak S, Jennings JH, Davidson TJ, et al. Basomedial amygdala mediates top-down control of anxiety and fear. Nature 2015;527:179–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Bloodgood DW, Sugam JA, Holmes A, Kash TL. Fear extinction requires infralimbic cortex projections to the basolateral amygdala. Transl Psychiatry. 2018;8:60.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Augur IF, Wyckoff AR, Aston-Jones G, Kalivas PW, Peters J. Chemogenetic Activation of an Extinction Neural Circuit Reduces Cue-Induced Reinstatement of Cocaine Seeking. J Neurosci. 2016;36:10174–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Chen BT, Yau H-J, Hatch C, Kusumoto-Yoshida I, Cho SL, Hopf FW, et al. Rescuing cocaine-induced prefrontal cortex hypoactivity prevents compulsive cocaine seeking. Nature 2013;496:359–62.

    Article  CAS  PubMed  Google Scholar 

  129. Peters J, LaLumiere RT, Kalivas PW. Infralimbic prefrontal cortex is responsible for inhibiting cocaine seeking in extinguished rats. J Neurosci. 2008;28:6046–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Halladay LR, Kocharian A, Piantadosi PT, Authement ME, Lieberman AG, Spitz NA, et al. Prefrontal Regulation of Punished Ethanol Self-administration. Biol Psychiatry. 2020;87:967–78.

    Article  CAS  PubMed  Google Scholar 

  131. Siciliano CA, Noamany H, Chang C-J, Brown AR, Chen X, Leible D, et al. A cortical-brainstem circuit predicts and governs compulsive alcohol drinking. Science 2019;366:1008–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Rijsketic Daniel R, Casey Austen B, Heifets Boris D. UNRAVELing the synergistic effects of psilocybin and environment on brain-wide immediate early gene expression in mice | bioRxiv. https://www.biorxiv.org/content/10.1101/2023.02.19.528997v1. Accessed 27 February 2023.

  133. Cameron LP, Patel SD, Vargas MV, Barragan EV, Saeger HN, Warren HT, et al. 5-HT2ARs Mediate Therapeutic Behavioral Effects of Psychedelic Tryptamines. ACS Chem Neurosci. 2023;14:351–8.

    Article  CAS  PubMed  Google Scholar 

  134. Hesselgrave N, Troppoli TA, Wulff AB, Cole AB, Thompson SM. Harnessing psilocybin: antidepressant-like behavioral and synaptic actions of psilocybin are independent of 5-HT2R activation in mice. Proc Natl Acad Sci USA. 2021;118:e2022489118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Casey AB, Cui M, Booth RG, Canal CE. “Selective” serotonin 5-HT2A receptor antagonists. Biochem Pharmacol. 2022;200:115028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Weber ET, Andrade R. Htr2a Gene and 5-HT(2A) Receptor Expression in the Cerebral Cortex Studied Using Genetically Modified Mice. Front Neurosci. 2010;4:36.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Riga MS, Soria G, Tudela R, Artigas F, Celada P. The natural hallucinogen 5-MeO-DMT, component of Ayahuasca, disrupts cortical function in rats: reversal by antipsychotic drugs. Int J Neuropsychopharmacol. 2014;17:1269–82.

    Article  CAS  PubMed  Google Scholar 

  138. Celada P, Puig MV, Díaz-Mataix L, Artigas F. The hallucinogen DOI reduces low-frequency oscillations in rat prefrontal cortex: reversal by antipsychotic drugs. Biol Psychiatry. 2008;64:392–400.

    Article  CAS  PubMed  Google Scholar 

  139. Riga MS, Lladó-Pelfort L, Artigas F, Celada P. The serotonin hallucinogen 5-MeO-DMT alters cortico-thalamic activity in freely moving mice: Regionally-selective involvement of 5-HT1A and 5-HT2A receptors. Neuropharmacology 2018;142:219–30.

    Article  CAS  PubMed  Google Scholar 

  140. Wood J, Kim Y, Moghaddam B. Disruption of prefrontal cortex large scale neuronal activity by different classes of psychotomimetic drugs. J Neurosci. 2012;32:3022–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Golden CT, Chadderton P. Psilocybin reduces low frequency oscillatory power and neuronal phase-locking in the anterior cingulate cortex of awake rodents. Sci Rep. 2022;12:12702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Michaiel AM, Parker PRL, Niell CM. A Hallucinogenic Serotonin-2A Receptor Agonist Reduces Visual Response Gain and Alters Temporal Dynamics in Mouse V1. Cell Rep. 2019;26:3475–3483.e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Yu Z-P, Li Q, Wu Z-X, Tang Z-H, Zhang X-Q, Wang Z-C, et al. The high frequency oscillation in orbitofrontal cortex is susceptible to phenethylamine psychedelic 25C-NBOMe in male rats. Neuropharmacology 2023;227:109452.

    Article  CAS  PubMed  Google Scholar 

  144. Vejmola Č, Tylš F, Piorecká V, Koudelka V, Kadeřábek L, Novák T, et al. Psilocin, LSD, mescaline, and DOB all induce broadband desynchronization of EEG and disconnection in rats with robust translational validity. Transl Psychiatry. 2021;11:506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Knudsen GM. Sustained effects of single doses of classical psychedelics in humans. Neuropsychopharmacology 2023;48:145–50.

    Article  CAS  PubMed  Google Scholar 

  146. McCulloch DE-W, Knudsen GM, Barrett FS, Doss MK, Carhart-Harris RL, Rosas FE, et al. Psychedelic resting-state neuroimaging: A review and perspective on balancing replication and novel analyses. Neurosci Biobehav Rev. 2022;138:104689.

    Article  PubMed  Google Scholar 

  147. Greer G, Tolbert R. Subjective Reports of the Effects of MDMA in a Clinical Setting. J Psychoact Drugs. 1986;18:319–27.

    Article  CAS  Google Scholar 

  148. Danforth AL, Grob CS, Struble C, Feduccia AA, Walker N, Jerome L, et al. Reduction in social anxiety after MDMA-assisted psychotherapy with autistic adults: a randomized, double-blind, placebo-controlled pilot study. Psychopharmacol (Berl). 2018;235:3137–48.

    Article  CAS  Google Scholar 

  149. Sessa B, Higbed L, O’Brien S, Durant C, Sakal C, Titheradge D, et al. First study of safety and tolerability of 3,4-methylenedioxymethamphetamine-assisted psychotherapy in patients with alcohol use disorder. J Psychopharmacol. 2021;35:375–83.

    Article  CAS  PubMed  Google Scholar 

  150. Walsh JJ, Christoffel DJ, Malenka RC. Neural circuits regulating prosocial behaviors. Neuropsychopharmacology 2023;48:79–89.

    Article  PubMed  Google Scholar 

  151. Alexandra Kredlow M, Fenster RJ, Laurent ES, Ressler KJ, Phelps EA. Prefrontal cortex, amygdala, and threat processing: implications for PTSD. Neuropsychopharmacol. 2022;47:247–59.

    Article  CAS  Google Scholar 

  152. Pitts EG, Minerva AR, Chandler EB, Kohn JN, Logun MT, Sulima A, et al. 3,4-Methylenedioxymethamphetamine Increases Affiliative Behaviors in Squirrel Monkeys in a Serotonin 2A Receptor-Dependent Manner. Neuropsychopharmacology 2017;42:1962–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Nardou R, Lewis EM, Rothhaas R, Xu R, Yang A, Boyden E, et al. Oxytocin-dependent reopening of a social reward learning critical period with MDMA. Nature 2019;569:116–20.

    Article  CAS  PubMed  Google Scholar 

  154. Froemke RC, Young LJ. Oxytocin, Neural Plasticity, and Social Behavior. Annu Rev Neurosci. 2021;44:359–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Young LJ, Lim MM, Gingrich B, Insel TR. Cellular mechanisms of social attachment. Horm Behav. 2001;40:133–8.

    Article  CAS  PubMed  Google Scholar 

  156. Dölen G, Darvishzadeh A, Huang KW, Malenka RC. Social reward requires coordinated activity of nucleus accumbens oxytocin and serotonin. Nature 2013;501:179–84.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Esaki H, Sasaki Y, Nishitani N, Kamada H, Mukai S, Ohshima Y, et al. Role of 5-HT1A receptors in the basolateral amygdala on 3,4-methylenedioxymethamphetamine-induced prosocial effects in mice. Eur J Pharm. 2023;946:175653.

    Article  CAS  Google Scholar 

  158. Christoffel DJ, Walsh JJ, Hoerbelt P, Heifets BD, Llorach P, Lopez RC, et al. Selective filtering of excitatory inputs to nucleus accumbens by dopamine and serotonin. Proc Natl Acad Sci USA. 2021;118:e2106648118.

  159. Lim BK, Huang KW, Grueter BA, Rothwell PE, Malenka RC. Anhedonia requires MC4R-mediated synaptic adaptations in nucleus accumbens. Nature 2012;487:183–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Schwartz N, Temkin P, Jurado S, Lim BK, Heifets BD, Polepalli JS, et al. Chronic pain. Decreased motivation during chronic pain requires long-term depression in the nucleus accumbens. Science. 2014;345:535–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Lüscher C, Malenka RC. Drug-evoked synaptic plasticity in addiction: from molecular changes to circuit remodeling. Neuron 2011;69:650–63.

    Article  PubMed  PubMed Central  Google Scholar 

  162. Klawonn AM, Malenka RC. Nucleus Accumbens Modulation in Reward and Aversion. Cold Spring Harb Symp Quant Biol. 2018;83:119–29.

    Article  PubMed  Google Scholar 

  163. Solié C, Girard B, Righetti B, Tapparel M, Bellone C. VTA dopamine neuron activity encodes social interaction and promotes reinforcement learning through social prediction error. Nat Neurosci. 2022;25:86–97.

    Article  PubMed  Google Scholar 

  164. Nicola SM, Kombian SB, Malenka RC. Psychostimulants depress excitatory synaptic transmission in the nucleus accumbens via presynaptic D1-like dopamine receptors. J Neurosci. 1996;16:1591–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Nicola SM, Malenka RC. Dopamine depresses excitatory and inhibitory synaptic transmission by distinct mechanisms in the nucleus accumbens. J Neurosci. 1997;17:5697–710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Young MB, Norrholm SD, Khoury LM, Jovanovic T, Rauch SAM, Reiff CM, et al. Inhibition of serotonin transporters disrupts the enhancement of fear memory extinction by 3,4-methylenedioxymethamphetamine (MDMA). Psychopharmacol (Berl). 2017;234:2883–95.

    Article  CAS  Google Scholar 

  167. Hake HS, Davis JKP, Wood RR, Tanner MK, Loetz EC, Sanchez A, et al. 3,4-methylenedioxymethamphetamine (MDMA) impairs the extinction and reconsolidation of fear memory in rats. Physiol Behav. 2019;199:343–50.

    Article  CAS  PubMed  Google Scholar 

  168. Ramos L, Hicks C, Caminer A, Couto K, Narlawar R, Kassiou M, et al. MDMA ('Ecstasy’), oxytocin and vasopressin modulate social preference in rats: A role for handling and oxytocin receptors. Pharm Biochem Behav. 2016;150–151:115–23.

    Article  Google Scholar 

  169. Nardou R, Sawyer E, Song YJ, Wilkinson M, Padovan-Hernandez Y, de Deus JL, et al. Psychedelics reopen the social reward learning critical period. Nature 2023;618:790–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Hagino Y, Takamatsu Y, Yamamoto H, Iwamura T, L Murphy D, R Uhl G, et al. Effects of MDMA on Extracellular Dopamine and Serotonin Levels in Mice Lacking Dopamine and/or Serotonin Transporters. CN. 2011;9:91–95.

    Article  CAS  Google Scholar 

  171. Gudelsky GA, Nash JF. Carrier-mediated release of serotonin by 3,4-methylenedioxymethamphetamine: implications for serotonin-dopamine interactions. J Neurochem. 1996;66:243–9.

    Article  CAS  PubMed  Google Scholar 

  172. Brennan KA, Carati C, Lea RA, Fitzmaurice PS, Schenk S. Effect of D1-like and D2-like receptor antagonists on methamphetamine and 3,4-methylenedioxymethamphetamine self-administration in rats. Behav Pharm. 2009;20:688–94.

    Article  CAS  Google Scholar 

  173. Sulzer D. How addictive drugs disrupt presynaptic dopamine neurotransmission. Neuron 2011;69:628–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Dunlap LE, Andrews AM, Olson DE. Dark Classics in Chemical Neuroscience: 3,4-Methylenedioxymethamphetamine. ACS Chem Neurosci. 2018;9:2408–27.

    Article  CAS  PubMed  Google Scholar 

  175. Wang Z, Woolverton WL. Estimating the relative reinforcing strength of (+/-)-3,4-methylenedioxymethamphetamine (MDMA) and its isomers in rhesus monkeys: comparison to (+)-methamphetamine. Psychopharmacol (Berl). 2007;189:483–8.

    Article  CAS  Google Scholar 

  176. Pomrenze MB, Cardozo Pinto DF, Neumann PA, Llorach P, Tucciarone JM, Morishita W, et al. Modulation of 5-HT release by dynorphin mediates social deficits during opioid withdrawal. Neuron. 2022;110:4125–43.e6.

  177. Mayer FP, Niello M, Cintulova D, Sideromenos S, Maier J, Li Y, et al. Serotonin-releasing agents with reduced off-target effects. Mol Psychiatry. 2023;28:722–32.

    Article  CAS  PubMed  Google Scholar 

  178. Li Y, Simmler LD, Van Zessen R, Flakowski J, Wan J-X, Deng F, et al. Synaptic mechanism underlying serotonin modulation of transition to cocaine addiction. Science 2021;373:1252–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Pelloux Y, Dilleen R, Economidou D, Theobald D, Everitt BJ. Reduced forebrain serotonin transmission is causally involved in the development of compulsive cocaine seeking in rats. Neuropsychopharmacology 2012;37:2505–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Di Giovanni G, Di Matteo V, Di Mascio M, Esposito E. Preferential modulation of mesolimbic vs. nigrostriatal dopaminergic function by serotonin(2C/2B) receptor agonists: a combined in vivo electrophysiological and microdialysis study. Synapse 2000;35:53–61.

    Article  PubMed  Google Scholar 

  181. Filip M, Cunningham KA. Hyperlocomotive and discriminative stimulus effects of cocaine are under the control of serotonin(2C) (5-HT(2C)) receptors in rat prefrontal cortex. J Pharm Exp Ther. 2003;306:734–43.

    Article  CAS  Google Scholar 

  182. Fletcher PJ, Chintoh AF, Sinyard J, Higgins GA. Injection of the 5-HT2C receptor agonist Ro60-0175 into the ventral tegmental area reduces cocaine-induced locomotor activity and cocaine self-administration. Neuropsychopharmacology 2004;29:308–18.

    Article  CAS  PubMed  Google Scholar 

  183. Doly S, Valjent E, Setola V, Callebert J, Hervé D, Launay J-M, et al. Serotonin 5-HT2B receptors are required for 3,4-methylenedioxymethamphetamine-induced hyperlocomotion and 5-HT release in vivo and in vitro. J Neurosci. 2008;28:2933–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Doly S, Bertran-Gonzalez J, Callebert J, Bruneau A, Banas SM, Belmer A, et al. Role of Serotonin via 5-HT2B Receptors in the Reinforcing Effects of MDMA in Mice. PLoS ONE. 2009;4:e7952.

    Article  PubMed  PubMed Central  Google Scholar 

  185. Sessa B. Why MDMA therapy for alcohol use disorder? And why now? Neuropharmacology 2018;142:83–88.

    Article  CAS  PubMed  Google Scholar 

  186. Reiff CM, Richman EE, Nemeroff CB, Carpenter LL, Widge AS, Rodriguez CI, et al. Psychedelics and Psychedelic-Assisted Psychotherapy. AJP 2020;177:391–410.

    Article  Google Scholar 

  187. Johnson MW, Hendricks PS, Barrett FS, Griffiths RR. Classic psychedelics: An integrative review of epidemiology, therapeutics, mystical experience, and brain network function. Pharm Ther. 2019;197:83–102.

    Article  CAS  Google Scholar 

  188. Multidisciplinary Association for Psychedelic Studies. An Open-Label, Multi-Site Phase 2 Study of the Safety and Feasibility of MDMA-Assisted Psychotherapy for Eating Disorders. 2023. https://clinicaltrials.gov/ct2/show/NCT04454684. Accessed 13 February 2023.

  189. Johnson MW, Garcia-Romeu A, Griffiths RR. Long-term follow-up of psilocybin-facilitated smoking cessation. Am J Drug Alcohol Abus. 2017;43:55–60.

    Article  Google Scholar 

  190. Hendricks P. Psilocybin-facilitated Treatment for Cocaine Use: A Pilot Study. 2023. https://clinicaltrials.gov/ct2/show/NCT02037126. Accessed 13 February 2023.

  191. Cavarra M, Falzone A, Ramaekers JG, Kuypers KPC, Mento C. Psychedelic-Assisted Psychotherapy—A Systematic Review of Associated Psychological Interventions. Front Psychol. 2022;13:887255.

  192. Yaden DB, Earp D, Graziosi M, Friedman-Wheeler D, Luoma JB, Johnson MW. Psychedelics and Psychotherapy: Cognitive-Behavioral Approaches as Default. Front Psychol. 2022;13:873279.

    Article  PubMed  PubMed Central  Google Scholar 

  193. Carhart-Harris RL, Roseman L, Haijen E, Erritzoe D, Watts R, Branchi I, et al. Psychedelics and the essential importance of context. J Psychopharmacol. 2018;32:725–31.

    Article  PubMed  Google Scholar 

  194. McIntyre RS, Rosenblat JD, Nemeroff CB, Sanacora G, Murrough JW, Berk M, et al. Synthesizing the Evidence for Ketamine and Esketamine in Treatment-Resistant Depression: An International Expert Opinion on the Available Evidence and Implementation. Am J Psychiatry. 2021;178:383–99.

  195. Noorani T, Martell J. New Frontiers or a Bursting Bubble? Psychedelic Therapy Beyond the Dichotomy. Front Psychiatry. 2021;12:727050.

    Article  PubMed  PubMed Central  Google Scholar 

  196. Muthukumaraswamy S, Forsyth A, Lumley T. Blinding and expectancy confounds in psychedelic randomised controlled trials. Expert Rev Clin Pharmacol. 2021. https://doi.org/10.1080/17512433.2021.1933434.

  197. Aday JS, Carhart-Harris RL, Woolley JD. Emerging Challenges for Psychedelic Therapy. JAMA Psychiatry. 2023;80:533–4.

    Article  PubMed  Google Scholar 

  198. Aday JS, Heifets BD, Pratscher SD, Bradley E, Rosen R, Woolley JD. Great Expectations: recommendations for improving the methodological rigor of psychedelic clinical trials. Psychopharmacology. 2022. https://doi.org/10.1007/s00213-022-06123-7.

  199. Burke MJ, Blumberger DM. Caution at psychiatry’s psychedelic frontier. Nat Med. 2021;27:1687–8.

    Article  CAS  PubMed  Google Scholar 

  200. Center for Drug Evaluation and Research. Psychedelic Drugs: Considerations for Clinical Investigations. US Food and Drug Administration. 2023. https://www.fda.gov/regulatory-information/search-fda-guidancedocuments/psychedelic-drugs-considerations-clinical-investigations. Accessed 19 July 2023.

  201. Seybert C, Cotovio G, Madeira L, Ricou M, Pires AM, Oliveira-Maia AJ. Psychedelic treatments for mental health conditions pose challenges for informed consent. Nat Med. 2023:1–4. Online ahead of print.

  202. McNamee S, Devenot N, Buisson M. Studying Harms Is Key to Improving Psychedelic-Assisted Therapy-Participants Call for Changes to Research Landscape. JAMA Psychiatry. 2023;80:411–2.

    Article  PubMed  Google Scholar 

  203. Breeksema JJ, Kuin BW, Kamphuis J, van den Brink W, Vermetten E, Schoevers RA. Adverse events in clinical treatments with serotonergic psychedelics and MDMA: A mixed-methods systematic review. J Psychopharmacol. 2022;36:1100–17.

    Article  PubMed  PubMed Central  Google Scholar 

  204. Kaertner LS, Steinborn MB, Kettner H, Spriggs MJ, Roseman L, Buchborn T, et al. Positive expectations predict improved mental-health outcomes linked to psychedelic microdosing. Sci Rep. 2021;11:1941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Lii TR, Smith AE, Flohr JR, Okada RL, Nyongesa CA, Cianfichi LJ, et al. Randomized Trial of Ketamine Masked by Surgical Anesthesia in Depressed Patients. medRxiv. 2023:2023.04.28.23289210.

  206. Krimmel SR, Zanos P, Georgiou P, Colloca L, Gould TD. Classical conditioning of antidepressant placebo effects in mice. Psychopharmacol (Berl). 2020;237:93–102.

    Article  CAS  Google Scholar 

  207. Krebs TS, Johansen P-Ø. Lysergic acid diethylamide (LSD) for alcoholism: meta-analysis of randomized controlled trials. J Psychopharmacol. 2012;26:994–1002.

    Article  PubMed  Google Scholar 

  208. Jerome L, Feduccia AA, Wang JB, Hamilton S, Yazar-Klosinski B, Emerson A, et al. Long-term follow-up outcomes of MDMA-assisted psychotherapy for treatment of PTSD: a longitudinal pooled analysis of six phase 2 trials. Psychopharmacol (Berl). 2020;237:2485–97.

    Article  CAS  Google Scholar 

  209. Forstmann M, Yudkin DA, Prosser AMB, Heller SM, Crockett MJ. Transformative experience and social connectedness mediate the mood-enhancing effects of psychedelic use in naturalistic settings. Proc Natl Acad Sci USA. 2020;117:2338–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Carhart-Harris RL, Erritzoe D, Haijen E, Kaelen M, Watts R. Psychedelics and connectedness. Psychopharmacol (Berl). 2018;235:547–50.

    Article  CAS  Google Scholar 

  211. Insel T, Cuthbert B, Garvey M, Heinssen R, Pine DS, Quinn K, et al. Research Domain Criteria (RDoC): Toward a New Classification Framework for Research on Mental Disorders. AJP. 2010;167:748–51.

    Article  Google Scholar 

  212. McEwen BS, Akil H. Revisiting the Stress Concept: Implications for Affective Disorders. J Neurosci. 2020;40:12–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Polis AJ, Fitzgerald PJ, Hale PJ, Watson BO. Rodent ketamine depression-related research: Finding patterns in a literature of variability. Behav Brain Res. 2019;376:112153.

    Article  PubMed  PubMed Central  Google Scholar 

  214. Fitzgerald PJ, Yen JY, Watson BO. Stress-sensitive antidepressant-like effects of ketamine in the mouse forced swim test. PLoS ONE. 2019;14:e0215554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Georgiou P, Zanos P, Mou T-CM, An X, Gerhard DM, Dryanovski DI, et al. Experimenters’ sex modulates mouse behaviors and neural responses to ketamine via corticotropin releasing factor. Nat Neurosci. 2022;25:1191–1200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Hibicke M, Landry AN, Kramer HM, Talman ZK, Nichols CD. Psychedelics, but Not Ketamine, Produce Persistent Antidepressant-like Effects in a Rodent Experimental System for the Study of Depression. ACS Chem Neurosci. 2020;11:864–71.

    Article  CAS  PubMed  Google Scholar 

  217. Cameron LP, Benson CJ, Dunlap LE, Olson DE. Effects of N, N-Dimethyltryptamine on Rat Behaviors Relevant to Anxiety and Depression. ACS Chem Neurosci. 2018;9:1582–90.

    Article  CAS  PubMed  Google Scholar 

  218. Wu M, Minkowicz S, Dumrongprechachan V, Hamilton P, Xiao L, Kozorovitskiy Y. Attenuated dopamine signaling after aversive learning is restored by ketamine to rescue escape actions. Elife. 2021;10:e64041.

  219. Catlow BJ, Song S, Paredes DA, Kirstein CL, Sanchez-Ramos J. Effects of psilocybin on hippocampal neurogenesis and extinction of trace fear conditioning. Exp Brain Res. 2013;228:481–91.

    Article  CAS  PubMed  Google Scholar 

  220. Cameron LP, Benson CJ, DeFelice BC, Fiehn O, Olson DE. Chronic, Intermittent Microdoses of the Psychedelic N,N-Dimethyltryptamine (DMT) Produce Positive Effects on Mood and Anxiety in Rodents. ACS Chem Neurosci. 2019;10:3261–70.

    Article  CAS  PubMed  Google Scholar 

  221. Meinhardt MW, Güngör C, Skorodumov I, Mertens LJ, Spanagel R. Psilocybin and LSD have no long-lasting effects in an animal model of alcohol relapse. Neuropsychopharmacol. 2020. https://doi.org/10.1038/s41386-020-0694-z.

  222. Meinhardt MW, Pfarr S, Fouquet G, Rohleder C, Meinhardt ML, Barroso-Flores J, et al. Psilocybin targets a common molecular mechanism for cognitive impairment and increased craving in alcoholism. Sci Adv. 2021;7:eabh2399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Alper K, Cange J, Sah R, Schreiber-Gregory D, Sershen H, Vinod KY. Psilocybin sex-dependently reduces alcohol consumption in C57BL/6J mice. Front Pharm. 2022;13:1074633.

    Article  CAS  Google Scholar 

  224. Serra YA, Barros-Santos T, Anjos-Santos A, Kisaki ND, Jovita-Farias C, Leite JPC, et al. Role of 5-HT2A receptors in the effects of ayahuasca on ethanol self-administration using a two-bottle choice paradigm in male mice. Psychopharmacol (Berl). 2022;239:1679–87.

    Article  CAS  Google Scholar 

  225. Elsilä LV, Harkki J, Enberg E, Martti A, Linden A-M, Korpi ER. Effects of acute lysergic acid diethylamide on intermittent ethanol and sucrose drinking and intracranial self-stimulation in C57BL/6 mice. J Psychopharmacol. 2022;36:860–74.

    Article  PubMed  PubMed Central  Google Scholar 

  226. Gianfratti B, Tabach R, Sakalem ME, Stessuk T, Maia LO, Carlini EA. Ayahuasca blocks ethanol preference in an animal model of dependence and shows no acute toxicity. J Ethnopharmacol. 2022;285:114865.

    Article  CAS  PubMed  Google Scholar 

  227. Walsh JJ, Llorach P, Cardozo Pinto DF, Wenderski W, Christoffel DJ, Salgado JS, et al. Systemic enhancement of serotonin signaling reverses social deficits in multiple mouse models for ASD. Neuropsychopharmacol. 2021;46:2000–10.

  228. Jefsen O, Højgaard K, Christiansen SL, Elfving B, Nutt DJ, Wegener G, et al. Psilocybin lacks antidepressant-like effect in the Flinders Sensitive Line rat. Acta Neuropsychiatr. 2019;31:213–9.

    Article  PubMed  Google Scholar 

  229. Hibicke M, Kramer HM, Nichols CD. A Single Administration of Psilocybin Persistently Rescues Cognitive Deficits Caused by Adolescent Chronic Restraint Stress Without Long-Term Changes in Synaptic Protein Gene Expression in a Rat Experimental System with Translational Relevance to Depression. Psychedelic Med. 2023. https://doi.org/10.1089/psymed.2022.0012.

  230. Golden TL, Magsamen S, Sandu CC, Lin S, Roebuck GM, Shi KM, et al. Effects of Setting on Psychedelic Experiences, Therapies, and Outcomes: A Rapid Scoping Review of the Literature. Curr Top Behav Neurosci. 2022;56:35–70.

    Article  CAS  PubMed  Google Scholar 

  231. Roseman L, Nutt DJ, Carhart-Harris RL. Quality of Acute Psychedelic Experience Predicts Therapeutic Efficacy of Psilocybin for Treatment-Resistant Depression. Front Pharmacol. 2017;8:974.

  232. Nikolaidis A, Lancelotta R, Gukasyan N, Griffiths RR, Barrett FS, Davis AK. Subtypes of the psychedelic experience have reproducible and predictable effects on depression and anxiety symptoms. J Affect Disord. 2023;324:239–49.

    Article  PubMed  Google Scholar 

  233. Davis AK, Barrett FS, May DG, Cosimano MP, Sepeda ND, Johnson MW, et al. Effects of Psilocybin-Assisted Therapy on Major Depressive Disorder: A Randomized Clinical Trial. JAMA Psychiatry. 2021;78:481–9.

    Article  PubMed  Google Scholar 

  234. Eisner B. Set, Setting, and Matrix. J Psychoact Drugs. 1997;29:213–6.

    Article  CAS  Google Scholar 

  235. Olson JA, Suissa-Rocheleau L, Lifshitz M, Raz A, Veissière SPL. Tripping on nothing: placebo psychedelics and contextual factors. Psychopharmacol (Berl). 2020;237:1371–82.

    Article  CAS  Google Scholar 

  236. Uthaug MV, Mason NL, Toennes SW, Reckweg JT, de Sousa Fernandes Perna EB, Kuypers KPC, et al. A placebo-controlled study of the effects of ayahuasca, set and setting on mental health of participants in ayahuasca group retreats. Psychopharmacol (Berl). 2021;238:1899–910.

    Article  CAS  Google Scholar 

  237. Nygart VA, Pommerencke LM, Haijen E, Kettner H, Kaelen M, Mortensen EL, et al. Antidepressant effects of a psychedelic experience in a large prospective naturalistic sample. J Psychopharmacol. 2022;36:932–42.

    Article  PubMed  PubMed Central  Google Scholar 

  238. Simonsson O, Hendricks PS, Chambers R, Osika W, Goldberg SB. Prevalence and associations of challenging, difficult or distressing experiences using classic psychedelics. J Affect Disord. 2023;326:105–10.

    Article  CAS  PubMed  Google Scholar 

  239. Testimony of George Greer, M.D. in DEA hearing on scheduling of MDMA under the Controlled Substances Act. 1985. https://maps.org/research-archive/dea-mdma/pdf/0009.PDF. Accessed 19 July 2023.

  240. Bathje GJ, Majeski E, Kudowor M. Psychedelic integration: An analysis of the concept and its practice. Front Psychol. 2022;13:824077.

  241. Daws RE, Timmermann C, Giribaldi B, Sexton JD, Wall MB, Erritzoe D, et al. Increased global integration in the brain after psilocybin therapy for depression. Nat Med. 2022;28:844–51.

    Article  CAS  PubMed  Google Scholar 

  242. Doss MK, Barrett FS, Corlett PR. Skepticism about Recent Evidence That Psilocybin ‘Liberates’ Depressed Minds. ACS Chem Neurosci. 2022;13:2540–3.

    Article  CAS  PubMed  Google Scholar 

  243. Panksepp JB, Lahvis GP. Social reward among juvenile mice. Genes Brain Behav. 2007;6:661–71.

    Article  CAS  PubMed  Google Scholar 

  244. Curry DW, Berro LF, Belkoff AR, Sulima A, Rice KC, Howell LL. Sensitization to the prosocial effects of 3,4-methylenedioxymethamphetamine (MDMA). Neuropharmacology 2019;151:13–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Palhano-Fontes F, Barreto D, Onias H, Andrade KC, Novaes MM, Pessoa JA, et al. Rapid antidepressant effects of the psychedelic ayahuasca in treatment-resistant depression: a randomized placebo-controlled trial. Psychol Med. 2019;49:655–63.

    Article  PubMed  PubMed Central  Google Scholar 

  246. Reckweg JT, van Leeuwen CJ, Henquet C, van Amelsvoort T, Theunissen EL, Mason NL, et al. A phase 1/2 trial to assess safety and efficacy of a vaporized 5-methoxy-N,N-dimethyltryptamine formulation (GH001) in patients with treatment-resistant depression. Front Psychiatry. 2023;14:1133414.

    Article  PubMed  PubMed Central  Google Scholar 

  247. Alnefeesi Y, Chen-Li D, Krane E, Jawad MY, Rodrigues NB, Ceban F, et al. Real-world effectiveness of ketamine in treatment-resistant depression: A systematic review & meta-analysis. J Psychiatr Res. 2022;151:693–709.

    Article  PubMed  Google Scholar 

  248. McInnes LA, Qian JJ, Gargeya RS, DeBattista C, Heifets BD. A retrospective analysis of ketamine intravenous therapy for depression in real-world care settings. J Affect Disord. 2022;301:486–95.

    Article  CAS  PubMed  Google Scholar 

  249. Sakurai H, Jain F, Foster S, Pedrelli P, Mischoulon D, Fava M, et al. Long-term outcome in outpatients with depression treated with acute and maintenance intravenous ketamine: A retrospective chart review. J Affect Disord. 2020;276:660–6.

    Article  CAS  PubMed  Google Scholar 

  250. Oliver PA, Snyder AD, Feinn R, Malov S, McDiarmid G, Arias AJ. Clinical Effectiveness of Intravenous Racemic Ketamine Infusions in a Large Community Sample of Patients With Treatment-Resistant Depression, Suicidal Ideation, and Generalized Anxiety Symptoms: A Retrospective Chart Review. J Clin Psychiatry. 2022;83:21m14336.

  251. Hietamies TM, McInnes LA, Klise AJ, Worley MJ, Qian JJ, Williams LM, et al. The effects of ketamine on symptoms of depression and anxiety in real-world care settings: A retrospective controlled analysis. J Affect Disord. 2023;335:484–92.

  252. Krupitsky EM, Grinenko AY. Ketamine psychedelic therapy (KPT): a review of the results of ten years of research. J Psychoact Drugs. 1997;29:165–83.

    Article  CAS  Google Scholar 

  253. Dore J, Turnipseed B, Dwyer S, Turnipseed A, Andries J, Ascani G, et al. Ketamine Assisted Psychotherapy (KAP): Patient Demographics, Clinical Data and Outcomes in Three Large Practices Administering Ketamine with Psychotherapy. J Psychoact Drugs. 2019;51:189–98.

    Article  Google Scholar 

  254. Joneborg I, Lee Y, Di Vincenzo JD, Ceban F, Meshkat S, Lui LMW, et al. Active mechanisms of ketamine-assisted psychotherapy: A systematic review. J Affect Disord. 2022;315:105–12.

    Article  CAS  PubMed  Google Scholar 

  255. Robinson TE, Kolb B. Structural plasticity associated with exposure to drugs of abuse. Neuropharmacology. 2004;47:33–46.

  256. Crombag HS, Gorny G, Li Y, Kolb B, Robinson TE. Opposite effects of amphetamine self-administration experience on dendritic spines in the medial and orbital prefrontal cortex. Cereb Cortex. 2005;15:341–8.

    Article  PubMed  Google Scholar 

Download references

Funding

Funding

BDH acknowledges support from the National Institute of Mental Health under award R01MH130591. DEO acknowledges support from the National Institute of General Medical Sciences and the National Institute on Drug Abuse under awards R01GM128997 and R01DA056365, respectively.

Author information

Authors and Affiliations

Authors

Contributions

BDH: Writing—original draft, Writing—review & editing. DEO: Writing—original draft, Writing—review & editing.

Corresponding authors

Correspondence to Boris D. Heifets or David E. Olson.

Ethics declarations

Competing interests

BDH is on the scientific advisory boards of Osmind and Journey Clinical and is a consultant for Clairvoyant Therapeutics and Vine Ventures, all unrelated to the present work. DEO is a co-founder of Delix Therapeutics, Inc., serves as the Chief Innovation Officer and Head of the Scientific Advisory Board, and has sponsored research agreements with Delix Therapeutics. Delix Therapeutics has licensed technology from the University of California, Davis.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heifets, B.D., Olson, D.E. Therapeutic mechanisms of psychedelics and entactogens. Neuropsychopharmacol. 49, 104–118 (2024). https://doi.org/10.1038/s41386-023-01666-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41386-023-01666-5

This article is cited by

Search

Quick links