Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Neurogenesis-dependent remodeling of hippocampal circuits reduces PTSD-like behaviors in adult mice

Abstract

Post-traumatic stress disorder (PTSD) is a hypermnesic condition that develops in a subset of individuals following exposure to severe trauma. PTSD symptoms are debilitating, and include increased anxiety, abnormal threat generalization, and impaired extinction. In developing treatment strategies for PTSD, preclinical studies in rodents have largely focused on interventions that target post-encoding memory processes such as reconsolidation and extinction. Instead, here we focus on forgetting, another post-encoding process that regulates memory expression. Using a double trauma murine model for PTSD, we asked whether promoting neurogenesis-mediated forgetting can weaken trauma memories and associated PTSD-relevant behavioral phenotypes. In the double trauma paradigm, consecutive aversive experiences lead to a constellation of behavioral phenotypes associated with PTSD including increases in anxiety-like behavior, abnormal threat generalization, and deficient extinction. We found that post-training interventions that elevate hippocampal neurogenesis weakened the original trauma memory and decreased these PTSD-relevant phenotypes. These effects were observed using multiple methods to manipulate hippocampal neurogenesis, including interventions restricted to neural progenitor cells that selectively promoted integration of adult-generated granule cells into hippocampal circuits. The same interventions also weakened cocaine place preference memories, suggesting that promoting hippocampal neurogenesis may represent a broadly useful approach in hypermnesic conditions such as PTSD and substance abuse disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Development of a double trauma model for PTSD in mice.
Fig. 2: PTSD-like symptoms persist at remote delays.
Fig. 3: Exercise attenuates PTSD-like phenotypes.
Fig. 4: Hyper-integration of adult-generated granule cells weakens PTSD-like behaviors.
Fig. 5: Post-training increases in hippocampal neurogenesis weakens conditioned place preference for cocaine.

Similar content being viewed by others

Data availability

The data that were used to support the findings of this study are available from the corresponding author upon request.

References

  1. Goncalves JT, Schafer ST, Gage FH. Adult neurogenesis in the hippocampus: from stem cells to behavior. Cell. 2016;167:897–914. https://doi.org/10.1016/j.cell.2016.10.021

    Article  CAS  PubMed  Google Scholar 

  2. Kempermann G, Gage FH, Aigner L, Song H, Curtis MA, Thuret S, et al. Human adult neurogenesis: evidence and remaining questions. Cell Stem Cell. 2018;23:25–30. https://doi.org/10.1016/j.stem.2018.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. McAvoy KM, Scobie KM, Berger S, Russo C, Guo N, Decharatanachart P, et al. Modulating neuronal competition dynamics in the dentate gyrus to rejuvenate aging memory circuits. Neuron. 2016;91:1356–73. https://doi.org/10.1016/j.neuron.2016.08.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Toni N, Laplagne DA, Zhao C, Lombardi G, Ribak CE, Gage FH, et al. Neurons born in the adult dentate gyrus form functional synapses with target cells. Nat Neurosci. 2008;11:901–7. https://doi.org/10.1038/nn.2156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Toni N, Teng EM, Bushong EA, Aimone JB, Zhao C, Consiglio A, et al. Synapse formation on neurons born in the adult hippocampus. Nat Neurosci. 2007;10:727–34. https://doi.org/10.1038/nn1908

    Article  CAS  PubMed  Google Scholar 

  6. Anacker C, Hen R. Adult hippocampal neurogenesis and cognitive flexibility—linking memory and mood. Nat Rev Neurosci. 2017;18:335–46. https://doi.org/10.1038/nrn.2017.45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Clelland CD, Choi M, Romberg C, Clemenson GD, Fragniere A, Tyers P, et al. A functional role for adult hippocampal neurogenesis in spatial pattern separation. Science. 2009;325:210–3. https://doi.org/10.1126/science.1173215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sahay A, Scobie KN, Hill AS, O’Carroll CM, Kheirbek MA, Burghardt NS, et al. Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature. 2011;472:466–70. https://doi.org/10.1038/nature09817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Niibori Y, Yu TS, Epp JR, Akers KG, Josselyn SA, Frankland PW. Suppression of adult neurogenesis impairs population coding of similar contexts in hippocampal CA3 region. Nat Commun. 2012;3:1253 https://doi.org/10.1038/ncomms2261

    Article  CAS  PubMed  Google Scholar 

  10. Deisseroth K, Singla H, Toda H, Monje M, Palmer TD, Malenka RC. Excitation-neurogenesis coupling in adult neural stem/progenitor cells. Neuron. 2004;42:535–52. https://doi.org/10.1016/s0896-6273(04)00266-1

    Article  CAS  PubMed  Google Scholar 

  11. Tran LM, Josselyn SA, Richards BA, Frankland PW. Forgetting at biologically realistic levels of neurogenesis in a large-scale hippocampal model. Behav Brain Res. 2019;376:112180 https://doi.org/10.1016/j.bbr.2019.112180

    Article  PubMed  PubMed Central  Google Scholar 

  12. Weisz VI, Argibay PF. Neurogenesis interferes with the retrieval of remote memories: forgetting in neurocomputational terms. Cognition. 2012;125:13–25. https://doi.org/10.1016/j.cognition.2012.07.002

    Article  PubMed  Google Scholar 

  13. Frankland PW, Kohler S, Josselyn SA. Hippocampal neurogenesis and forgetting. Trends Neurosci. 2013;36:497–503. https://doi.org/10.1016/j.tins.2013.05.002

    Article  CAS  PubMed  Google Scholar 

  14. Akers KG, Martinez-Canabal A, Restivo L, Yiu AP, De Cristofaro A, Hsiang HL, et al. Hippocampal neurogenesis regulates forgetting during adulthood and infancy. Science. 2014;344:598–602. https://doi.org/10.1126/science.1248903

    Article  CAS  PubMed  Google Scholar 

  15. Cuartero MI, de la Parra J, Perez-Ruiz A, Bravo-Ferrer I, Duran-Laforet V, Garcia-Culebras A, et al. Abolition of aberrant neurogenesis ameliorates cognitive impairment after stroke in mice. J Clin Investig. 2019;129:1536–50. https://doi.org/10.1172/JCI120412

    Article  PubMed  PubMed Central  Google Scholar 

  16. Epp JR, Silva Mera R, Kohler S, Josselyn SA, Frankland PW. Neurogenesis-mediated forgetting minimizes proactive interference. Nat Commun. 2016;7:10838 https://doi.org/10.1038/ncomms10838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gao A, Xia F, Guskjolen AJ, Ramsaran AI, Santoro A, Josselyn SA, et al. Elevation of hippocampal neurogenesis induces a temporally graded pattern of forgetting of contextual fear memories. J Neurosci. 2018;38:3190–8. https://doi.org/10.1523/JNEUROSCI.3126-17.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ishikawa, R, Fukushima, H, Frankland, PW & Kida, S Hippocampal neurogenesis enhancers promote forgetting of remote fear memory after hippocampal reactivation by retrieval. Elife 5 https://doi.org/10.7554/eLife.17464 (2016).

  19. Wang C, Yue H, Hu Z, Shen Y, Ma J, Li J, et al. Microglia mediate forgetting via complement-dependent synaptic elimination. Science. 2020;367:688–94. https://doi.org/10.1126/science.aaz2288

    Article  CAS  PubMed  Google Scholar 

  20. Epp JR, Botly LCP, Josselyn SA, Frankland PW. Voluntary exercise increases neurogenesis and mediates forgetting of complex paired associates memories. Neuroscience. 2021;475:1–9. https://doi.org/10.1016/j.neuroscience.2021.08.022

    Article  CAS  PubMed  Google Scholar 

  21. Scott GA, Terstege DJ, Roebuck AJ, Gorzo KA, Vu AP, Howland JG, et al. Adult neurogenesis mediates forgetting of multiple types of memory in the rat. Mol Brain. 2021;14:97 https://doi.org/10.1186/s13041-021-00808-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Evans A, Terstege DJ, Scott GA, Tsutsui M, Epp JR. Neurogenesis mediated plasticity is associated with reduced neuronal activity in CA1 during context fear memory retrieval. Sci Rep. 2022;12:7016 https://doi.org/10.1038/s41598-022-10947-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dunsmoor JE, Paz R. Fear generalization and anxiety: behavioral and neural mechanisms. Biol. Psychiatry. 2015;78:336–43.

    Article  PubMed  Google Scholar 

  24. Orr SP, Metzger LJ, Lasko NB, Macklin ML, Peri T, Pitman RK. De novo conditioning in trauma-exposed individuals with and without posttraumatic stress disorder. J Abnorm. Psychol. 2000;109:290.

    Article  CAS  PubMed  Google Scholar 

  25. Rothbaum BO, Kozak MJ, Foa EB, Whitaker DJ. Posttraumatic stress disorder in rape victims: autonomic habituation to auditory stimuli. J Trauma Stress. 2001;14:283–93.

    Article  CAS  PubMed  Google Scholar 

  26. Finsterwald C, Steinmetz AB, Travaglia A, Alberini CM. From memory impairment to posttraumatic stress disorder-like phenotypes: the critical role of an unpredictable second traumatic experience. J Neurosci. 2015;35:15903–15. https://doi.org/10.1523/JNEUROSCI.0771-15.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Imayoshi I, Sakamoto M, Ohtsuka T, Takao K, Miyakawa T, Yamaguchi M, et al. Roles of continuous neurogenesis in the structural and functional integrity of the adult forebrain. Nature neuroscience. 2008;11:1153–61.

    Article  CAS  PubMed  Google Scholar 

  28. Duan Y, Wang S-H, Song J, Mironova Y, Ming G-I, Kolodkin AL, et al. Semaphorin 5A inhibits synaptogenesis in early postnatal-and adult-born hippocampal dentate granule cells. Elife. 2014;3:e04390.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Lewis PF, Emerman M. Passage through mitosis is required for oncoretroviruses but not for the human immunodeficiency virus. J Virol. 1994;68:510–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tashiro A, Zhao C, Gage FH. Retrovirus-mediated single-cell gene knockout technique in adult newborn neurons in vivo. Nat. Protoc. 2006;1:3049–55.

    Article  CAS  PubMed  Google Scholar 

  31. Zhao C, Teng EM, Summers RG, Ming G-L, Gage FH. Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus. J Neurosci. 2006;26:3–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Restivo L, Niibori Y, Mercaldo V, Josselyn SA, Frankland PW. Development of adult-generated cell connectivity with excitatory and inhibitory cell populations in the hippocampus. J Neurosci. 2015;35:10600–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Stone SS, Teixeira CM, Zaslavsky K, Wheeler AL, Martinez-Canabal A, Wang AH, et al. Functional convergence of developmentally and adult‐generated granule cells in dentate gyrus circuits supporting hippocampus‐dependent memory. Hippocampus. 2011;21:1348–62.

    Article  PubMed  Google Scholar 

  34. Guskjolen A, Dhaliwal J, de la Parra J, Epp JR, Ko S, Chahley E, et al. Neurogenesis-mediated circuit remodeling reduces engram reinstatement and promotes forgetting. bioRxiv, 2023.2010. 2010.561722 (2023).

  35. Hsiang H-LL, Epp JR, van den Oever MC, Yan C, Rashid AJ, Insel N, et al. Manipulating a “cocaine engram” in mice. J Neurosci. 2014;34:14115–27.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ishikawa R, Uchida C, Kitaoka S, Furuyashiki T, Kida S. Improvement of PTSD-like behavior by the forgetting effect of hippocampal neurogenesis enhancer memantine in a social defeat stress paradigm. Mol Brain. 2019;12:68 https://doi.org/10.1186/s13041-019-0488-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Diaz AB, Motta R. The effects of an aerobic exercise program on posttraumatic stress disorder symptom severity in adolescents. Int J Emerg Ment Health. 2008;10:49–59.

    PubMed  Google Scholar 

  38. Hall KS, Morey MC, Bosworth HB, Beckham JC, Pebole MM, Sloane R, et al. Pilot randomized controlled trial of exercise training for older veterans with PTSD. J Behav Med. 2020;43:648–59. https://doi.org/10.1007/s10865-019-00073-w

    Article  PubMed  Google Scholar 

  39. Hegberg NJ, Hayes JP, Hayes SM. Exercise intervention in PTSD: a narrative review and rationale for implementation. Front Psychiatry. 2019;10:133 https://doi.org/10.3389/fpsyt.2019.00133

    Article  PubMed  PubMed Central  Google Scholar 

  40. Manger TA, Motta RW. The impact of an exercise program on posttraumatic stress disorder, anxiety, and depression. Int J Emerg Ment Health. 2005;7:49–57.

    PubMed  Google Scholar 

  41. Powers MB, Medina JL, Burns S, Kauffman BY, Monfils M, Asmundson GJ, et al. Exercise augmentation of exposure therapy for PTSD: rationale and pilot efficacy data. Cogn Behav Ther. 2015;44:314–27. https://doi.org/10.1080/16506073.2015.1012740

    Article  PubMed  PubMed Central  Google Scholar 

  42. Shivakumar G, Anderson EH, Suris AM, North CS. Exercise for PTSD in women veterans: a proof-of-concept study. Mil Med. 2017;182:e1809–e1814. https://doi.org/10.7205/MILMED-D-16-00440

    Article  PubMed  Google Scholar 

  43. Hillman CH, Erickson KI, Kramer AF. Be smart, exercise your heart: exercise effects on brain and cognition. Nat Rev Neurosci. 2008;9:58–65. https://doi.org/10.1038/nrn2298

    Article  CAS  PubMed  Google Scholar 

  44. Crombag HS, Bossert JM, Koya E, Shaham Y. Context-induced relapse to drug seeking: a review. Philos Trans R Soc B Biol Sci. 2008;363:3233–43.

    Article  Google Scholar 

  45. Tzschentke TM. Measuring reward with the conditioned place preference (CPP) paradigm: update of the last decade. Addict Biol. 2007;12:227–462. https://doi.org/10.1111/j.1369-1600.2007.00070.x

    Article  CAS  PubMed  Google Scholar 

  46. Napier TC, Herrold AA, de Wit H. Using conditioned place preference to identify relapse prevention medications. Neurosci Biobehav Rev. 2013;37:2081–6. https://doi.org/10.1016/j.neubiorev.2013.05.002

    Article  PubMed  Google Scholar 

  47. Lorenzini CA, Baldi E, Bucherelli C, Sacchetti B, Tassoni G. Role of dorsal hippocampus in acquisition, consolidation and retrieval of rat’s passive avoidance response: a tetrodotoxin functional inactivation study. Brain Res. 1996;730:32–39.

    Article  CAS  PubMed  Google Scholar 

  48. Kheirbek MA, Drew LJ, Burghardt NS, Constantini DO, Tannenholz L, Ahmari SE, et al. Differential control of learning and anxiety along the dorsoventral axis of the dentate gyrus. Neuron. 2013;77:955–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Richter-Levin G, Stork O, Schmidt MV. Animal models of PTSD: a challenge to be met. Mol Psychiatry. 2019;24:1135–56. https://doi.org/10.1038/s41380-018-0272-5

    Article  PubMed  Google Scholar 

  50. Desmedt A, Marighetto A, Piazza PV. Abnormal fear memory as a model for posttraumatic stress disorder. Biol Psychiatry. 2015;78:290–7. https://doi.org/10.1016/j.biopsych.2015.06.017

    Article  PubMed  Google Scholar 

  51. Ladron de Guevara-Miranda D, Moreno-Fernandez RD, Gil-Rodriguez S, Rosell-Valle C, Estivill-Torrus G, Serrano A, et al. Lysophosphatidic acid-induced increase in adult hippocampal neurogenesis facilitates the forgetting of cocaine-contextual memory. Addict Biol. 2019;24:458–70. https://doi.org/10.1111/adb.12612

    Article  CAS  PubMed  Google Scholar 

  52. Mustroph ML, Stobaugh DJ, Miller DS, DeYoung EK, Rhodes JS. Wheel running can accelerate or delay extinction of conditioned place preference for cocaine in male C57BL/6J mice, depending on timing of wheel access. Eur J Neurosci. 2011;34:1161–9. https://doi.org/10.1111/j.1460-9568.2011.07828.x

    Article  PubMed  PubMed Central  Google Scholar 

  53. Mustroph ML, Merritt JR, Holloway AL, Pinardo H, Miller DS, Kilby CN, et al. Increased adult hippocampal neurogenesis is not necessary for wheel running to abolish conditioned place preference for cocaine in mice. Eur J Neurosci. 2015;41:216–26. https://doi.org/10.1111/ejn.12782

    Article  CAS  PubMed  Google Scholar 

  54. Frankland PW, Josselyn SA, Kohler S. The neurobiological foundation of memory retrieval. Nat Neurosci. 2019;22:1576–85. https://doi.org/10.1038/s41593-019-0493-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Josselyn SA, Kohler S, Frankland PW. Finding the engram. Nat Rev Neurosci. 2015;16:521–34. https://doi.org/10.1038/nrn4000

    Article  CAS  PubMed  Google Scholar 

  56. Josselyn SA, Tonegawa S. Memory engrams: recalling the past and imagining the future. Science 2020; 367 https://doi.org/10.1126/science.aaw4325

  57. Ryan TJ, Frankland PW. Forgetting as a form of adaptive engram cell plasticity. Nat Rev Neurosci. 2022;23:173–86.

    Article  CAS  PubMed  Google Scholar 

  58. Guskjolen A, Kenney JW, de la Parra J, Yeung BA, Josselyn SA, Frankland PW. Recovery of “Lost” Infant Memories in Mice. Curr Biol. 2018;28:2283–2290.e2283. https://doi.org/10.1016/j.cub.2018.05.059

    Article  CAS  PubMed  Google Scholar 

  59. Zhang TR, Larosa A, Dr Raddo ME, Wong V, Wong AS, Wong TP. Negative memory engrams in the hippocampus enhance the susceptibility to chronic social defeat stress. J Neurosci. 2019;39:7576–90. https://doi.org/10.1523/JNEUROSCI.1958-18.2019

    Article  PubMed  PubMed Central  Google Scholar 

  60. Kida S. Reconsolidation/destabilization, extinction and forgetting of fear memory as therapeutic targets for PTSD. Psychopharmacology. 2019;236:49–57. https://doi.org/10.1007/s00213-018-5086-2

    Article  CAS  PubMed  Google Scholar 

  61. Phelps EA, Hofmann SG. Memory editing from science fiction to clinical practice. Nature. 2019;572:43–50. https://doi.org/10.1038/s41586-019-1433-7

    Article  CAS  PubMed  Google Scholar 

  62. Michopoulos V, Norrholm SD, Stevens JS, Glover EM, Rothbaum BO, Gillepsie CF, et al. Dexamethasone facilitates fear extinction and safety discrimination in PTSD: a placebo-controlled, double-blind study. Psychoneuroendocrinology. 2017;83:65–71. https://doi.org/10.1016/j.psyneuen.2017.05.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Brunet A, Orr SP, Tremblay J, Robertson K, Nader K, Pitman RK. Effect of post-retrieval propranolol on psychophysiologic responding during subsequent script-driven traumatic imagery in post-traumatic stress disorder. J Psychiatr Res. 2008;42:503–6. https://doi.org/10.1016/j.jpsychires.2007.05.006

    Article  PubMed  Google Scholar 

  64. Soeter M, Kindt M. An abrupt transformation of phobic behavior after a post-retrieval amnesic agent. Biol Psychiatry. 2015;78:880–6. https://doi.org/10.1016/j.biopsych.2015.04.006

    Article  PubMed  Google Scholar 

  65. Davis RL, Zhong Y. The biology of forgetting-A perspective. Neuron. 2017;95:490–503. https://doi.org/10.1016/j.neuron.2017.05.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Richards BA, Frankland PW. The persistence and transience of memory. Neuron. 2017;94:1071–84. https://doi.org/10.1016/j.neuron.2017.04.037

    Article  CAS  PubMed  Google Scholar 

  67. Hardt O, Nader K, Wang YT. GluA2-dependent AMPA receptor endocytosis and the decay of early and late long-term potentiation: possible mechanisms for forgetting of short- and long-term memories. Philos Trans R Soc Lond B Biol Sci. 2014;369:20130141 https://doi.org/10.1098/rstb.2013.0141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Barron HC, Vogels TP, Behrens TE, Ramaswami M. Inhibitory engrams in perception and memory. Proc Natl Acad Sci USA. 2017;114:6666–74. https://doi.org/10.1073/pnas.1701812114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Shuai Y, Zhong Y. Forgetting and small G protein Rac. Protein Cell. 2010;1:503–6. https://doi.org/10.1007/s13238-010-0077-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a CIHR project grant (PJT-180530) to PWF, and Brain Canada platform, and NIMH grants (RO1MH119421) to SAJ and PWF Additionally we acknowledge generous support from the Brenneman family and the SickKids Foundation. RF was supported by JSPS KAKENHI Grant Number 14J05605, The Kyoto University Foundation, Astellas Foundation for Research on Metabolic Disorders, and SENSHIN Medical Research Foundation. AIR was supported by an NSERC CGS-D award and an NIH 1 F31 MH120920-01 award. We thank Ms. Daisy Lin, Ms. Toni DeCristofaro, and Ms. Mika Yamamoto for technical assistance.

Author information

Authors and Affiliations

Authors

Contributions

RF: Conceptualization, Data Collection, Statistical Analysis, Writing (Original Draft), Writing (Editing). AIR: Data Collection, Statistical Analysis, Writing (Editing). AG: Data Collection, Writing (Editing). JDLP: Data Collection, Writing (Editing). YZ: Data Collection. AJM: Data Collection, Writing (Editing). SAJ: Supervision, Funding, Writing (Editing). PWF: Conceptualization, Supervision, Funding, Writing (Original Draft), Writing (Editing).

Corresponding author

Correspondence to Paul W. Frankland.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujikawa, R., Ramsaran, A.I., Guskjolen, A. et al. Neurogenesis-dependent remodeling of hippocampal circuits reduces PTSD-like behaviors in adult mice. Mol Psychiatry (2024). https://doi.org/10.1038/s41380-024-02585-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41380-024-02585-7

Search

Quick links