Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Anandamide and 2-arachidonoylglycerol differentially modulate autistic-like traits in a genetic model of autism based on FMR1 deletion in rats

Abstract

Autism spectrum disorder (ASD) has a multifactorial etiology. Major efforts are underway to understand the neurobiological bases of ASD and to develop efficacious treatment strategies. Recently, the use of cannabinoid compounds in children with neurodevelopmental disorders including ASD has received increasing attention. Beyond anecdotal reports of efficacy, however, there is limited current evidence supporting such an intervention and the clinical studies currently available have intrinsic limitations that make the interpretation of the findings challenging. Furthermore, as the mechanisms underlying the beneficial effects of cannabinoid compounds in neurodevelopmental disorders are still largely unknown, the use of drugs targeting the endocannabinoid system remains controversial. Here, we studied the role of endocannabinoid neurotransmission in the autistic-like traits displayed by the recently validated Fmr1-Δexon 8 rat model of autism. Fmr1-Δexon 8 rats showed reduced anandamide levels in the hippocampus and increased 2-arachidonoylglycerol (2-AG) content in the amygdala. Systemic and intra-hippocampal potentiation of anandamide tone through administration of the anandamide hydrolysis inhibitor URB597 ameliorated the cognitive deficits displayed by Fmr1-Δexon 8 rats along development, as assessed through the novel object and social discrimination tasks. Moreover, blockade of amygdalar 2-AG signaling through intra-amygdala administration of the CB1 receptor antagonist SR141716A prevented the altered sociability displayed by Fmr1-Δexon 8 rats. These findings demonstrate that anandamide and 2-AG differentially modulate specific autistic-like traits in Fmr1-Δexon 8 rats in a brain region-specific manner, suggesting that fine changes in endocannabinoid mechanisms contribute to ASD-related behavioral phenotypes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: AEA and 2-AG levels were altered in a region-specific manner in the brain of Fmr1-Δexon 8 rats.
Fig. 2: qPCR analysis of the main components of the ECS in the hippocampus of juvenile Fmr1-Δexon 8 rats.
Fig. 3: qPCR analysis of the main components of the ECS in the amygdala of juvenile Fmr1-Δexon 8 rats.
Fig. 4: Potentiation of AEA tone through systemic administration of URB597 rescued the impaired object and social discrimination abilities of Fmr1-Δexon 8 rats.
Fig. 5: Intra-hippocampal potentiation of AEA tone rescued the impaired object and social discrimination abilities of Fmr1-Δexon 8 rats, while blockade of CB1 cannabinoid receptors in the amygdala restored their altered sociability.

Similar content being viewed by others

References

  1. American Psychiatric Association. Diagnostic and statistical manual of mental disorders - 5th ed. (DSM-5). Washington, DC: American Psychiatric Association; 2013.

  2. Lai MC, Lombardo MV, Baron-Cohen S. Autism. Lancet. 2014;383:896–910.

    Article  PubMed  Google Scholar 

  3. Jeste SS, Geschwind DH. Disentangling the heterogeneity of autism spectrum disorder through genetic findings. Nat Rev Neurol. 2014;10:74–81.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Maurin T, Zongaro S, Bardoni B. Fragile X Syndrome: from molecular pathology to therapy. Neurosci Biobehav Rev. 2014;46:242–55.

    Article  CAS  PubMed  Google Scholar 

  5. Song FJ, Barton P, Sleightholme V, Yao GL, Fry-Smith A. Screening for fragile X syndrome: a literature review and modelling study. Health Technol Assess. 2003;7:1–106.

    Article  CAS  PubMed  Google Scholar 

  6. Hernandez RN, Feinberg RL, Vaurio R, Passanante NM, Thompson RE, Kaufmann WE. Autism spectrum disorder in fragile X syndrome: a longitudinal evaluation. Am J Med Genet Part A. 2009;149A:1125–37.

    Article  PubMed  Google Scholar 

  7. Hagerman RJ, Berry-Kravis E, Hazlett HC, Bailey DB Jr., Moine H, Kooy RF, et al. Fragile X syndrome. Nat Rev Dis Prim. 2017;3:17065.

    Article  PubMed  Google Scholar 

  8. Telias M. Molecular Mechanisms of Synaptic Dysregulation in Fragile X Syndrome and Autism Spectrum Disorders. Front Mol Neurosci. 2019;12:51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tran SS, Jun HI, Bahn JH, Azghadi A, Ramaswami G, Van Nostrand EL, et al. Widespread RNA editing dysregulation in brains from autistic individuals. Nat Neurosci. 2019;22:25–36.

    Article  CAS  PubMed  Google Scholar 

  10. Fyke W, Velinov M. FMR1 and Autism, an Intriguing Connection Revisited. Genes. 2021;12:1218.

  11. Castagnola S, Bardoni B, Maurin T. The Search for an Effective Therapy to Treat Fragile X Syndrome: Dream or Reality? Front Synaptic Neurosci. 2017;9:15.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Araque A, Castillo PE, Manzoni OJ, Tonini R. Synaptic functions of endocannabinoid signaling in health and disease. Neuropharmacology 2017;124:13–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Segev A, Korem N, Mizrachi Zer-Aviv T, Abush H, Lange R, Sauber G, et al. Role of endocannabinoids in the hippocampus and amygdala in emotional memory and plasticity. Neuropsychopharmacol: Off Publ Am Coll Neuropsychopharmacol. 2018;43:2017–27.

    Article  CAS  Google Scholar 

  14. Maldonado R, Cabanero D, Martin-Garcia E. The endocannabinoid system in modulating fear, anxiety, and stress. Dialogues Clin Neurosci. 2020;22:229–39.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wei D, Allsop S, Tye K, Piomelli D. Endocannabinoid Signaling in the Control of Social Behavior. Trends Neurosci. 2017;40:385–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bagni C, Zukin RS. A Synaptic Perspective of Fragile X Syndrome and Autism Spectrum Disorders. Neuron 2019;101:1070–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Takumi T, Tamada K, Hatanaka F, Nakai N, Bolton PF. Behavioral neuroscience of autism. Neurosci Biobehav Rev. 2020;110:60–76.

    Article  PubMed  Google Scholar 

  18. Castillo PE, Younts TJ, Chavez AE, Hashimotodani Y. Endocannabinoid signaling and synaptic function. Neuron 2012;76:70–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ohno-Shosaku T, Kano M. Endocannabinoid-mediated retrograde modulation of synaptic transmission. Curr Opin Neurobiol. 2014;29:1–8.

    Article  CAS  PubMed  Google Scholar 

  20. Di Marzo V, Bifulco M, De Petrocellis L. The endocannabinoid system and its therapeutic exploitation. Nat Rev Drug Discov. 2004;3:771–84.

    Article  PubMed  Google Scholar 

  21. Piomelli D. The molecular logic of endocannabinoid signalling. Nat Rev Neurosci. 2003;4:873–84.

    Article  CAS  PubMed  Google Scholar 

  22. Cristino L, Bisogno T, Di Marzo V. Cannabinoids and the expanded endocannabinoid system in neurological disorders. Nat Rev Neurol. 2020;16:9–29.

    Article  PubMed  Google Scholar 

  23. Aran A, Eylon M, Harel M, Polianski L, Nemirovski A, Tepper S, et al. Lower circulating endocannabinoid levels in children with autism spectrum disorder. Mol Autism. 2019;10:2.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Karhson DS, Krasinska KM, Dallaire JA, Libove RA, Phillips JM, Chien AS, et al. Plasma anandamide concentrations are lower in children with autism spectrum disorder. Mol Autism. 2018;9:18.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Smith DR, Stanley CM, Foss T, Boles RG, McKernan K. Rare genetic variants in the endocannabinoid system genes CNR1 and DAGLA are associated with neurological phenotypes in humans. PloS ONE. 2017;12:e0187926.

    Article  PubMed  PubMed Central  Google Scholar 

  26. De Pol M, Kolla NJ. Endocannabinoid markers in autism spectrum disorder: a scoping review of human studies. Psychiatry Res. 2021;306:114256.

    Article  PubMed  Google Scholar 

  27. Pietropaolo S, Marsicano G. The role of the endocannabinoid system as a therapeutic target for autism spectrum disorder: Lessons from behavioral studies on mouse models. Neurosci Biobehav Rev. 2022;132:664–78.

    Article  PubMed  Google Scholar 

  28. Carbone E, Manduca A, Cacchione C, Vicari S, Trezza V. Healing autism spectrum disorder with cannabinoids: a neuroinflammatory story. Neurosci Biobehav Rev. 2021;121:128–43.

    Article  CAS  PubMed  Google Scholar 

  29. Zamberletti E, Rubino T, Parolaro D. Therapeutic potential of cannabidivarin for epilepsy and autism spectrum disorder. Pharmacol Ther. 2021;226:107878.

    Article  CAS  PubMed  Google Scholar 

  30. Hurley MJ, Deacon RMJ, Chan AWE, Baker D, Selwood DL, Cogram P. Reversal of behavioural phenotype by the cannabinoid-like compound VSN16R in fragile X syndrome mice. Brain: J Neurol. 2022;145:76–82.

    Article  Google Scholar 

  31. Busquets-Garcia A, Gomis-Gonzalez M, Guegan T, Agustin-Pavon C, Pastor A, Mato S, et al. Targeting the endocannabinoid system in the treatment of fragile X syndrome. Nat Med. 2013;19:603–7.

    Article  CAS  PubMed  Google Scholar 

  32. Jung KM, Sepers M, Henstridge CM, Lassalle O, Neuhofer D, Martin H, et al. Uncoupling of the endocannabinoid signalling complex in a mouse model of fragile X syndrome. Nat Commun. 2012;3:1080.

    Article  PubMed  Google Scholar 

  33. Neuhofer D, Lassalle O, Manzoni OJ. Muscarinic M1 Receptor Modulation of Synaptic Plasticity in Nucleus Accumbens of Wild-Type and Fragile X Mice. ACS Chem Neurosci. 2018;9:2233–40.

    Article  CAS  PubMed  Google Scholar 

  34. Wang W, Cox BM, Jia Y, Le AA, Cox CD, Jung KM, et al. Treating a novel plasticity defect rescues episodic memory in Fragile X model mice. Mol Psychiatry. 2018;23:1798–806.

    Article  CAS  PubMed  Google Scholar 

  35. Heussler H, Cohen J, Silove N, Tich N, Bonn-Miller MO, Du W, et al. A phase 1/2, open-label assessment of the safety, tolerability, and efficacy of transdermal cannabidiol (ZYN002) for the treatment of pediatric fragile X syndrome. J Neurodev Disord. 2019;11:16.

    Article  PubMed  Google Scholar 

  36. Tartaglia N, Bonn-Miller M, Hagerman R. Treatment of Fragile X Syndrome with Cannabidiol: A Case Series Study and Brief Review of the Literature. Cannabis Cannabinoid Res. 2019;4:3–9.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Berry-Kravis EHR, Budimirovic D, Erickson C, Heussler H, Tartaglia N, Cohen J, et al. A Pivotal Study of ZYN002 Cannabidiol (CBD) Transdermal Gel in Children and Adolescents With Fragile X Syndrome. Biological Psychiatry. 2021;89:S226–S7.

  38. Schiavi S, Carbone E, Melancia F, Buzzelli V, Manduca A, Campolongo P, et al. Perinatal supplementation with omega-3 fatty acids corrects the aberrant social and cognitive traits observed in a genetic model of autism based on FMR1 deletion in rats. Nutritional Neurosci. 2022;25:898–911.

    Article  CAS  Google Scholar 

  39. Golden CEM, Breen MS, Koro L, Sonar S, Niblo K, Browne A, et al. Deletion of the KH1 Domain of Fmr1 Leads to Transcriptional Alterations and Attentional Deficits in Rats. Cereb Cortex. 2019;29:2228–44.

    Article  PubMed  Google Scholar 

  40. Hamilton SM, Green JR, Veeraragavan S, Yuva L, McCoy A, Wu Y, et al. Fmr1 and Nlgn3 knockout rats: novel tools for investigating autism spectrum disorders. Behav Neurosci. 2014;128:103–9.

    Article  CAS  PubMed  Google Scholar 

  41. Till SM, Asiminas A, Jackson AD, Katsanevaki D, Barnes SA, Osterweil EK, et al. Conserved hippocampal cellular pathophysiology but distinct behavioural deficits in a new rat model of FXS. Hum Mol Genet. 2015;24:5977–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Schiavi S, Carbone E, Melancia F, di Masi A, Jarjat M, Brau F, et al. Phosphodiesterase 2A inhibition corrects the aberrant behavioral traits observed in genetic and environmental preclinical models of Autism Spectrum Disorder. Transl Psychiatry. 2022;12:119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Amaral DG, Schumann CM, Nordahl CW. Neuroanatomy of autism. Trends Neurosci. 2008;31:137–45.

    Article  CAS  PubMed  Google Scholar 

  44. Ha S, Sohn IJ, Kim N, Sim HJ, Cheon KA. Characteristics of Brains in Autism Spectrum Disorder: Structure, Function and Connectivity across the Lifespan. Exp Neurobiol. 2015;24:273–84.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Hashem S, Nisar S, Bhat AA, Yadav SK, Azeem MW, Bagga P, et al. Genetics of structural and functional brain changes in autism spectrum disorder. Transl Psychiatry. 2020;10:229.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Fereshetyan K, Chavushyan V, Danielyan M, Yenkoyan K. Assessment of behavioral, morphological and electrophysiological changes in prenatal and postnatal valproate induced rat models of autism spectrum disorder. Sci Rep. 2021;11:23471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sosa-Diaz N, Bringas ME, Atzori M, Flores G. Prefrontal cortex, hippocampus, and basolateral amygdala plasticity in a rat model of autism spectrum. Synapse 2014;68:468–73.

    Article  CAS  PubMed  Google Scholar 

  48. Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol. 2010;8:e1000412.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Schiavi S, Iezzi D, Manduca A, Leone S, Melancia F, Carbone C, et al. Reward-Related Behavioral, Neurochemical and Electrophysiological Changes in a Rat Model of Autism Based on Prenatal Exposure to Valproic Acid. Front Cell Neurosci. 2019;13:479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Morena M, Roozendaal B, Trezza V, Ratano P, Peloso A, Hauer D, et al. Endogenous cannabinoid release within prefrontal-limbic pathways affects memory consolidation of emotional training. Proc Natl Acad Sci USA. 2014;111:18333–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gray JM, Vecchiarelli HA, Morena M, Lee TT, Hermanson DJ, Kim AB, et al. Corticotropin-releasing hormone drives anandamide hydrolysis in the amygdala to promote anxiety. J Neurosci: Off J Soc Neurosci. 2015;35:3879–92.

    Article  CAS  Google Scholar 

  52. Qi M, Morena M, Vecchiarelli HA, Hill MN, Schriemer DC. A robust capillary liquid chromatography/tandem mass spectrometry method for quantitation of neuromodulatory endocannabinoids. Rapid Commun Mass Spectrom. 2015;29:1889–97.

    Article  CAS  PubMed  Google Scholar 

  53. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 2008;3:1101–8.

    Article  CAS  PubMed  Google Scholar 

  54. Santori A, Morena M, Hill MN, Campolongo P. Hippocampal 2-Arachidonoyl Glycerol Signaling Regulates Time-of-Day- and Stress-Dependent Effects on Rat Short-Term Memory. Int J Mol Sci. 2020;21:7316.

  55. Trezza V, Damsteegt R, Manduca A, Petrosino S, Van Kerkhof LW, Pasterkamp RJ, et al. Endocannabinoids in amygdala and nucleus accumbens mediate social play reward in adolescent rats. J Neurosci: Off J Soc Neurosci. 2012;32:14899–908.

    Article  CAS  Google Scholar 

  56. Manduca A, Servadio M, Campolongo P, Palmery M, Trabace L, Vanderschuren LJ, et al. Strain- and context-dependent effects of the anandamide hydrolysis inhibitor URB597 on social behavior in rats. Eur Neuropsychopharmacol: J Eur Coll Neuropsychopharmacol. 2014;24:1337–48.

    Article  CAS  Google Scholar 

  57. Kathuria S, Gaetani S, Fegley D, Valino F, Duranti A, Tontini A, et al. Modulation of anxiety through blockade of anandamide hydrolysis. Nat Med. 2003;9:76–81.

    Article  CAS  PubMed  Google Scholar 

  58. Fegley D, Gaetani S, Duranti A, Tontini A, Mor M, Tarzia G, et al. Characterization of the fatty acid amide hydrolase inhibitor cyclohexyl carbamic acid 3’-carbamoyl-biphenyl-3-yl ester (URB597): effects on anandamide and oleoylethanolamide deactivation. J Pharmacol Exp Ther. 2005;313:352–8.

    Article  CAS  PubMed  Google Scholar 

  59. Melancia F, Schiavi S, Servadio M, Cartocci V, Campolongo P, Palmery M, et al. Sex-specific autistic endophenotypes induced by prenatal exposure to valproic acid involve anandamide signalling. Br J Pharmacol. 2018;175:3699–712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Morena M, Berardi A, Colucci P, Palmery M, Trezza V, Hill MN, et al. Enhancing Endocannabinoid Neurotransmission Augments The Efficacy of Extinction Training and Ameliorates Traumatic Stress-Induced Behavioral Alterations in Rats. Neuropsychopharmacol: Off Publ Am Coll Neuropsychopharmacol. 2018;43:1284–96.

    Article  CAS  Google Scholar 

  61. Morena M, De Castro V, Gray JM, Palmery M, Trezza V, Roozendaal B, et al. Training-Associated Emotional Arousal Shapes Endocannabinoid Modulation of Spatial Memory Retrieval in Rats. J Neurosci: Off J Soc Neurosci. 2015;35:13962–74.

    Article  CAS  Google Scholar 

  62. Piomelli D, Tarzia G, Duranti A, Tontini A, Mor M, Compton TR, et al. Pharmacological profile of the selective FAAH inhibitor KDS-4103 (URB597). CNS Drug Rev. 2006;12:21–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Manduca A, Lassalle O, Sepers M, Campolongo P, Cuomo V, Marsicano G, et al. Interacting Cannabinoid and Opioid Receptors in the Nucleus Accumbens Core Control Adolescent Social Play. Front Behav Neurosci. 2016;10:211.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Manduca A, Bara A, Larrieu T, Lassalle O, Joffre C, Laye S, et al. Amplification of mGlu5-Endocannabinoid Signaling Rescues Behavioral and Synaptic Deficits in a Mouse Model of Adolescent and Adult Dietary Polyunsaturated Fatty Acid Imbalance. J Neurosci: Off J Soc Neurosci. 2017;37:6851–68.

    Article  CAS  Google Scholar 

  65. Bara A, Manduca A, Bernabeu A, Borsoi M, Serviado M, Lassalle O, et al. Sex-dependent effects of in utero cannabinoid exposure on cortical function. eLife. 2018;7:e36234.

  66. Borsoi M, Manduca A, Bara A, Lassalle O, Pelissier-Alicot AL, Manzoni OJ. Sex Differences in the Behavioral and Synaptic Consequences of a Single in vivo Exposure to the Synthetic Cannabimimetic WIN55,212-2 at Puberty and Adulthood. Front Behav Neurosci. 2019;13:23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Servadio M, Melancia F, Manduca A, di Masi A, Schiavi S, Cartocci V, et al. Targeting anandamide metabolism rescues core and associated autistic-like symptoms in rats prenatally exposed to valproic acid. Transl Psychiatry. 2016;6:e902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gomis-Gonzalez M, Busquets-Garcia A, Matute C, Maldonado R, Mato S, Ozaita A. Possible Therapeutic Doses of Cannabinoid Type 1 Receptor Antagonist Reverses Key Alterations in Fragile X Syndrome Mouse Model. Genes. 2016;7:56.

  69. Zhang L, Alger BE. Enhanced endocannabinoid signaling elevates neuronal excitability in fragile X syndrome. J Neurosci: Off J Soc Neurosci. 2010;30:5724–9.

    Article  CAS  Google Scholar 

  70. Neuhofer D, Henstridge CM, Dudok B, Sepers M, Lassalle O, Katona I, et al. Functional and structural deficits at accumbens synapses in a mouse model of Fragile X. Front Cell Neurosci. 2015;9:100.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Martin HGS, Lassalle O, Manzoni OJ. Differential Adulthood Onset mGlu5 Signaling Saves Prefrontal Function in the Fragile X Mouse. Cereb Cortex. 2017;27:5592–602.

    PubMed  Google Scholar 

  72. Maccarrone M, Rossi S, Bari M, De Chiara V, Rapino C, Musella A, et al. Abnormal mGlu 5 receptor/endocannabinoid coupling in mice lacking FMRP and BC1 RNA. Neuropsychopharmacol: Off Publ Am Coll Neuropsychopharmacol. 2010;35:1500–9.

    Article  CAS  Google Scholar 

  73. Gallagher M, Chiba AA. The amygdala and emotion. Curr Opin Neurobiol. 1996;6:221–7.

    Article  CAS  PubMed  Google Scholar 

  74. Opitz B. Memory function and the hippocampus. Front Neurol Neurosci. 2014;34:51–9.

    Article  PubMed  Google Scholar 

  75. Weston CSE. Four Social Brain Regions, Their Dysfunctions, and Sequelae, Extensively Explain Autism Spectrum Disorder Symptomatology. Brain Sci. 2019;9:130.

  76. Hernandez LM, Rudie JD, Green SA, Bookheimer S, Dapretto M. Neural signatures of autism spectrum disorders: insights into brain network dynamics. Neuropsychopharmacol: Off Publ Am Coll Neuropsychopharmacol. 2015;40:171–89.

    Article  Google Scholar 

  77. Stackman RW Jr., Cohen SJ, Lora JC, Rios LM. Temporary inactivation reveals that the CA1 region of the mouse dorsal hippocampus plays an equivalent role in the retrieval of long-term object memory and spatial memory. Neurobiol Learn Mem. 2016;133:118–28.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Barker GR, Warburton EC. When is the hippocampus involved in recognition memory? J Neurosci: Off J Soc Neurosci. 2011;31:10721–31.

    Article  CAS  Google Scholar 

  79. Warburton EC, Brown MW. Neural circuitry for rat recognition memory. Behav Brain Res. 2015;285:131–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Okuyama T, Kitamura T, Roy DS, Itohara S, Tonegawa S. Ventral CA1 neurons store social memory. Science 2016;353:1536–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zamberletti E, Piscitelli F, Cadeddu F, Rubino T, Fratta W, Fadda P, et al. Chronic blockade of CB(1) receptors reverses startle gating deficits and associated neurochemical alterations in rats reared in isolation. Br J Pharmacol. 2012;167:1652–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zamberletti E, Vigano D, Guidali C, Rubino T, Parolaro D. Long-lasting recovery of psychotic-like symptoms in isolation-reared rats after chronic but not acute treatment with the cannabinoid antagonist AM251. Int J Neuropsychopharmacol. 2012;15:267–80.

    Article  CAS  PubMed  Google Scholar 

  83. Robinson SA, Loiacono RE, Christopoulos A, Sexton PM, Malone DT. The effect of social isolation on rat brain expression of genes associated with endocannabinoid signaling. Brain Res. 2010;1343:153–67.

    Article  CAS  PubMed  Google Scholar 

  84. Malone DT, Kearn CS, Chongue L, Mackie K, Taylor DA. Effect of social isolation on CB1 and D2 receptor and fatty acid amide hydrolase expression in rats. Neuroscience 2008;152:265–72.

    Article  CAS  PubMed  Google Scholar 

  85. Su T, Yan Y, Li Q, Ye J, Pei L. Endocannabinoid System Unlocks the Puzzle of Autism Treatment via Microglia. Front Psychiatry. 2021;12:734837.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Zamberletti E, Gabaglio M, Parolaro D. The Endocannabinoid System and Autism Spectrum Disorders: Insights from Animal Models. Int J Mol Sci. 2017;18:1916.

  87. Qin M, Zeidler Z, Moulton K, Krych L, Xia Z, Smith CB. Endocannabinoid-mediated improvement on a test of aversive memory in a mouse model of fragile X syndrome. Behav Brain Res. 2015;291:164–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wei D, Dinh D, Lee D, Li D, Anguren A, Moreno-Sanz G, et al. Enhancement of Anandamide-Mediated Endocannabinoid Signaling Corrects Autism-Related Social Impairment. Cannabis Cannabinoid Res. 2016;1:81–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kerr DM, Gilmartin A, Roche M. Pharmacological inhibition of fatty acid amide hydrolase attenuates social behavioural deficits in male rats prenatally exposed to valproic acid. Pharmacol Res. 2016;113:228–35.

    Article  CAS  PubMed  Google Scholar 

  90. Wu HF, Lu TY, Chu MC, Chen PS, Lee CW, Lin HC. Targeting the inhibition of fatty acid amide hydrolase ameliorate the endocannabinoid-mediated synaptic dysfunction in a valproic acid-induced rat model of Autism. Neuropharmacology 2020;162:107736.

    Article  CAS  PubMed  Google Scholar 

  91. Doenni VM, Gray JM, Song CM, Patel S, Hill MN, Pittman QJ. Deficient adolescent social behavior following early-life inflammation is ameliorated by augmentation of anandamide signaling. Brain Behav Immun. 2016;58:237–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Akirav I. The role of cannabinoids in modulating emotional and non-emotional memory processes in the hippocampus. Front Behav Neurosci. 2011;5:34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Marsicano G, Lafenetre P. Roles of the endocannabinoid system in learning and memory. Curr Top Behav Neurosci. 2009;1:201–30.

    Article  CAS  PubMed  Google Scholar 

  94. Zimmermann T, Bartsch JC, Beer A, Lomazzo E, Guggenhuber S, Lange MD, et al. Impaired anandamide/palmitoylethanolamide signaling in hippocampal glutamatergic neurons alters synaptic plasticity, learning, and emotional responses. Neuropsychopharmacol: Off Publ Am Coll Neuropsychopharmacol. 2019;44:1377–88.

    Article  CAS  Google Scholar 

  95. Basavarajappa BS, Nagre NN, Xie S, Subbanna S. Elevation of endogenous anandamide impairs LTP, learning, and memory through CB1 receptor signaling in mice. Hippocampus 2014;24:808–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Robledo-Menendez A, Vella M, Grandes P, Soria-Gomez E. Cannabinoid control of hippocampal functions: the where matters. FEBS J. 2022;289:2162–75.

  97. Straiker A, Min KT, Mackie K. Fmr1 deletion enhances and ultimately desensitizes CB(1) signaling in autaptic hippocampal neurons. Neurobiol Dis. 2013;56:1–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Gould GG, Seillier A, Weiss G, Giuffrida A, Burke TF, Hensler JG, et al. Acetaminophen differentially enhances social behavior and cortical cannabinoid levels in inbred mice. Prog neuro-Psychopharmacol Biol Psychiatry. 2012;38:260–9.

    Article  CAS  Google Scholar 

  99. Onaivi ES, Benno R, Halpern T, Mehanovic M, Schanz N, Sanders C, et al. Consequences of cannabinoid and monoaminergic system disruption in a mouse model of autism spectrum disorders. Curr Neuropharmacol. 2011;9:209–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Ross RA. Anandamide and vanilloid TRPV1 receptors. Br J Pharmacol. 2003;140:790–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Shonesy BC, Parrish WP, Haddad HK, Stephenson JR, Baldi R, Bluett RJ, et al. Role of Striatal Direct Pathway 2-Arachidonoylglycerol Signaling in Sociability and Repetitive Behavior. Biol Psychiatry. 2018;84:304–15.

    Article  CAS  PubMed  Google Scholar 

  102. Fyke W, Alarcon JM, Velinov M, Chadman KK. Pharmacological inhibition of the primary endocannabinoid producing enzyme, DGL-alpha, induces autism spectrum disorder-like and co-morbid phenotypes in adult C57BL/J mice. Autism research: official journal of the International Society for. Autism Res. 2021;14:1375–89.

    Article  PubMed  Google Scholar 

  103. Manduca A, Morena M, Campolongo P, Servadio M, Palmery M, Trabace L, et al. Distinct roles of the endocannabinoids anandamide and 2-arachidonoylglycerol in social behavior and emotionality at different developmental ages in rats. Eur Neuropsychopharmacol: J Eur Coll Neuropsychopharmacol. 2015;25:1362–74.

    Article  CAS  Google Scholar 

  104. Schiavi S, Manduca A, Segatto M, Campolongo P, Pallottini V, Vanderschuren L, et al. Unidirectional opioid-cannabinoid cross-tolerance in the modulation of social play behavior in rats. Psychopharmacology. 2019;236:2557–68. 

    Article  CAS  PubMed  Google Scholar 

  105. Wei D, Lee D, Li D, Daglian J, Jung KM, Piomelli D. A role for the endocannabinoid 2-arachidonoyl-sn-glycerol for social and high-fat food reward in male mice. Psychopharmacology. 2016;233:1911–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Manduca A, Servadio M, Damsteegt R, Campolongo P, Vanderschuren LJ, Trezza V. Dopaminergic Neurotransmission in the Nucleus Accumbens Modulates Social Play Behavior in Rats. Neuropsychopharmacol: Off Publ Am Coll Neuropsychopharmacol. 2016;41:2215–23.

    Article  CAS  Google Scholar 

  107. Folkes OM, Baldi R, Kondev V, Marcus DJ, Hartley ND, Turner BD, et al. An endocannabinoid-regulated basolateral amygdala-nucleus accumbens circuit modulates sociability. J Clin Investig. 2020;130:1728–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Suvrathan A, Chattarji S. Fragile X syndrome and the amygdala. Curr Opin Neurobiol. 2011;21:509–15.

    Article  CAS  PubMed  Google Scholar 

  109. Fernandes G, Mishra PK, Nawaz MS, Donlin-Asp PG, Rahman MM, Hazra A, et al. Correction of amygdalar dysfunction in a rat model of fragile X syndrome. Cell Rep. 2021;37:109805.

    Article  CAS  PubMed  Google Scholar 

  110. Hessl D, Rivera S, Koldewyn K, Cordeiro L, Adams J, Tassone F, et al. Amygdala dysfunction in men with the fragile X premutation. Brain: J Neurol. 2007;130:404–16.

    Article  Google Scholar 

Download references

Funding

This work was supported by Autism Speaks grant #11690 (AM and VT), MIUR PRIN 2017 grant # SXEXT5 (VT), Regione Lazio “Gruppi di ricerca 2020” grant # PROT. A0375-2020-36550 (VT) and operating funds from the Canadian Institutes of Health Research (MNH).

Author information

Authors and Affiliations

Authors

Contributions

SS and AM performed, analyzed, and contributed to the design of the behavioral experiments. MM and MNH performed and analyzed the biochemical experiments to measure endocannabinoid levels. EC, AR, AF, and FA performed the qPCR and Western blotting experiments. EC, VB, and PC contributed to the behavioral experiments. SS, AM, and VT wrote the paper. VT supervised the project, designed the experiments, and wrote, revised, and edited the paper. All authors contributed to the paper and approved the submitted version.

Corresponding author

Correspondence to Viviana Trezza.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schiavi, S., Manduca, A., Carbone, E. et al. Anandamide and 2-arachidonoylglycerol differentially modulate autistic-like traits in a genetic model of autism based on FMR1 deletion in rats. Neuropsychopharmacol. 48, 897–907 (2023). https://doi.org/10.1038/s41386-022-01454-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41386-022-01454-7

This article is cited by

Search

Quick links