Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Murine astrovirus tropism for goblet cells and enterocytes facilitates an IFN-λ response in vivo and in enteroid cultures

Abstract

Although they globally cause viral gastroenteritis in children, astroviruses are understudied due to the lack of well-defined animal models. While murine astroviruses (muAstVs) chronically infect immunodeficient mice, a culture system and understanding of their pathogenesis is lacking. Here, we describe a platform to cultivate muAstV using air–liquid interface (ALI) cultures derived from mouse enteroids, which support apical infection and release. Chronic muAstV infection occurs predominantly in the small intestine and correlates with higher interferon-lambda (IFN-λ) expression. MuAstV stimulates IFN-λ production in ALI, recapitulating our in vivo findings. We demonstrate that goblet cells and enterocytes are targets for chronic muAstV infection in vivo, and that infection is enhanced by parasite co-infection or type 2 cytokine signaling. Depletion of goblet cells from ALI limits muAstV infection in vitro. During chronic infection, muAstV stimulates IFN-λ production in infected cells and induces ISGs throughout the intestinal epithelium in an IFN-λ-receptor-dependent manner. Collectively, our study provides insights into the cellular tropism and innate immune responses to muAstV and establishes an enteroid-based culture system to propagate muAstV in vitro.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Murine AstV is abundant in the small intestine of immunodeficient and immunocompetent mice.
Fig. 2: Three-dimensional intestinal enteroids can support HAstV1, but not muAstV, replication.
Fig. 3: MuAstV infects air–liquid interface cultures to induce type III interferon and ISG expression.
Fig. 4: MuAstV infects small intestinal goblet cells and enterocytes.
Fig. 5: MuAstV infection is dependent on goblet cell abundance.
Fig. 6: MuAstV stimulates IFN-λ expression in enterocytes and goblet cells of the small intestine to drive widespread ISG expression.

Data availability

The data from this study are tabulated in the main paper and Supplementary Materials. All reagents are available from M.T.B. under a material transfer agreement with Washington University.

References

  1. 1.

    Wohlgemuth, N., Honce, R. & Schultz-Cherry, S. Astrovirus evolution and emergence. Infect. Genet. Evol. 69, 30–37, https://doi.org/10.1016/j.meegid.2019.01.009 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Bosch, A., Pinto, R. M. & Guix, S. Human astroviruses. Clin. Microbiol. Rev. 27, 1048–1074, https://doi.org/10.1128/CMR.00013-14 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Collaborators, G. B. D. D. D. Estimates of the global, regional, and national morbidity, mortality, and aetiologies of diarrhoea in 195 countries: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Infect. Dis. 18, 1211–1228, https://doi.org/10.1016/S1473-3099(18)30362-1 (2018).

    Article  Google Scholar 

  4. 4.

    Wunderli, W. et al. Astrovirus infection in hospitalized infants with severe combined immunodeficiency after allogeneic hematopoietic stem cell transplantation. PLoS ONE 6, e27483, https://doi.org/10.1371/journal.pone.0027483 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Quan, P. L. et al. Astrovirus encephalitis in boy with X-linked agammaglobulinemia. Emerg. Infect. Dis. 16, 918–925, https://doi.org/10.3201/eid1606.091536 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Lum, S. H. et al. An emerging opportunistic infection: fatal astrovirus (VA1/HMO-C) encephalitis in a pediatric stem cell transplant recipient. Transpl. Infect. Dis. 18, 960–964, https://doi.org/10.1111/tid.12607 (2016).

    Article  PubMed  Google Scholar 

  7. 7.

    Yokoyama, C. C. et al. Adaptive immunity restricts replication of novel murine astroviruses. J. Virol. 86, 12262–12270, https://doi.org/10.1128/JVI.02018-12 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Cortez, V. et al. Characterizing a murine model for astrovirus using viral isolates from persistently infected immunocompromised mice. J. Virol. 93, https://doi.org/10.1128/JVI.00223-19 (2019).

  9. 9.

    Ingle, H. et al. Viral complementation of immunodeficiency confers protection against enteric pathogens via interferon-lambda. Nat. Microbiol. 4, 1120–1128, https://doi.org/10.1038/s41564-019-0416-7 (2019).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Cortez, V. et al. Astrovirus infects actively secreting goblet cells and alters the gut mucus barrier. Nat. Commun. 11, 2097, https://doi.org/10.1038/s41467-020-15999-y (2020).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Drummond, C. G. et al. Enteroviruses infect human enteroids and induce antiviral signaling in a cell lineage-specific manner. Proc. Natl Acad. Sci. U.S.A. 114, 1672–1677, https://doi.org/10.1073/pnas.1617363114 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Ettayebi, K. et al. Replication of human noroviruses in stem cell-derived human enteroids. Science 353, 1387–1393, https://doi.org/10.1126/science.aaf5211 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Saxena, K. et al. Human intestinal enteroids: a new model to study human rotavirus infection, host restriction, and pathophysiology. J. Virol. 90, 43–56, https://doi.org/10.1128/JVI.01930-15 (2016).

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Kolawole, A. O. et al. Astrovirus replication in human intestinal enteroids reveals multi-cellular tropism and an intricate host innate immune landscape. PLoS Pathog. 15, e1008057, https://doi.org/10.1371/journal.ppat.1008057 (2019).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Good, C., Wells, A. I. & Coyne, C. B. Type III interferon signaling restricts enterovirus 71 infection of goblet cells. Sci. Adv. 5, eaau4255, https://doi.org/10.1126/sciadv.aau4255 (2019).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Coakley, G. & Harris, N. L. The intestinal epithelium at the forefront of host-helminth interactions. Trends Parasitol. 36, 761–772, https://doi.org/10.1016/j.pt.2020.07.002 (2020).

    Article  PubMed  Google Scholar 

  17. 17.

    Belle, N. M. et al. TFF3 interacts with LINGO2 to regulate EGFR activation for protection against colitis and gastrointestinal helminths. Nat. Commun. 10, 4408, https://doi.org/10.1038/s41467-019-12315-1 (2019).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Madden, K. B. et al. Enteric nematodes induce stereotypic STAT6-dependent alterations in intestinal epithelial cell function. J. Immunol. 172, 5616–5621, https://doi.org/10.4049/jimmunol.172.9.5616 (2004).

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Horsnell, W. G. et al. Delayed goblet cell hyperplasia, acetylcholine receptor expression, and worm expulsion in SMC-specific IL-4Ralpha-deficient mice. PLoS Pathog. 3, e1, https://doi.org/10.1371/journal.ppat.0030001 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Mahapatro, M. et al. Programming of intestinal epithelial differentiation by IL-33 derived from pericryptal fibroblasts in response to systemic infection. Cell Rep. 15, 1743–1756, https://doi.org/10.1016/j.celrep.2016.04.049 (2016).

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Knoop, K. A., McDonald, K. G., McCrate, S., McDole, J. R. & Newberry, R. D. Microbial sensing by goblet cells controls immune surveillance of luminal antigens in the colon. Mucosal Immunol. 8, 198–210, https://doi.org/10.1038/mi.2014.58 (2015).

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Knoop, K. A. & Newberry, R. D. Goblet cells: multifaceted players in immunity at mucosal surfaces. Mucosal Immunol. 11, 1551–1557, https://doi.org/10.1038/s41385-018-0039-y (2018).

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Finkelman, F. D. et al. Cytokine regulation of host defense against parasitic gastrointestinal nematodes: lessons from studies with rodent models. Annu. Rev. Immunol. 15, 505–533, https://doi.org/10.1146/annurev.immunol.15.1.505 (1997).

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Hashimoto, K. et al. Depleted intestinal goblet cells and severe pathological changes in SCID mice infected with Heligmosomoides polygyrus. Parasite Immunol. 31, 457–465, https://doi.org/10.1111/j.1365-3024.2009.01123.x (2009).

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Gerbe, F. et al. Intestinal epithelial tuft cells initiate type 2 mucosal immunity to helminth parasites. Nature 529, 226–230, https://doi.org/10.1038/nature16527 (2016).

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Shroyer, N. F. et al. Intestine-specific ablation of mouse atonal homolog 1 (Math1) reveals a role in cellular homeostasis. Gastroenterology 132, 2478–2488, https://doi.org/10.1053/j.gastro.2007.03.047 (2007).

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Kulkarni, D. H. et al. Goblet cell associated antigen passages are inhibited during Salmonella typhimurium infection to prevent pathogen dissemination and limit responses to dietary antigens. Mucosal Immunol. 11, 1103–1113, https://doi.org/10.1038/s41385-018-0007-6 (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Wilen, C. B. et al. Tropism for tuft cells determines immune promotion of norovirus pathogenesis. Science 360, 204–208, https://doi.org/10.1126/science.aar3799 (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Greenberg, H. B. & Estes, M. K. Rotaviruses: from pathogenesis to vaccination. Gastroenterology 136, 1939–1951, https://doi.org/10.1053/j.gastro.2009.02.076 (2009).

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    el Marjou, F. et al. Tissue-specific and inducible Cre-mediated recombination in the gut epithelium. Genesis 39, 186–193, https://doi.org/10.1002/gene.20042 (2004).

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Sugimoto, S. & Sato, T. Establishment of 3D intestinal organoid cultures from intestinal stem cells. Methods Mol. Biol. 1612, 97–105, https://doi.org/10.1007/978-1-4939-7021-6_7 (2017).

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Sato, T. & Clevers, H. Primary mouse small intestinal epithelial cell cultures. Methods Mol. Biol. 945, 319–328, https://doi.org/10.1007/978-1-62703-125-7_19 (2013).

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Wiener, Z. et al. Oncogenic mutations in intestinal adenomas regulate Bim-mediated apoptosis induced by TGF-beta. Proc. Natl Acad. Sci. U.S.A. 111, E2229–E2236, https://doi.org/10.1073/pnas.1406444111 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Miyoshi, H. & Stappenbeck, T. S. In vitro expansion and genetic modification of gastrointestinal stem cells in spheroid culture. Nat. Protoc. 8, 2471–2482, https://doi.org/10.1038/nprot.2013.153 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Wang, Y. et al. Long-term culture captures injury-repair cycles of colonic stem cells. Cell 179, 1144–1159.e15, https://doi.org/10.1016/j.cell.2019.10.015 (2019).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Marvin, S., Meliopoulos, V. & Schultz-Cherry, S. Human astrovirus propagation, purification and quantification. Bio-Protocol 4, e1078 (2014).

    Article  Google Scholar 

  37. 37.

    Camberis, M., Le Gros, G. & Urban, J. Jr. Animal model of nippostrongylus brasiliensis and Heligmosomoides polygyrus. Curr. Protoc. Immunol. Chapter 19, 12, https://doi.org/10.1002/0471142735.im1912s55 (2003).

    Article  PubMed  Google Scholar 

  38. 38.

    Finkelman, F. D. et al. Anti-cytokine antibodies as carrier proteins. Prolongation of in vivo effects of exogenous cytokines by injection of cytokine-anti-cytokine antibody complexes. J. Immunol. 151, 1235–1244 (1993).

    CAS  PubMed  Google Scholar 

  39. 39.

    Noel, J. S., Lee, T. W., Kurtz, J. B., Glass, R. I. & Monroe, S. S. Typing of human astroviruses from clinical isolates by enzyme immunoassay and nucleotide sequencing. J. Clin. Microbiol. 33, 797–801 (1995).

    CAS  Article  Google Scholar 

  40. 40.

    Peterson, S. T. et al. Disruption of type III interferon genes Ifnl2 and Ifnl3 recapitulates loss of the type III IFN receptor in the mucosal antiviral response. J. Virol. https://doi.org/10.1128/JVI.01073-19 (2019).

  41. 41.

    Jee, J. H. et al. Development of collagen-based 3D matrix for gastrointestinal tract-derived organoid culture. Stem Cells Int. 2019, 8472712, https://doi.org/10.1155/2019/8472712 (2019).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge all members of the Baldridge laboratory for helpful discussions. We also thank H. Deng for animal care and breeding, and J. White and the Washington University Gnotobiotic Facility for assistance with germ-free mice. We are grateful to Stacey Schultz-Cherry for providing human astrovirus. H.I. was supported by the Children’s Discovery Institute of Washington University and St. Louis Children’s Hospital Postdoctoral Research grant (MI-F-2018-712). S.L. was supported by NIH grant R00 AI141683 and the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education (NRF-2016R1A6A3A03012352). M.S.D. was supported by NIH grant R01 DK122790. M.T.B. was supported by NIH grants R01 AI127552, R01 AI139314, the G. Harold and Leila Y. Mathers Foundation, and the Pew Biomedical Scholars Program of The Pew Charitable Trusts.

Author information

Affiliations

Authors

Contributions

H.I., E.H., M.B., Y.L., E.A.K., G.K., H.M., P.D. performed the experiments. H.I., E.H., J.G., M.B., Y.L., H.M., S.L., M.G., M.S.D., and M.T.B. analyzed the results. K.G.M., M.S.D., and R.D.N. provided reagents and helped to design experiments. H.I., M.G., and M.T.B. designed the project. H.I., E.H., J.G., and M.T.B. wrote the paper. All authors read and edited the paper.

Corresponding author

Correspondence to Megan T. Baldridge.

Ethics declarations

Competing interests

M.S.D. is a consultant for Inbios, Vir Biotechnology, NGM Biopharmaceuticals, Carnival Corporation, and on the Scientific Advisory Boards of Moderna and Immunome. The Diamond laboratory has received unrelated funding support in sponsored research agreements from Moderna, Vir Biotechnology, and Emergent BioSolutions.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ingle, H., Hassan, E., Gawron, J. et al. Murine astrovirus tropism for goblet cells and enterocytes facilitates an IFN-λ response in vivo and in enteroid cultures. Mucosal Immunol 14, 751–761 (2021). https://doi.org/10.1038/s41385-021-00387-6

Download citation

Search

Quick links