Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

PET imaging of kappa opioid receptors and receptor expression quantified in neuron-derived extracellular vesicles in socially housed female and male cynomolgus macaques

Abstract

Recent positron emission tomography (PET) studies of kappa opioid receptors (KOR) in humans reported significant relationships between KOR availability and social status, as well as cocaine choice. In monkey models, social status influences physiology, receptor pharmacology and behavior; these variables have been associated vulnerability to cocaine abuse. The present study utilized PET imaging to examine KOR availability in socially housed, cocaine-naïve female and male monkeys, and peripheral measures of KORs with neuron-derived extracellular vesicles (NDE). KOR availability was assessed in dominant and subordinate female and male cynomolgus macaques (N = 4/rank/sex), using PET imaging with the KOR selective agonist [11C]EKAP. In addition, NDE from the plasma of socially housed monkeys (N = 13/sex; N = 6–7/rank) were isolated by immunocapture method and analyzed for OPRK1 protein expression by ELISA. We found significant interactions between sex and social rank in KOR availability across 12 of 15 brain regions. This was driven by female data, in which KOR availability was significantly higher in subordinate monkeys compared with dominant monkeys; the opposite relationship was observed among males, but not statistically significant. No sex or rank differences were observed for NDE OPRK1 concentrations. In summary, the relationship between brain KOR availability and social rank was different in female and male monkeys. This was particularly true in female monkeys. We hypothesize that lower [11C]EKAP binding potentials were due to higher concentrations of circulating dynorphin, which is consistent with greater vulnerability in dominant compared with subordinate females. These findings suggest that the KOR is an important target for understanding the neurobiology associated with vulnerability to abused drugs and sex differences, and detectable in peripheral circulation.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Representative PET/CT brain images with the KOR selective agonist [11C]EKAP in dominant (left) and subordinate (right), female (top) and male (bottom) cynomolgus monkeys.
Fig. 2: Relationship between social rank and NDE OPRK1 concentration in dominant (Dom) and subordinate (Sub) female (left) and male (right) cynomolgus monkeys (N = 13/sex).

References

  1. UNODC, Treatment of Stimulant Use Disorders: Current Practicies and Promising Perspectives, U.N.O.o.D.a. Crime, Editor. 2019.

  2. SAMHSA, Key substance use and mental health indicators in the United States: Results from the 2018 National Survey on Drug Use and Health. (HHS Publication No. PEP19-5068, NSDUH Series H-54). Rockville, MD: Center for Behavioral Health Statistics and Quality, Substance Abuse and Mental Health Services Administration, 2019.

  3. Buddy T. How Drug Use Affects Our Society. 2019.

  4. Nader MA. Animal models for addiction medicine: From vulnerable phenotypes to addicted individuals. Prog Brain Res. 2016;224:3–24.

    Article  PubMed  Google Scholar 

  5. George O, Koob GF. Individual differences in the neuropsychopathology of addiction. Dialogues Clin Neurosci. 2017;19:217–29.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Koob GF, Volkow ND. Neurobiology of addiction: A neurocircuitry analysis. Lancet Psychiatry. 2016;3:760–73.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Johnson BN, NC, Minkiewicz M, Nader MA. Behavioral studies in nonhuman primates: Focus on models of substance use disorders, in Encyclopedia of Behavioural Neuroscience, S Della Sala, Editor. 2021, Elsevier. 1–12.

  8. van der Stel J. Precision in addiction care: Does it make a difference? Yale J Biol Med. 2015;88:415–22.

    PubMed  PubMed Central  Google Scholar 

  9. Kaplan JR, Manuck SB, Clarkson TB, Lusso FM, Taub DM. Social status, environment, and atherosclerosis in cynomolgus monkeys. Arteriosclerosis. 1982;2:359–68.

    Article  CAS  PubMed  Google Scholar 

  10. Kaplan JR, Manuck SB, Adams MR, Weingand KW, Clarkson TB. Inhibition of coronary atherosclerosis by propranolol in behaviorally predisposed monkeys fed an atherogenic diet. Circulation. 1987;76:1364–72.

    Article  CAS  PubMed  Google Scholar 

  11. Cameron JL. Stress and behaviorally induced reproductive dysfunction in primates. Semin Reprod Endocrinol. 1997;15:37–45.

    Article  CAS  PubMed  Google Scholar 

  12. Cohen S, Line S, Manuck SB, Rabin BS, Heise ER, Kaplan JR. Chronic social stress, social status, and susceptibility to upper respiratory infections in nonhuman primates. Psychosom Med. 1997;59:213–21.

    Article  CAS  PubMed  Google Scholar 

  13. Kaplan JR, Manuck SB. Status, stress, and atherosclerosis: The role of environment and individual behavior. Ann N. Y Acad Sci. 1999;896:145–61.

    Article  CAS  PubMed  Google Scholar 

  14. Shively C, Kaplan J. Effects of social factors on adrenal weight and related physiology of Macaca fascicularis. Physiol Behav. 1984;33:777–82.

    Article  CAS  PubMed  Google Scholar 

  15. Henry JP, PM Stephens. Stress, Health, and the Social Environment. Topics in Environmental Physiology and Medicine. 1977: Springer New York, NY.

  16. Nader MA, Czoty PW. PET imaging of dopamine D2 receptors in monkey models of cocaine abuse: genetic predisposition versus environmental modulation. Am J Psychiatry. 2005;162:1473–82.

    Article  PubMed  Google Scholar 

  17. Gould RW, Czoty PW, Porrino LJ, Nader MA. Social status in monkeys: Effects of social confrontation on brain function and cocaine self-administration. Neuropsychopharmacology 2017;42:1093–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Volkow ND, Fowler JS, Wolf AP, Schlyer D, Shiue CY, Alpert R, et al. Effects of chronic cocaine abuse on postsynaptic dopamine receptors. Am J Psychiatry. 1990;147:719–24.

    Article  CAS  PubMed  Google Scholar 

  19. Nader MA, Morgan D, Gage HD, Nader SH, Calhoun TL, Buchheimer N, et al. PET imaging of dopamine D2 receptors during chronic cocaine self-administration in monkeys. Nat Neurosci. 2006;9:1050–6.

    Article  CAS  PubMed  Google Scholar 

  20. Volkow ND, Wang GJ, Fowler JS, Logan J, Gatley SJ, Gifford A, et al. Prediction of reinforcing responses to psychostimulants in humans by brain dopamine D2 receptor levels. Am J Psychiatry. 1999;156:1440–3.

    Article  CAS  PubMed  Google Scholar 

  21. Morgan D, Grant KA, Gage HD, Mach RH, Kaplan JR, Prioleau O, et al. Social dominance in monkeys: Dopamine D2 receptors and cocaine self-administration. Nat Neurosci. 2002;5:169–74.

    Article  CAS  PubMed  Google Scholar 

  22. Martinez D, Orlowska D, Narendran R, Slifstein M, Liu F, Kumar D, et al. Dopamine type 2/3 receptor availability in the striatum and social status in human volunteers. Biol Psychiatry. 2010;67:275–8.

    Article  CAS  PubMed  Google Scholar 

  23. Martinez D, Carpenter KM, Liu F, Slifstein M, Broft A, Friedman AC, et al. Imaging dopamine transmission in cocaine dependence: link between neurochemistry and response to treatment. Am J Psychiatry. 2011;168:634–41.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Nader MA, Nader SH, Czoty PW, Riddick NV, Gage HD, Gould RW, et al. Social dominance in female monkeys: Dopamine receptor function and cocaine reinforcement. Biol Psychiatry. 2012;72:414–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Banks ML. The rise and fall of Kappa-opioid receptors in drug abuse research. Handb Exp Pharmacol. 2019;258:147–65.

  26. Karkhanis A, Holleran KM, Jones SR. Dynorphin/Kappa Opioid Receptor Signaling in Preclinical Models of Alcohol, Drug, and Food Addiction. Int Rev Neurobiol. 2017;136:53–88.

    Article  CAS  PubMed  Google Scholar 

  27. Tejeda HA, Bonci A. Dynorphin/kappa-opioid receptor control of dopamine dynamics: Implications for negative affective states and psychiatric disorders. Brain Res. 2019;1713:91–101.

    Article  CAS  PubMed  Google Scholar 

  28. Carlezon WA Jr, Krystal AD. Kappa-opioid antagonists for psychiatric disorders: From bench to clinical trials. Depress Anxiety. 2016;33:895–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Helal MA, Habib ES, Chittiboyina AG. Selective kappa opioid antagonists for treatment of addiction, are we there yet? Eur J Med Chem. 2017;141:632–47.

    Article  CAS  PubMed  Google Scholar 

  30. Trifilieff P, Martinez D. Kappa-opioid receptor signaling in the striatum as a potential modulator of dopamine transmission in cocaine dependence. Front Psychiatry. 2013;4:44.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wemm SE, Sinha R. Drug-induced stress responses and addiction risk and relapse. Neurobiol Stress. 2019;10:100148.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Koob GF, Schulkin J. Addiction and stress: An allostatic view. Neurosci Biobehav Rev. 2019;106:245–62.

    Article  PubMed  Google Scholar 

  33. Wee S, Koob GF. The role of the dynorphin-kappa opioid system in the reinforcing effects of drugs of abuse. Psychopharmacology. 2010;210:121–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hogarth L. Addiction is driven by excessive goal-directed drug choice under negative affect: Translational critique of habit and compulsion theory. Neuropsychopharmacology, 2020;45:720–35.

  35. Ironside M, Kumar P, Kang MS, Pizzagalli DA. Brain mechanisms mediating effects of stress on reward sensitivity. Curr Opin. Behav Sci. 2018;22:106–13.

    Google Scholar 

  36. Matuskey D, Dias M, Naganawa M, Pittman B, Henry S, Li S, et al. Social status and demographic effects of the kappa opioid receptor: A PET imaging study with a novel agonist radiotracer in healthy volunteers. Neuropsychopharmacology. 2019;44:1714–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li S, Zheng MQ, Naganawa M, Kim S, Gao H, Kapinos M, et al. Development and in vivo evaluation of a kappa-Opioid Receptor Agonist as a PET radiotracer with superior imaging characteristics. J Nucl Med. 2019;60:1023–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Naganawa M, Li S, Nabulsi N, Lin SF, Labaree D, Ropchan J, et al. Kinetic Modeling and Test-Retest Reproducibility of (11)C-EKAP and (11)C-FEKAP, Novel Agonist Radiotracers for PET Imaging of the kappa-Opioid Receptor in Humans. J Nucl Med. 2020;61:1636–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gear RW, Gordon NC, Heller PH, Paul S, Miaskowski C, Levine JD. Gender difference in analgesic response to the kappa-opioid pentazocine. Neurosci Lett. 1996;205:207–9.

    Article  CAS  PubMed  Google Scholar 

  40. Gear RW, Miaskowski C, Gordon NC, Paul SM, Heller PH, Levine JD. Kappa-opioids produce significantly greater analgesia in women than in men. Nat Med. 1996;2:1248–50.

    Article  CAS  PubMed  Google Scholar 

  41. Gear RW, Miaskowski C, Gordon NC, Paul SM, Heller PH, Levine JD. The kappa opioid nalbuphine produces gender- and dose-dependent analgesia and antianalgesia in patients with postoperative pain. Pain 1999;83:339–45.

    Article  CAS  PubMed  Google Scholar 

  42. Martinez D, Slifstein M, Matuskey D, Nabulsi N, Zheng MQ, Lin SF, et al. Kappa-opioid receptors, dynorphin, and cocaine addiction: A positron emission tomography study. Neuropsychopharmacology 2019;44:1720–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Blevins D, Martinez D. Role for kappa-opioid system in stress-induced cocaine use uncovered with PET. Neuropsychopharmacology 2020;45:233–4.

    Article  PubMed  Google Scholar 

  44. Fiandaca MS, Kapogiannis D, Mapstone M, Boxer A, Eitan E, Schwartz JB, et al. Identification of preclinical Alzheimer’s disease by a profile of pathogenic proteins in neurally derived blood exosomes: A case-control study. Alzheimers Dement. 2015;11:600–7.e1

    Article  PubMed  Google Scholar 

  45. Kumar A, Kim S, Su Y, Sharma M, Kumar P, Singh S, et al. Brain cell-derived exosomes in plasma serve as neurodegeneration biomarkers in male cynomolgus monkeys self-administrating oxycodone. EBioMedicine. 2021;63:103192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Saeedi S, et al. Neuron-derived extracellular vesicles enriched from plasma show altered size and miRNA cargo as a function of antidepressant drug response. Mol Psychiatry 2021;26:7417–24.

  47. Pulliam L, Sun B, Mustapic M, Chawla S, Kapogiannis D. Plasma neuronal exosomes serve as biomarkers of cognitive impairment in HIV infection and Alzheimer’s disease. J Neurovirol. 2019;25:702–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Winston CN, Goetzl EJ, Akers JC, Carter BS, Rockenstein EM, Galasko D, et al. Prediction of conversion from mild cognitive impairment to dementia with neuronally derived blood exosome protein profile. Alzheimers Dement (Amst). 2016;3:63–72.

    Article  Google Scholar 

  49. Goetzl L, Thompson-Felix T, Darbinian N, Merabova N, Merali S, Merali C, et al. Novel biomarkers to assess in utero effects of maternal opioid use: First steps toward understanding short- and long-term neurodevelopmental sequelae. Genes Brain Behav. 2019;18:e12583.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Morgan D, Grant KA, Prioleau OA, Nader SH, Kaplan JR, Nader MA. Predictors of social status in cynomolgus monkeys (Macaca fascicularis) after group formation. Am J Primatol. 2000;52:115–31.

    Article  CAS  PubMed  Google Scholar 

  51. Czoty PW, Gould RW, Nader MA. Relationship between social rank and cortisol and testosterone concentrations in male cynomolgus monkeys (Macaca fascicularis). J Neuroendocrinol. 2009;21:68–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kromrey SA, Czoty PW, Nader SH, Register TC, Nader MA. Preclinical laboratory assessments of predictors of social rank in female cynomolgus monkeys. Am J Primatol. 2016;78:402–17.

    Article  CAS  PubMed  Google Scholar 

  53. Riddick NV, Czoty PW, Gage HD, Kaplan JR, Nader SH, Icenhower M, et al. Behavioral and neurobiological characteristics influencing social hierarchy formation in female cynomolgus monkeys. Neuroscience. 2009;158:1257–65.

    Article  CAS  PubMed  Google Scholar 

  54. Zheng MQ, Kim SJ, Holden D, Lin SF, Need A, Rash K, et al. An improved antagonist radiotracer for the kappa-opioid receptor: Synthesis and characterization of (11)C-LY2459989. J Nucl Med. 2014;55:1185–91.

    Article  CAS  PubMed  Google Scholar 

  55. Gunn RN, Gunn SR, Cunningham VJ. Positron emission tomography compartmental models. J Cereb Blood Flow Metab. 2001;21:635–52.

    Article  CAS  PubMed  Google Scholar 

  56. Patterson SA, Deep G, Brinkley TE. Detection of the receptor for advanced glycation endproducts in neuronally-derived exosomes in plasma. Biochem Biophys Res Commun. 2018;500:892–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ramteke A, Ting H, Agarwal C, Mateen S, Somasagara R, Hussain A, et al. Exosomes secreted under hypoxia enhance invasiveness and stemness of prostate cancer cells by targeting adherens junction molecules. Mol Carcinog. 2015;54:554–65.

    Article  CAS  PubMed  Google Scholar 

  58. Chevée M, Finkel EA, Kim SJ, O’Connor DH, Brown SP. Neural activity in the mouse claustrum in a cross-modal sensory selection task. Neuron 2022;110:486–501.

    Article  PubMed  CAS  Google Scholar 

  59. Acheson A, Robinson JL, Glahn DC, Lovallo WR, Fox PT. Differential activation of the anterior cingulate cortex and caudate nucleus during a gambling simulation in persons with a family history of alcoholism: studies from the Oklahoma Family Health Patterns Project. Drug Alcohol Depend. 2009;100:17–23.

    Article  PubMed  Google Scholar 

  60. Perry JL, Joseph JE, Jiang Y, Zimmerman RS, Kelly TH, Darna M, et al. Prefrontal cortex and drug abuse vulnerability: Translation to prevention and treatment interventions. Brain Res Rev. 2011;65:124–49.

    Article  PubMed  Google Scholar 

  61. Nader MA, Czoty PW, Nader SH, Morgan D. Nonhuman primate models of social behavior and cocaine abuse. Psychopharmacol (Berl). 2012;224:57–67.

    Article  CAS  Google Scholar 

  62. Clark SD, Abi-Dargham A. The role of dynorphin and the Kappa Opioid receptor in the symptomatology of schizophrenia: A review of the evidence. Biol Psychiatry. 2019;86:502–11.

    Article  CAS  PubMed  Google Scholar 

  63. Ji MJ, Yang J, Gao ZQ, Zhang L, Liu C. The role of the Kappa opioid system in comorbid pain and psychiatric disorders: Function and implications. Front Neurosci. 2021;15:642493.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Jacobson ML, Browne CA, Lucki I. Kappa Opioid receptor antagonists as potential therapeutics for stress-related disorders. Annu Rev Pharm Toxicol. 2020;60:615–36.

    Article  CAS  Google Scholar 

  65. Peckys D, Landwehrmeyer GB. Expression of mu, kappa, and delta opioid receptor messenger RNA in the human CNS: a 33P in situ hybridization study. Neuroscience. 1999;88:1093–135.

    Article  CAS  PubMed  Google Scholar 

  66. Sim-Selley LJ, Daunais JB, Porrino LJ, Childers SR. Mu and kappa1 opioid-stimulated [35S]guanylyl-5’-O-(gamma-thio)-triphosphate binding in cynomolgus monkey brain. Neuroscience. 1999;94:651–62.

    Article  CAS  PubMed  Google Scholar 

  67. Goll Y, Atlan G, Citri A. Attention: The claustrum. Trends Neurosci. 2015;38:486–95.

    Article  CAS  PubMed  Google Scholar 

  68. Jackson J, Smith JB, Lee AK. The anatomy and physiology of claustrum-cortex interactions. Annu Rev Neurosci. 2020;43:231–47.

    Article  CAS  PubMed  Google Scholar 

  69. Nikolenko VN, Rizaeva NA, Beeraka NM, Oganesyan MV, Kudryashova VA, Dubovets AA, et al. The mystery of claustral neural circuits and recent updates on its role in neurodegenerative pathology. Behav Brain Funct. 2021;17:8.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Liu J, Wu R, Johnson B, Vu J, Bass C, Li JX. The claustrum-prefrontal cortex pathway regulates impulsive-like behavior. J Neurosci. 2019;39:10071–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Van Horn JD. What is old is new again: Investigating and analyzing the mysteries of the claustrum. Neuroinformatics. 2019;17:1–3.

    Article  PubMed  Google Scholar 

  72. Smith JB, Lee AK, Jackson J. The claustrum. Curr Biol. 2020;30:R1401–R1406.

    Article  CAS  PubMed  Google Scholar 

  73. Suhara T, Nakayama K, Inoue O, Fukuda H, Shimizu M, Mori A, et al. D1 dopamine receptor binding in mood disorders measured by positron emission tomography. Psychopharmacol (Berl). 1992;106:14–8.

    Article  CAS  Google Scholar 

  74. Craig AD. How do you feel? Interoception: the sense of the physiological condition of the body. Nat Rev Neurosci. 2002;3:655–66.

    Article  CAS  PubMed  Google Scholar 

  75. Paulus MP, Stein MB. An insular view of anxiety. Biol Psychiatry. 2006;60:383–7.

    Article  PubMed  Google Scholar 

  76. Uddin LQ, Nomi JS, Hébert-Seropian B, Ghaziri J, Boucher O. Structure and function of the human insula. J Clin Neurophysiol. 2017;34:300–6.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Ibrahim C, Rubin-Kahana DS, Pushparaj A, Musiol M, Blumberger DM, Daskalakis ZJ, et al. The Insula: A brain stimulation target for the treatment of addiction. Front Pharm. 2019;10:720.

    Article  CAS  Google Scholar 

  78. Craig AD. Interoception: The sense of the physiological condition of the body. Curr Opin Neurobiol. 2003;13:500–5.

    Article  CAS  PubMed  Google Scholar 

  79. Paulus MP, Tapert SF, Schulteis G. The role of interoception and alliesthesia in addiction. Pharm Biochem Behav. 2009;94:1–7.

    Article  CAS  Google Scholar 

  80. Volkow ND, Michaelides M, Baler R. The neuroscience of drug reward and addiction. Physiol Rev. 2019;99:2115–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Droutman V, Bechara A, Read SJ. Roles of the different sub-regions of the insular cortex in various phases of the decision-making process. Front Behav Neurosci. 2015;9:309.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Naqvi NH, Rudrauf D, Damasio H, Bechara A. Damage to the insula disrupts addiction to cigarette smoking. Science. 2007;315:531–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Suñer-Soler R, Grau A, Gras ME, Font-Mayolas S, Silva Y, Dávalos A, et al. Smoking cessation 1 year poststroke and damage to the insular cortex. Stroke. 2012;43:131–6.

    Article  PubMed  Google Scholar 

  84. Abdolahi A, Williams GC, Benesch CG, Wang HZ, Spitzer EM, Scott BE, et al. Smoking cessation behaviors three months following acute insular damage from stroke. Addict Behav. 2015;51:24–30.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Abdolahi A, Williams GC, Benesch CG, Wang HZ, Spitzer EM, Scott BE, et al. Damage to the insula leads to decreased nicotine withdrawal during abstinence. Addiction. 2015;110:1994–2003.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Abdolahi A, Williams GC, Benesch CG, Wang HZ, Spitzer EM, Scott BE, et al. Immediate and sustained decrease in smoking urges after acute insular cortex damage. Nicotine Tob Res. 2017;19:756–62.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Moran-Santa Maria MM, Hartwell KJ, Hanlon CA, Canterberry M, Lematty T, Owens M, et al. Right anterior insula connectivity is important for cue-induced craving in nicotine-dependent smokers. Addict Biol. 2015;20:407–14.

    Article  CAS  PubMed  Google Scholar 

  88. Rotge JY, Cocker PJ, Daniel ML, Belin-Rauscent A, Everitt BJ, Belin D. Bidirectional regulation over the development and expression of loss of control over cocaine intake by the anterior insula. Psychopharmacol (Berl). 2017;234:1623–31.

    Article  CAS  Google Scholar 

  89. Schacht JP, Anton RF, Myrick H. Functional neuroimaging studies of alcohol cue reactivity: a quantitative meta-analysis and systematic review. Addict Biol. 2013;18:121–33.

    Article  PubMed  Google Scholar 

  90. Janes AC, Pizzagalli DA, Richardt S, deB Frederick B, Chuzi S, Pachas G, et al. Brain reactivity to smoking cues prior to smoking cessation predicts ability to maintain tobacco abstinence. Biol Psychiatry. 2010;67:722–9.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Dinur-Klein L, Dannon P, Hadar A, Rosenberg O, Roth Y, Kotler M, et al. Smoking cessation induced by deep repetitive transcranial magnetic stimulation of the prefrontal and insular cortices: a prospective, randomized controlled trial. Biol Psychiatry. 2014;76:742–9.

    Article  PubMed  Google Scholar 

  92. Sutherland MT, Stein EA. Functional neurocircuits and neuroimaging biomarkers of tobacco use disorder. Trends Mol Med. 2018;24:129–43.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Zangen A, Moshe H, Martinez D, Barnea-Ygael N, Vapnik T, Bystritsky A, et al. Repetitive transcranial magnetic stimulation for smoking cessation: A pivotal multicenter double-blind randomized controlled trial. World Psychiatry. 2021;20:397–404.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Vijay A, Wang S, Worhunsky P, Zheng MQ, Nabulsi N, Ropchan J, et al. PET imaging reveals sex differences in kappa opioid receptor availability in humans, in vivo. Am J Nucl Med Mol Imaging. 2016;6:205–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Staley JK, Rothman RB, Rice KC, Partilla J, Mash DC. Kappa2 opioid receptors in limbic areas of the human brain are upregulated by cocaine in fatal overdose victims. J Neurosci. 1997;17:8225–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hurd YL, Herkenham M. Molecular alterations in the neostriatum of human cocaine addicts. Synapse. 1993;13:357–69.

    Article  CAS  PubMed  Google Scholar 

  97. Banks ML, Czoty PW, Negus SS. Utility of Nonhuman Primates in Substance Use Disorders Research. Ilar J. 2017;58:202–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Banks ML, Negus SS. Insights from Preclinical Choice Models on Treating Drug Addiction. Trends Pharm Sci. 2017;38:181–94.

    Article  CAS  PubMed  Google Scholar 

  99. Negus SS, Banks ML. Modulation of drug choice by extended drug access and withdrawal in rhesus monkeys: Implications for negative reinforcement as a driver of addiction and target for medications development. Pharm Biochem Behav. 2018;164:32–9.

    Article  CAS  Google Scholar 

  100. Zamarripa CA, Naylor JE, Huskinson SL, Townsend EA, Prisinzano TE, Freeman KB. Kappa opioid agonists reduce oxycodone self-administration in male rhesus monkeys. Psychopharmacol (Berl). 2020;237:1471–80.

    Article  CAS  Google Scholar 

  101. Hutsell BA, Cheng K, Rice KC, Negus SS, Banks ML. Effects of the kappa opioid receptor antagonist nor-binaltorphimine (nor-BNI) on cocaine versus food choice and extended-access cocaine intake in rhesus monkeys. Addict Biol. 2016;21:360–73.

    Article  CAS  PubMed  Google Scholar 

  102. FDA, Ketamine Hydrochloride, D.o.H.a.H. Services, Editor. 2018, Food and Drug Administration.

Download references

Acknowledgements

The authors thank Michael Coller, Jillian Odom, Suzy Kim and Stephanie Rideout for excellent technical assistance and Mia Allen for comments on an earlier version of this manuscript.

Funding

This research was supported by grants R01 DA017763 (MAN), R01 DA049267 (GD and MAN), F31 DA053776 (BNJ), and T31 DA041349 (SR Jones, PI) from the National Institute on Drug Abuse.

Author information

Authors and Affiliations

Authors

Contributions

BNJ, GD, and MAN designed the experiment. BNJ, KSS, SHN, SL, BAR, and YH conducted PET imaging studies and analyses. BNJ, AK, YS, SS, BAR, and GD conducted exosome studies and analyses. BNJ, AK, SHN, BAR, GD, and MAN wrote the manuscript. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Gagan Deep or Michael A. Nader.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Johnson, B.N., Kumar, A., Su, Y. et al. PET imaging of kappa opioid receptors and receptor expression quantified in neuron-derived extracellular vesicles in socially housed female and male cynomolgus macaques. Neuropsychopharmacol. (2022). https://doi.org/10.1038/s41386-022-01444-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41386-022-01444-9

Search

Quick links