Perspective | Published:

Recent advances in the study of aggression

Neuropsychopharmacologyvolume 44pages241244 (2019) | Download Citation

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    World Health Organization. World report on violence and health. Geneva, Switzerland; 2002.

  2. 2.

    Barlow K, Grenyer B, Ilkiw-Lavalle O. Prevalence and precipitants of aggression in psychiatric inpatient units. Aust NZ J Psychiatry. 2000;34:967–74.

  3. 3.

    Anderson DJ. Optogenetics, sex, and violence in the brain: implications for psychiatry. Biol Psychiatry. 2012;71:1081–9.

  4. 4.

    Haller J. The neurobiology of abnormal manifestations of aggression--a review of hypothalamic mechanisms in cats, rodents, and humans. Brain Res Bull. 2013;93:97–109.

  5. 5.

    Golden SA, Shaham Y. Aggression addiction and relapse: a new frontier in psychiatry. Neuropsychopharmacology. 2018;43:224–5.

  6. 6.

    Falkner AL, Grosenick L, Davidson TJ, Deisseroth K, Lin D. Hypothalamic control of male aggression-seeking behavior. Nat Neurosci. 2016;19:596–604.

  7. 7.

    Golden SA, Heins C, Venniro M, Caprioli D, Zhang M, Epstein DH, et al. Compulsive addiction-like aggressive behavior in mice. Biol Psychiatry. 2017;82:239–48.

  8. 8.

    Golden SA, Aleyasin H, Heins R, Flanigan M, Heshmati M, Takahashi A, et al. Persistent conditioned place preference to aggression experience in adult male sexually-experienced CD-1 mice. Genes Brain Behav. 2017;16:44–55.

  9. 9.

    Golden SA, Heshmati M, Flanigan M, Christoffel DJ, Guise K, Pfau ML, et al. Basal forebrain projections to the lateral habenula modulate aggression reward. Nature. 2016;534:688–92.

  10. 10.

    Putkonen P. Attack elicited by forebrain and hypothalamic stimulation in the chicken. Experientia.1966;2:405–7.

  11. 11.

    Hashikawa Y, Hashikawa K, Falkner A, Lin D. Ventromedial hypothalamus and the generation of aggression. Front Syst Neurosci. 2017;11:94.

  12. 12.

    Siegel A, Bhatt S, Bhatt R, Zalcman SS. The neurobiological bases for development of pharmacological treatments of aggressive disorders. Curr Neuropharmacol. 2007;5:135–47.

  13. 13.

    Fanning JR, Keedy S, Berman ME, Lee R, Coccaro EF. Neural correlates of aggressive behavior in real time: a review of fMRI studies of laboratory reactive aggression. Curr Behav Neurosci Rep. 2017;4:138–50.

  14. 14.

    Aleyasin H FM, Golden SA,Takahashi A, Menard C, Pfau ML, Multer J, et al. Cell-type-specific role of ΔFosB in nucleus accumbens in modulating inter-male aggression. J Neurosci. 2018;38:5913–24.

  15. 15.

    Hoptman MJ, Volavka J, Czobor P, Gerig G, Chakos M, Blocher J, et al. Aggression and quantitative MRI measures of caudate in patients with chronic schizophrenia or schizoaffective disorder. J Neuropsychiatry Clin Neurosci. 2006;18:509–15.

  16. 16.

    Decety J, Michalska KJ, Akitsuki Y, Lahey BB. Atypical empathic responses in adolescents with aggressive conduct disorder: a functional MRI investigation. Biol Psychol. 2009;80:203–11.

  17. 17.

    Aleyasin H, Flanigan ME, Russo SJ. Neurocircuitry of aggression and aggression seeking behavior: nose poking into brain circuitry controlling aggression. Curr Opin Neurobiol. 2018;49:184–91.

  18. 18.

    Stagkourakis S, Spigolon G, Williams P, Protzmann J, Fisone G, Broberger C. A neural network for intermale aggression to establish social hierarchy. Nat Neurosci. 2018;21:834–42.

  19. 19.

    Zelikowsky M, Hui M, Karigo T, Choe A, Yang B, Blanco MR, et al. The neuropeptide Tac2 controls a distributed brain state induced by chronic social isolation stress. Cell. 2018;173:1265–79.

  20. 20.

    Takahashi A, Nagayasu K, Nishitani N, Kaneko S, Koide T. Control of intermale aggression by medial prefrontal cortex activation in the mouse. PLoS ONE. 2014;9:e94657.

  21. 21.

    Biro L, Sipos E, Bruzsik N, Farkas I, Zelena D, Balazsfi D, Toth M, Haller J. Task division within the prefrontal cortex: distinct neuron populations selectively control different aspects of aggressive behavior via the hypothalamus. J Neurosci. 2018;38:4065–75. 

  22. 22.

    Wang F, Zhu J, Zhu H, Zhang Q, Lin Z, Hu H. Bidirectional control of social hierarchy by synaptic efficacy in medial prefrontal cortex. Science. 2011;334:693–7.

  23. 23.

    Zhou T, Zhu H, Fan Z, Wang F, Chen Y, Liang H, et al. History of winning remodels thalamo-PFC circuit to reinforce social dominance. Science. 2017;357:162–8.

  24. 24.

    Biro L, Sipos E, Bruzsik B, Farkas I, Zelena D, Balazsfi D, et al. Task division within the prefrontal cortex: distinct neuron populations selectively control different aspects of aggressive behavior via the hypothalamus. J Neurosci. 2018;38:4065–75.

  25. 25.

    Yang T, Yang CF, Chizari MD, Maheswaranathan N, Burke KJ Jr, Borius M, et al. Social control of hypothalamus-mediated male aggression. Neuron. 2017;95:955–70.

  26. 26.

    Lin D, Boyle MP, Dollar P, Lee H, Lein ES, Perona P, et al. Functional identification of an aggression locus in the mouse hypothalamus. Nature. 2011;470:221–6.

  27. 27.

    Remedios R, Kennedy A, Zelikowsky M, Grewe BF, Schnitzer MJ, Anderson DJ. Social behaviour shapes hypothalamic neural ensemble representations of conspecific sex. Nature. 2017;500:388–92.

  28. 28.

    Canevelli MVM, Trebbanstoni A, Sarli G, D’Antonio F, Tariciotti L, de Lena C, et al. Sundowning in dementia: clinical relevance, pathophysiological determinants, and therapeutic approaches. Front Med. 2016;3:73.

  29. 29.

    Todd WD, Fenselau H, Wang JL, Zhang R, Machado NL, Venner A, et al. A hypothalamic circuit for the circadian control of aggression. Nat Neurosci. 2018;21:717–24.

  30. 30.

    Unger EK, Burke KJ Jr., Yang CF, Bender KJ, Fuller PM, Shah NM. Medial amygdalar aromatase neurons regulate aggression in both sexes. Cell Rep. 2015;10:453–62.

  31. 31.

    Hashikawa K, Hashikawa Y, Tremblay R, Zhang J, Feng JE, Sabol A, et al. Esr1(+) cells in the ventromedial hypothalamus control female aggression. Nat Neurosci. 2017;20:1580–90.

  32. 32.

    Yang CF, Chiang MC, Grat DC, Prabhakaran M, Alvarado M, Juntti SA, et al. Sexually dimorphic neurons in the ventromedial hypothalamus govern mating in both sexes and aggression in males. Cell. 2013;153:896–909.

  33. 33.

    Putkonen H, Collander J, Honkasalo M-L, Lönnqvist J. Personality disorders and psychoses form two distinct subgroups of homicide among female offenders. J Forensic Psychiatry. 2001;12:300–12.

  34. 34.

    Haller J, van de Schraaf J, Kruk MR. Deviant forms of aggression in glucocorticoid hyporeactive rats: a model for ‘pathological’ aggression? J Neuroendocrinol. 2001;13:102–7.

  35. 35.

    Miczek KA, Weerts EM, Tornatzky W, DeBold JF, Vatne TM. Alcohol and “bursts” of aggressive behavior: ethological analysis of individual differences in rats. Psychopharmacol (Berl). 1992;107:551–63.

  36. 36.

    Gobrogge KL, Liu Y, Young LJ, Wang Z. Anterior hypothalamic vasopressin regulates pair-bonding and drug-induced aggression in a monogamous rodent. Proc Natl Acad Sci USA. 2009;106:19144–9.

  37. 37.

    Ricci LA, Grimes JM, Knyshevski I, Melloni RH. Repeated cocaine exposure during adolescence alters glutamic acid decarboxylase-65 (GAD65) immunoreactivity in hamster brain: correlation with offensive aggression. Brain Res. 2005;1035:131–8.

  38. 38.

    Toth M, Halasz J, Mikics E, Barsy B, Haller J. Early social deprivation induces disturbed social communication and violent aggression in adulthood. Behav Neurosci. 2008;122:849–54.

  39. 39.

    Ambar G, Chiavegatto S. Anabolic-androgenic steroid treatment induces behavioral disinhibition and downregulation of serotonin receptor messenger RNA in the prefrontal cortex and amygdala of male mice. Genes Brain Behav. 2009;8:161–73.

  40. 40.

    de Almeida RM, Miczek KA. Aggression escalated by social instigation or by discontinuation of reinforcement (“frustration”) in mice: inhibition by anpirtoline: a 5-HT1B receptor agonist. Neuropsychopharmacology. 2002;27:171–81.

Download references

Acknowledgements

The authors are supported by NIH grants 1R01MH114882-01 (SJR) and F31 MH111108-01A1 (MEF).

Author information

Affiliations

  1. Department of Neuroscience, Center for Affective Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustav L. Levy Place, New York, NY, 10029, USA

    • Meghan E. Flanigan
    •  & Scott J. Russo

Authors

  1. Search for Meghan E. Flanigan in:

  2. Search for Scott J. Russo in:

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to Meghan E. Flanigan or Scott J. Russo.

About this article

Publication history

Received

Revised

Accepted

Published

DOI

https://doi.org/10.1038/s41386-018-0226-2