Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Involvement of cortical input to the rostromedial tegmental nucleus in aversion to foot shock

Subjects

This article has been updated

Abstract

The rostromedial tegmental nucleus (RMTg) encodes negative reward prediction error (RPE) and plays an important role in guiding behavioral responding to aversive stimuli. Previous research has focused on regulation of RMTg activity by the lateral habenula despite studies revealing RMTg afferents from other regions including the frontal cortex. The current study provides a detailed anatomical and functional analysis of cortical input to the RMTg of male rats. Retrograde tracing uncovered dense cortical input to the RMTg spanning the medial prefrontal cortex, the orbitofrontal cortex and anterior insular cortex. Afferents were most dense in the dorsomedial subregion of the PFC (dmPFC), an area that is also implicated in both RPE signaling and aversive responding. RMTg-projecting dmPFC neurons originate in layer V, are glutamatergic, and collateralize to select brain regions. In-situ mRNA hybridization revealed that neurons in this circuit are predominantly D1 receptor-expressing with a high degree of D2 receptor colocalization. Consistent with cFos induction in this neural circuit during exposure to foot shock and shock-predictive cues, optogenetic stimulation of dmPFC terminals in the RMTg drove avoidance. Lastly, acute slice electrophysiology and morphological studies revealed that exposure to repeated foot shock resulted in significant physiological and structural changes consistent with a loss of top-down modulation of RMTg-mediated signaling. Altogether, these data reveal the presence of a prominent cortico-subcortical projection involved in adaptive behavioral responding to aversive stimuli such as foot shock and provide a foundation for future work aimed at exploring alterations in circuit function in diseases characterized by deficits in cognitive control over reward and aversion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Anatomical characterization of cortical inputs to the RMTg.
Fig. 2: RMTg-projecting dmPFC neurons express glutamatergic markers and are positive for D1 and D2 receptor mRNA.
Fig. 3: Optogenetic stimulation of RMTg-projecting dmPFC terminals drives avoidance.
Fig. 4: cFos induction in RMTg-projecting dmPFC neurons following exposure to aversive stimuli.
Fig. 5: Physiological and structural neuroadaptations in RMTg-projecting dmPFC neurons following exposure to foot shock.

Similar content being viewed by others

Change history

  • 13 July 2023

    The author L. Judson Chandler was tagged incorrectly in the HTML version of the original article.

References

  1. Kaufling J, Veinante P, Pawlowski SA, Freund-Mercier M-J, Barrot M. Afferents to the GABAergic tail of the ventral tegmental area in the rat. J Comp Neurol. 2009;513:597–621.

    Article  PubMed  Google Scholar 

  2. Jhou TC, Geisler S, Marinelli M, Degarmo BA, Zahm DS. The mesopontine rostromedial tegmental nucleus: A structure targeted by the lateral habenula that projects to the ventral tegmental area of Tsai and substantia nigra compacta. J Comp Neurol. 2009;513:566–96.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Jhou TC, Fields HL, Baxter MG, Saper CB, Holland PC. The rostromedial tegmental nucleus (RMTg), a GABAergic afferent to midbrain dopamine neurons, encodes aversive stimuli and inhibits motor responses. Neuron. 2009;61:786–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Li H, Pullmann D, Cho JY, Eid M, Jhou TC. Generality and opponency of rostromedial tegmental (RMTg) roles in valence processing. ELife. 2019;8:e41542.

  5. Elmer GI, Palacorolla H, Mayo CL, Brown PL, Jhou TC, Brady D, et al. The rostromedial tegmental nucleus modulates the development of stress-induced helpless behavior. Behav Brain Res. 2019;359:950–7.

    Article  CAS  PubMed  Google Scholar 

  6. Burgos-Robles A, Vidal-Gonzalez I, Quirk GJ. Sustained conditioned responses in prelimbic prefrontal neurons are correlated with fear expression and extinction failure. J Neurosci. 2009;29:8474–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Corcoran KA, Quirk GJ. Activity in prelimbic cortex is necessary for the expression of learned, but not innate, fears. J Neurosci. 2007;27:840–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Alexander WH, Brown JW. The role of the anterior cingulate cortex in prediction error and signaling surprise. Top Cogn Sci. 2019;11:119–35.

    Article  PubMed  Google Scholar 

  9. Hong S, Jhou TC, Smith M, Saleem KS, Hikosaka O. Negative reward signals from the lateral habenula to dopamine neurons are mediated by rostromedial tegmental nucleus in primates. J Neurosci. 2011;31:11457–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. National Research Council. Guide for the care and use of laboratory animals. 8th ed. Washington DC: National Academies Press; 2011.

  11. Stamatakis AM, Stuber GD. Activation of lateral habenula inputs to the ventral midbrain promotes behavioral avoidance. Nat Neurosci. 2012;24. https://doi.org/10.1038/nn.3145.

  12. Wayman WN, Woodward JJ. Exposure to the abused inhalant toluene alters medial prefrontal cortex physiology. Neuropsychopharmacology. 2018;43:912–24.

    Article  CAS  PubMed  Google Scholar 

  13. McGuier NS, Padula AE, Lopez MF, Woodward JJ, Mulholland PJ. Withdrawal from chronic intermittent alcohol exposure increases dendritic spine density in the lateral orbitofrontal cortex of mice. Alcohol. 2015;49:21–27.

    Article  CAS  PubMed  Google Scholar 

  14. Gabbott PL, Dickie BG, Vaid RR, Headlam AJ, Bacon SJ. Local-circuit neurones in the medial prefrontal cortex (areas 25, 32 and 24b) in the rat: morphology and quantitative distribution. J Comp Neurol. 1997;377:465–99.

    Article  CAS  PubMed  Google Scholar 

  15. Lee AT, Vogt D, Rubenstein JL, Sohal VS. A class of GABAergic neurons in the prefrontal cortex sends long-range projections to the nucleus accumbens and elicits acute avoidance behavior. J Neurosci. 2014;34:11519–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Basu J, Zaremba JD, Cheung SK, Hitti FL, Zemelman BV, Losonczy A, et al. Gating of hippocampal activity, plasticity, and memory by entorhinal cortex long-range inhibition. Science. 2016;351:aaa5694.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Rock C, Zurita H, Lebby S, Wilson CJ, Apicella AJ. Cortical circuits of callosal GABAergic neurons. Cereb Cortex. 2018;28:1154–67.

    Article  PubMed  Google Scholar 

  18. Floresco SB. Prefrontal dopamine and behavioral flexibility: shifting from an ‘inverted-U’ toward a family of functions. Front Neurosci. 2013;7:62.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Vergara MD, Keller VN, Fuentealba JA, Gysling K. Activation of type 4 dopaminergic receptors in the prelimbic area of medial prefrontal cortex is necessary for the expression of innate fear behavior. Behav Brain Res. 2017;324:130–7.

    Article  CAS  PubMed  Google Scholar 

  20. Lauzon NM, Bechard M, Ahmad T, Laviolette SR. Supra-normal stimulation of dopamine D1 receptors in the prelimbic cortex blocks behavioral expression of both aversive and rewarding associative memories through a cyclic-AMP-dependent signaling pathway. Neuropharmacology. 2013;67:104–14.

    Article  CAS  PubMed  Google Scholar 

  21. Gonzalez MC, Kramar CP, Tomaiuolo M, Katche C, Weisstaub N, Cammarota M, et al. Medial prefrontal cortex dopamine controls the persistent storage of aversive memories. Front Behav Neurosci. 2014;8:408.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Castillo Díaz F, Kramar CP, Hernandez MA, Medina JH. Activation of D1/5 dopamine receptors in the dorsal medial prefrontal cortex promotes incubated-like aversive responses. Front Behav Neurosci. 2017;11:209.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Gaspar P, Bloch B, Le, Moine C. D1 and D2 receptor gene expression in the rat frontal cortex: cellular localization in different classes of efferent neurons. Eur J Neurosci. 1995;7:1050–63.

    Article  CAS  PubMed  Google Scholar 

  24. Mogil JS, Chesler EJ, Wilson SG, Juraska JM, Sternberg WF. Sex differences in thermal nociception and morphine antinociception in rodents depend on genotype. Neurosci Biobehav Rev. 2000;24:375–89.

    Article  CAS  PubMed  Google Scholar 

  25. Jolles JW, Boogert NJ, van den Bos R. Sex differences in risk-taking and associative learning in rats. R Soc Open Sci. 2015;2:150485.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Gruene TM, Flick K, Stefano A, Shea SD, Shansky RM. Sexually divergent expression of active and passive conditioned fear responses in rats. ELife. 2015;4:e11352.

  27. Gabbott PLA, Warner TA, Jays PRL, Salway P, Busby SJ. Prefrontal cortex in the rat: projections to subcortical autonomic, motor, and limbic centers. J Comp Neurol. 2005;492:145–77.

    Article  PubMed  Google Scholar 

  28. Rozeske RR, Evans AK, Frank MG, Watkins LR, Lowry CA, Maier SF. Uncontrollable, but not controllable, stress desensitizes 5-HT1A receptors in the dorsal raphe nucleus. J Neurosci. 2011;31:14107–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Warden MR, Selimbeyoglu A, Mirzabekov JJ, Lo M, Thompson KR, Kim S-Y, et al. A prefrontal cortex-brainstem neuronal projection that controls response to behavioural challenge. Nature. 2012;492:428–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bukalo O, Pinard CR, Silverstein S, Brehm C, Hartley ND, Whittle N, et al. Prefrontal inputs to the amygdala instruct fear extinction memory formation. Sci Adv. 2015;1:e1500251.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Economo MN, Clack NG, Lavis LD, Gerfen CR, Svoboda K, Myers EW, et al. A platform for brain-wide imaging and reconstruction of individual neurons. ELife. 2016;5:e10566.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kebschull JM, Garcia da Silva P, Reid AP, Peikon ID, Albeanu DF, Zador AM. High-throughput mapping of single-neuron projections by sequencing of barcoded RNA. Neuron. 2016;91:975–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mathis VP, Williams M, Fillinger C, Kenny PJ. Networks of habenula-projecting cortical neurons regulate cocaine seeking. Sci Adv. 2021;7:eabj2225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Simmler LD, Ozawa T. Neural circuits in goal-directed and habitual behavior: implications for circuit dysfunction in obsessive-compulsive disorder. Neurochem Int. 2019;129:104464.

    Article  CAS  PubMed  Google Scholar 

  35. Loewke AC, Minerva AR, Nelson AB, Kreitzer AC, Gunaydin LA. Frontostriatal projections regulate innate avoidance behavior. J Neurosci. 2021;41:5487–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rockland KS. Collateral branching of long-distance cortical projections in monkey. J Comp Neurol. 2013;521:4112–23.

    Article  PubMed  Google Scholar 

  37. Cruz AM, Kim TH, Smith RJ. Monosynaptic retrograde tracing from prelimbic neuron subpopulations projecting to either nucleus accumbens core or rostromedial tegmental nucleus. Front Neural Circuits. 2021;15:639733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Santana N, Mengod G, Artigas F. Quantitative analysis of the expression of dopamine D1 and D2 receptors in pyramidal and GABAergic neurons of the rat prefrontal cortex. Cereb Cortex. 2009;19:849–60.

    Article  PubMed  Google Scholar 

  39. Vincent SL, Khan Y, Benes FM. Cellular colocalization of dopamine D1 and D2 receptors in rat medial prefrontal cortex. Synapse. 1995;19:112–20.

    Article  CAS  PubMed  Google Scholar 

  40. Vander Weele CM, Siciliano CA, Matthews GA, Namburi P, Izadmehr EM, Espinel IC, et al. Dopamine enhances signal-to-noise ratio in cortical-brainstem encoding of aversive stimuli. Nature. 2018;563:397–401.

    Article  Google Scholar 

  41. Huang S, Zhang Z, Gambeta E, Xu SC, Thomas C, Godfrey N, et al. Dopamine inputs from the ventral tegmental area into the medial prefrontal cortex modulate neuropathic pain-associated behaviors in mice. Cell Rep. 2020;33:108393.

    Article  CAS  PubMed  Google Scholar 

  42. Floresco SB, Magyar O. Mesocortical dopamine modulation of executive functions: beyond working memory. Psychopharmacology. 2006;188:567–85.

    Article  CAS  PubMed  Google Scholar 

  43. Trantham-Davidson H, Burnett EJ, Gass JT, Lopez MF, Mulholland PJ, Centanni SW, et al. Chronic alcohol disrupts dopamine receptor activity and the cognitive function of the medial prefrontal cortex. J Neurosci. 2014;34:3706–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Trantham-Davidson H, Centanni SW, Garr SC, New NN, Mulholland PJ, Gass JT, et al. Binge-Like alcohol exposure during adolescence disrupts dopaminergic neurotransmission in the adult prelimbic cortex. Neuropsychopharmacology. 2017;42:1024–36.

    Article  CAS  PubMed  Google Scholar 

  45. Quiñones-Laracuente K, Vega-Medina A, Quirk GJ. Time-dependent recruitment of prelimbic prefrontal circuits for retrieval of fear memory. Front Behav Neurosci. 2021;15:665116.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Li H, Pullmann D, Jhou TC. Valence-encoding in the lateral habenula arises from the entopeduncular region. ELife. 2019;8:e41223.

  47. Cruz AM, Spencer HF, Kim TH, Jhou TC, Smith RJ. Prelimbic cortical projections to rostromedial tegmental nucleus play a suppressive role in cue-induced reinstatement of cocaine seeking. Neuropsychopharmacology. 2020. https://doi.org/10.1038/s41386-020-00909-z.

  48. Li H, Vento PJ, Parrilla-Carrero J, Pullmann D, Chao YS, Eid M, et al. Three rostromedial tegmental afferents drive triply dissociable aspects of punishment learning and aversive valence encoding. Neuron. 2019;17. https://doi.org/10.1016/j.neuron.2019.08.040.

  49. Peters J, Kalivas PW, Quirk GJ. Extinction circuits for fear and addiction overlap in prefrontal cortex. Learn Mem. 2009;16:279–88.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Gourley SL, Taylor JR. Going and stopping: dichotomies in behavioral control by the prefrontal cortex. Nat Neurosci. 2016;19:656–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kataoka N, Shima Y, Nakajima K, Nakamura K. A central master driver of psychosocial stress responses in the rat. Science. 2020;367:1105–12.

    Article  CAS  PubMed  Google Scholar 

  52. Lecca S, Pelosi A, Tchenio A, Moutkine I, Lujan R, Hervé D, et al. Rescue of GABAB and GIRK function in the lateral habenula by protein phosphatase 2A inhibition ameliorates depression-like phenotypes in mice. Nat Med. 2016;22:254–61.

    Article  CAS  PubMed  Google Scholar 

  53. Tønnesen J, Katona G, Rózsa B, Nägerl UV. Spine neck plasticity regulates compartmentalization of synapses. Nat Neurosci. 2014;17:678–85.

    Article  PubMed  Google Scholar 

  54. Araya R, Vogels TP, Yuste R. Activity-dependent dendritic spine neck changes are correlated with synaptic strength. Proc Natl Acad Sci USA. 2014;111:E2895–2904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Joseph Pitock for technical support and Joroen Verharen for sharing the ImageJ cell density analysis protocol. We are also grateful to Patrick Mulholland for methodological assistance with dendritic spine imaging and analysis and Sam Centanni for providing a detailed protocol for the analysis of the RNAScope data using Imaris Software.

Funding

This work was supported by NIH grants AA022836 (EJG), AA024208 (EJG), AA022701 (LJC), AA019967 (LJC), AA027706 (LJC), DA013951 (JJW), DA042518 (WNW) and USA ED HSI-STEM grant P031C160237 (AG). EJG is also supported by NIH grants AA029130 and AA022538.

Author information

Authors and Affiliations

Authors

Contributions

EJG and LJC conceived of and designed experiments. EJG and EMS collected and analyzed data for in-vivo optogenetics experiments. EJG, EMS, and AG collected and analyzed data for tract tracing experiments. EJG, EMS, and CLA collected and analyzed data for collaterals experiment. EJG, EMS, and KCS collected and analyzed data for dendritic spine analysis. EJG, AHS, DTV, and LJC collected and analyzed data for in-situ hybridization experiments. EJG, WNW, JJW collected and analyzed data for ex-vivo slice electrophysiology experiments. EJG, JJW, and LJC contributed to interpretation of findings. EJG and LJC drafted the manuscript with WNW and JJW providing critical revisions. All authors reviewed manuscript content and approved of the final version prior to publication.

Corresponding author

Correspondence to Elizabeth J. Glover.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glover, E.J., Margaret Starr, E., Gascon, A. et al. Involvement of cortical input to the rostromedial tegmental nucleus in aversion to foot shock. Neuropsychopharmacol. 48, 1455–1464 (2023). https://doi.org/10.1038/s41386-023-01612-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41386-023-01612-5

Search

Quick links