Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Microglia depletion facilitates the display of maternal behavior and alters activation of the maternal brain network in nulliparous female rats

Abstract

The peripartum period is accompanied by peripheral immune alterations to promote a successful pregnancy. We and others have also demonstrated significant neuroimmune changes that emerge during late pregnancy and persist postpartum, most prominently decreased microglia numbers within limbic brain regions. Here we hypothesized that microglial downregulation is important for the onset and display of maternal behavior. To test this, we recapitulated the peripartum neuroimmune profile by depleting microglia in non-mother (i.e., nulliparous) female rats who are typically not maternal but can be induced to behave maternally towards foster pups after repeated exposure, a process called maternal sensitization. BLZ945, a selective colony-stimulating factor 1 receptor (CSF1R) inhibitor, was administered systemically to nulliparous rats, which led to ~75% decrease in microglia number. BLZ- and vehicle-treated females then underwent maternal sensitization and tissue was stained for ∆fosB to examine activation across maternally relevant brain regions. We found BLZ-treated females with microglial depletion met criteria for displaying maternal behavior significantly sooner than vehicle-treated females and displayed increased pup-directed behaviors. Microglia depletion also reduced threat appraisal behavior in an open field test. Notably, nulliparous females with microglial depletion had decreased numbers of ∆fosB+ cells in the medial amygdala and periaqueductal gray, and increased numbers in the prefrontal cortex and somatosensory cortex, compared to vehicle. Our results demonstrate that microglia regulate maternal behavior in adult females, possibly by shifting patterns of activity in the maternal brain network.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: BLZ945 treatment led to rapid depletion of microglia in the adult female rat brain.
Fig. 2: Microglia depletion in adult nulliparous females accelerated maternal sensitization, increased maternal behavior, and reduced threat appraisal behavior.
Fig. 3: Microglia depletion prior to maternal sensitization altered ∆fosB expression across maternally relevant brain regions.
Fig. 4: Microglia depletion altered ∆fosB correlation patterns in the maternal brain network during maternal sensitization.

Similar content being viewed by others

References

  1. Sedgh G, Singh S, Hussain R. Intended and unintended pregnancies worldwide in 2012 and recent trends. Stud Fam Plann. 2014;45:301–14.

    PubMed  PubMed Central  Google Scholar 

  2. Orso R, Creutzberg KC, Wearick-Silva LE, Wendt Viola T, Tractenberg SG, Benetti F, et al. How early life stress impact maternal care: a systematic review of rodent studies. Front Behav Neurosci. 2019;13:197.

    PubMed  PubMed Central  Google Scholar 

  3. Champagne FA. Epigenetic mechanisms and the transgenerational effects of maternal care. Front Neuroendocrinol. 2008;29:386–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Brummelte S, Galea LAM. Postpartum depression: etiology, treatment and consequences for maternal care. Horm Behav. 2016;77:153–66.

    PubMed  Google Scholar 

  5. Russell JA, Brunton PJ. The expectant brain: adapting for motherhood. Nat Rev Neurosci. 2008;9:11–25.

    PubMed  Google Scholar 

  6. Numan M. The parental brain. Mechanisms, development and evolution. Oxford University Press: Oxford, England. 2020.

  7. Numan M. Maternal behavior: neural circuits, stimulus valence, and motivational processes. Parent Sci Pract. 2012;12:105–14.

    Google Scholar 

  8. Stern JM. Maternal behavior: sensory, hormonal, and neural determinants. In: Brush FR, Levine S, editors. Psychoendocrinology. Academic Press: Harcourt Brace Jovanovich; New York, NY. 1989: 105–226.

  9. Numan M, Stolzenberg DS. Medial preoptic area interactions with dopamine neural systems in the control of the onset and maintenance of maternal behavior in rats. Front Neuroendocrinol. 2008;30:46–64.

    PubMed  Google Scholar 

  10. Napso T, Yong HEJ, Lopez-Tello J, Sferruzzi-Perri AN. The role of placental hormones in mediating maternal adaptations to support pregnancy and lactation. Front Physiol. 2018;9:1091.

    PubMed  PubMed Central  Google Scholar 

  11. Murrieta-Coxca J, Rodríguez-Martínez S, Cancino-Diaz ME, Markert UR, Favaro RR, Morales-Prieto DM. IL-36 cytokines: regulators of inflammatory responses and their emerging role in immunology of reproduction. Int J Mol Sci. 2019;20:1649.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Mor G, Cardenas I. The immune system in pregnancy: a unique complexity. Am J Reprod Immunol. 2010;63:425–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Dye C, Lenz KM, Leuner B. Immune system alterations and postpartum mental illness: evidence from basic and clinical research. Front Glob Women’s Health. 2022;2:758748.

    Google Scholar 

  14. Haim A, Julian D, Albin-Brooks C, Brothers HM, Lenz KM, Leuner B. A survey of neuroimmune changes in pregnant and postpartum female rats. Brain Behav Immun. 2016;59:67–78.

    PubMed  Google Scholar 

  15. Posillico CK, Schwarz JM. An investigation into the effects of antenatal stressors on the postpartum neuroimmune profile and depressive-like behaviors. Behav Brain Res. 2016;298:218–28.

    PubMed  Google Scholar 

  16. Kohl J, Dulac C. Neural control of parental behaviors. Curr Opin Neurobiol. 2018;49:116–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Green KN, Crapser JD, Hohsfield LA. To kill a microglia: a case for CSF1R inhibitors. Trends Immunol. 2020;41:771–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Elmore MRP, Najafi AR, Koike MA, Dagher NN, Spangenberg EE, Rice RA, et al. Colony-stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain. Neuron. 2014;82:380–97.

  19. Torres L, Danver J, Ji K, Miyauchi JT, Chen D, Anderson ME, et al. Dynamic microglial modulation of spatial learning and social behavior. Brain Behav Immun. 2016;55:6–16.

  20. Champagne F, Diorio J, Sharma S, Meaney MJ. Naturally occurring variations in maternal behavior in the rat are associated with differences in estrogen-inducible central oxytocin receptors. Proc Natl Acad Sci USA. 2001;98:12736–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Fleming AS, Sarker J. Experience-hormone interactions and maternal behavior in rats. Physiol Behav. 1990;47:1165.

    CAS  PubMed  Google Scholar 

  22. Leuner B, Shors TJ. Learning during motherhood: a resistance to stress. Horm Behav. 2006;50:38–51.

    PubMed  PubMed Central  Google Scholar 

  23. Li M, Fleming AS. The nucleus accumbens shell is critical for normal expression of pup-retrieval in postpartum female rats. Behav Brain Res. 2003;145:99.

    PubMed  Google Scholar 

  24. Peña CJ, Neugut YD, Champagne FA. Developmental timing of the effects of maternal care on gene expression and epigenetic regulation of hormone receptor levels in female rats. Endocrinology. 2013;154:4340–51.

    PubMed  PubMed Central  Google Scholar 

  25. Ragan CM, Ahmed EI, Vitale EM, Linning-Duffy K, Miller-Smith SM, Maguire J, et al. Postpartum state, but not maternal caregiving or level of anxiety, increases medial prefrontal cortex GAD65 and vGAT in female rats. Front Glob Women’s Health. 2022;2:746518.

    Google Scholar 

  26. Rees SL, Panesar S, Steiner M, Fleming AS. The effects of adrenalectomy and corticosterone replacement on induction of maternal behavior in the virgin female rat. Horm Behav. 2006;49:337–45.

    CAS  PubMed  Google Scholar 

  27. Pedersen CA, Prange AJ Jr. Induction of maternal behavior in virgin rats after intracerebroventricular administration of oxytocin. Proc Natl Acad Sci USA. 1979;76:6661–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Nestler EJ. ΔFosB: a transcriptional regulator of stress and antidepressant responses. Eur J Pharmacol. 2014;753:66–72.

    PubMed  PubMed Central  Google Scholar 

  29. Hagemeyer N, Hanft K-M, Akriditou M-A, Unger N, Park ES, Stanley ER, et al. Microglia contribute to normal myelinogenesis and to oligodendrocyte progenitor maintenance during adulthood. Acta Neuropathol. 2017;134:441–58.

    PubMed  PubMed Central  Google Scholar 

  30. Rosenblatt JS. Nonhormonal basis of maternal behavior in the rat. Science. 1967;156:1512–4.

    CAS  PubMed  Google Scholar 

  31. Fleming AS, Vaccarino F, Luebke C. Amygdaloid inhibition of maternal behavior in the nulliparous female rat. Physiol Behav. 1980;25:731.

    CAS  PubMed  Google Scholar 

  32. Paxinos G, Watson C. The rat brain in stereotaxic coordinates. Academic Press; Waltham, MA. 1982.

  33. Salvatore M, Wiersielis KR, Luz S, Waxler DE, Bhatnagar S, Bangasser DA. Sex differences in circuits activated by corticotropin releasing factor. Horm Behav. 2018;97:145–53.

    CAS  PubMed  Google Scholar 

  34. Stern JM. Maternal behavior priming in virgin and caesarean-delivered Long-Evans rats: effects of brief contact or continuous exteroceptive pup stimulation. Physiol Behav. 1983;31:757.

    CAS  PubMed  Google Scholar 

  35. Fleming AS, Rosenblatt JS. Olfactory regulation of maternal behavior in rats: I. Effects of olfactory bulb removal in experienced and inexperienced lactating and cycling females. J Comp Physiol Psychol. 1974;86:221–32.

    CAS  PubMed  Google Scholar 

  36. Lonstein JS. Regulation of anxiety during the postpartum period. Front Neuroendocrinol. 2007;28:115–41.

    PubMed  Google Scholar 

  37. Fleming A, Vaccarino F, Tambosso L, Chee P. Vomeronasal and olfactory system modulation of maternal behavior in the rat. Science 1979;203:372–4.

    CAS  PubMed  Google Scholar 

  38. Morgan HD, Fleming AS, Stern JM. Somatosensory control of the onset and retention of maternal responsiveness in primiparous Sprague Dawley rats. Physiol Behav. 1992;51:549.

    CAS  PubMed  Google Scholar 

  39. Brecht M. Barrel cortex and whisker-mediated behaviors. Curr Opin Neurobiol. 2007;17:408–16.

    CAS  PubMed  Google Scholar 

  40. Rosselet C, Zennou-Azogui Y, Xerri C. Nursing-induced somatosensory cortex plasticity: temporally decoupled changes in neuronal receptive field properties are accompanied by modifications in activity-dependent protein expression. J Neurosci. 2006;26:10667–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Erblich B, Zhu L, Etgen AM, Dobrenis K, Pollard JW. Absence of colony stimulation factor-1 receptor results in loss of microglia, disrupted brain development and olfactory deficits. PLoS ONE. 2011;6:e26317.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Wallace J, Lord J, Dissing-Olesen L, Stevens B, Murthy VN. Microglial depletion disrupts normal functional development of adult-born neurons in the olfactory bulb. eLife. 2020;9:e50531.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Champagne FA, Chretien P, Stevenson CW, Zhang TY, Gratton A, Meaney MJ. Variations in nucleus accumbens dopamine associated with individual differences in maternal behavior in the rat. J Neurosci. 2004;24:4113–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Rincon-Cortes M, Grace AA. Adaptations in reward-related behaviors and mesolimbic dopamine function during motherhood and the postpartum period. Front Neuroendocrinol. 2020;57:100839.

  45. Olazabal DE, Pereira M, Uriarte N, Agrati D, Ferreira A, Fleming AS, et al. Flexibility and adaptation of the neural substrate that supports maternal behavior in mammals. Neurosci Biobehav Rev. 2013;37:1875–92.

    PubMed  Google Scholar 

  46. Afonso VM, Sison M, Lovic V, Fleming AS. Medial prefrontal cortex lesions in the female rat affect sexual and maternal behavior and their sequential organization. Behav Neurosci. 2007;121:515–26.

    PubMed  Google Scholar 

  47. Leuner B, Gould E. Dendritic growth in medial prefrontal cortex and cognitive flexibility are enhanced during the postpartum period. J Neurosci. 2010;30:13499–503.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Lovic V, Fleming AS. Artificially-reared female rats show reduced prepulse inhibition and deficits in the attentional set shifting task-reversal of effects with maternal-like licking stimulation. Behav Brain Res. 2004;148:209.

    PubMed  Google Scholar 

  49. Eyo UB, Wu L-J. Bidirectional microglia-neuron communication in the healthy brain. Neural Plast. 2013;2013:456857.

    PubMed  PubMed Central  Google Scholar 

  50. Wu Y, Dissing-Olesen L, MacVicar BA, Stevens B. Microglia: dynamic mediators of synapse development and plasticity. Trend Immunol. 2015;36:605–13.

    Google Scholar 

  51. Nelson LH, Peketi P, Lenz KM. Microglia regulate cell genesis in a sex-dependent manner in the neonatal hippocampus. Neurosci. 2021;453:237–55.

  52. Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R, et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron. 2012;74:691–705.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Biber K, Vinet J, Boddeke HWGM. Neuron-microglia signaling: chemokines as versatile messengers. J Neuroimmunol. 2008;198:69–74.

    CAS  PubMed  Google Scholar 

  54. Rice RA, Spangenberg EE, Yamate-Morgan H, Lee RJ, Arora RPS, Hernandez MX, et al. Elimination of microglia improves functional outcomes following extensive neuronal loss in the hippocampus. J Neurosci. 2015;35:9977–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Rasia-Filho AA, Fabian C, Rigoti KM, Achaval M. Influence of sex, estrous cycle and motherhood on dendritic spine density in the rat medial amygdala revealed by the golgi method. Neurosci. 2004;126:839–47.

    CAS  Google Scholar 

  56. Sheppard PAS, Choleris E, Galea LAM. Structural plasticity of the hippocampus in response to estrogens in female rodents. Mol Brain 2019;12:17.

    Google Scholar 

  57. Badimon A, Strasburger HJ, Ayata P, Chen X, Nair A, Ikegami A, et al. Negative feedback control of neuronal activity by microglia. Nature. 2020;586:417.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Lin SH, Kiyohara T, Sun B. Maternal behavior: activation of the central oxytocin receptor system in parturient rats? Neuroreport. 2003;14:1439–44.

    CAS  PubMed  Google Scholar 

  59. Mathieson WB, Wilkinson M, Brown RE, Bond TLY, Taylor SW, Neumann PE. FOS and FOSB expression in the medial preoptic nucleus pars compacta of maternally active C57BL/6J and DBA/2J mice. Brain Res. 2002;952:170–5.

    CAS  PubMed  Google Scholar 

  60. Nomaru H, Sakumi K, Katogi A, Ohnishi YN, Kajitani K, Tscuchimoto D, et al. Fosb gene products contribute to excitotoxic microglia activation by regulating the expression of complement C5a receptors in microglia. Glia. 2014;62:1284–98.

    PubMed  PubMed Central  Google Scholar 

  61. Patterson JR, Kim EJ, Goudreau JL, Lookingland KJ. FosB and ∆FosB expression in brain regions containing differentially susceptible dopamine neurons following acute neurotoxicant exposure. Brain Res. 2016;1649:53–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Brown JR, Ye H, Bronson RT, Dikkes P, Greenberg ME. A defect in nurturing in mice lacking the immediate early gene fosB. Cell. 1996;86:297–309.

    CAS  PubMed  Google Scholar 

  63. Lei F, Cui N, Zhou C, Chodosh J, Vavvas DG, Paschailis EI. CSF1R inhibition by a small-molecule inhibitor is not microglia specific; affecting hematopoiesis and the function of macrophages. Proc Natl Acad Sci USA. 2020;117:23336–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Wohleb ES, Delpech J-C. Dynamic cross-talk between microglia and peripheral monocytes underlies stress-induced neuroinflammation and behavioral consequences. Prog Neuropsychopharmacol Biol Psychiatry. 2017;70:40–48.

    Google Scholar 

  65. Weber MD, Godbout JP, Sheridan JF. Repeated social defeat, neuroinflammation, and behavior: monocytes carry the signal. Neuropsychopharmacology. 2017;42:46–61.

    PubMed  Google Scholar 

  66. Moore CL. Sex differences in urinary odors produced by young laboratory rats (Rattus norvegicus). J Comp Psychol. 1985;99:336–41.

    CAS  PubMed  Google Scholar 

  67. Bowers JM, Perez-Pouchoulen M, Edwards NS, McCarthy MM. Foxp2 mediates sex differences in ultrasonic vocalization by rat pups and directs order of maternal retrieval. J Neurosci. 2013;33:3276–83.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Funding

National Institute of Mental Health grant (R21 MH117482-02) to BL and KML; National Science Foundation grant (2114381) to BL and KML; CND was supported by National Institute of Neurological Disorders and Stroke (T32NS105864).

Author information

Authors and Affiliations

Authors

Contributions

CND performed experiments, analyzed the data, and wrote and edited the manuscript. DF contributed to behavior analysis. BL and KML conceptualized and supervised the experiments and wrote and edited the manuscript.

Corresponding author

Correspondence to Kathryn M. Lenz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dye, C.N., Franceschelli, D., Leuner, B. et al. Microglia depletion facilitates the display of maternal behavior and alters activation of the maternal brain network in nulliparous female rats. Neuropsychopharmacol. 48, 1869–1877 (2023). https://doi.org/10.1038/s41386-023-01624-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41386-023-01624-1

This article is cited by

Search

Quick links