Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dopamine D1R-neuron cacna1c deficiency: a new model of extinction therapy-resistant post-traumatic stress

Abstract

Post-traumatic stress disorder (PTSD) is characterized by persistent fear memory of remote traumatic events, mental re-experiencing of the trauma, long-term cognitive deficits, and PTSD-associated hippocampal dysfunction. Extinction-based therapeutic approaches acutely reduce fear. However, many patients eventually relapse to the original conditioned fear response. Thus, understanding the underlying molecular mechanisms of this condition is critical to developing new treatments for patients. Mutations in the neuropsychiatric risk gene CACNA1C, which encodes the Cav1.2 isoform of the L-type calcium channel, have been implicated in both PTSD and highly comorbid neuropsychiatric conditions, such as anxiety and depression. Here, we report that male mice with global heterozygous loss of cacna1c exhibit exacerbated contextual fear that persists at remote time points (up to 180 days after shock), despite successful acute extinction training, reminiscent of PTSD patients. Because dopamine has been implicated in contextual fear memory, and Cav1.2 is a downstream target of dopamine D1-receptor (D1R) signaling, we next generated mice with specific deletion of cacna1c from D1R-expressing neurons (D1-cacna1cKO mice). Notably, D1-cacna1cKO mice also show the same exaggerated remote contextual fear, as well as persistently elevated anxiety-like behavior and impaired spatial memory at remote time points, reminiscent of chronic anxiety in treatment-resistant PTSD. We also show that D1-cacna1cKO mice exhibit elevated death of young hippocampal neurons, and that treatment with the neuroprotective agent P7C3-A20 eradicates persistent remote fear. Augmenting survival of young hippocampal neurons may thus provide an effective therapeutic approach for promoting durable remission of PTSD, particularly in patients with CACNA1C mutations or other genetic aberrations that impair calcium signaling or disrupt the survival of young hippocampal neurons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cacna1c heterozygous mice display exaggerated remote contextual fear memory.
Fig. 2: Mice with loss of cacna1c in D1R-expressing cells exhibit exaggerated remote contextual fear memory.
Fig. 3: Exaggerated remote contextual fear memory is not due to enhanced spatial memory.
Fig. 4: Loss of cacna1c in D1R-expressing cells reduces the net magnitude of adult hippocampal neurogenesis.

Similar content being viewed by others

Data availability

The datasets generated during this study are available from the corresponding authors upon reasonable request.

References

  1. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. 5th edn: Washington, DC: American Psychiatric Association; 2013.

  2. Myers KM, Davis M. Behavioral and neural analysis of extinction. Neuron. 2002;36:567–84.

    Article  CAS  PubMed  Google Scholar 

  3. Deslauriers J, Toth M, Der-Avakian A, Risbrough VB. Current status of animal models of posttraumatic stress disorder: behavioral and biological phenotypes, and future challenges in improving translation. Biol Psychiatry. 2018;83:895–907.

    Article  PubMed  Google Scholar 

  4. Logue MW, van Rooij SJH, Dennis EL, Davis SL, Hayes JP, Stevens JS, et al. Smaller hippocampal volume in posttraumatic stress disorder: a multisite ENIGMA-PGC study: subcortical volumetry results from posttraumatic stress disorder consortia. Biol Psychiatry. 2018;83:244–53.

    Article  PubMed  Google Scholar 

  5. van Rooij SJH, Stevens JS, Ely TD, Hinrichs R, Michopoulos V, Winters SJ, et al. The role of the hippocampus in predicting future posttraumatic stress disorder symptoms in recently traumatized civilians. Biol Psychiatry. 2017;84:106–15.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Garfinkel SN, Abelson JL, King AP, Sripada RK, Wang X, Gaines LM, et al. Impaired contextual modulation of memories in PTSD: an fMRI and psychophysiological study of extinction retention and fear renewal. J Neurosci. 2014;34:13435–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Milad MR, Pitman RK, Ellis CB, Gold AL, Shin LM, Lasko NB, et al. Neurobiological basis of failure to recall extinction memory in posttraumatic stress disorder. Biol Psychiatry. 2009;66:1075–82.

    Article  PubMed  PubMed Central  Google Scholar 

  8. True WR, Rice J, Eisen SA, Heath AC, Goldberg J, Lyons MJ, et al. A twin study of genetic and environmental contributions to liability for posttraumatic stress symptoms. Arch Gen Psychiatry. 1993;50:257–64.

    Article  CAS  PubMed  Google Scholar 

  9. Stein MB, Jang KL, Taylor S, Vernon PA, Livesley WJ. Genetic and environmental influences on trauma exposure and posttraumatic stress disorder symptoms: a twin study. Am J Psychiatry. 2002;159:1675–81.

    Article  PubMed  Google Scholar 

  10. Afifi TO, Asmundson GJ, Taylor S, Jang KL. The role of genes and environment on trauma exposure and posttraumatic stress disorder symptoms: a review of twin studies. Clin Psychol Rev. 2010;30:101–12.

    Article  PubMed  Google Scholar 

  11. Krzyzewska IM, Ensink JBM, Nawijn L, Mul AN, Koch SB, Venema A, et al. Genetic variant in CACNA1C is associated with PTSD in traumatized police officers. Eur J Hum Genet. 2018;26:247–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kabir ZD, Martinez-Rivera A, Rajadhyaksha AM. From gene to behavior: L-type calcium channel mechanisms underlying neuropsychiatric symptoms. Neurotherapeutics. 2017;14:588–613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bavley CC, Fischer DK, Rizzo BK, Rajadhyaksha AM. Cav1.2 channels mediate persistent chronic stress-induced behavioral deficits that are associated with prefrontal cortex activation of the p25/Cdk5-glucocorticoid receptor pathway. Neurobiol Stress. 2017;7:27–37.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Dedic N, Pohlmann ML, Richter JS, Mehta D, Czamara D, Metzger MW, et al. Cross-disorder risk gene CACNA1C differentially modulates susceptibility to psychiatric disorders during development and adulthood. Mol Psychiatry. 2018;23:533–43.

    Article  CAS  PubMed  Google Scholar 

  15. Giordano TP, Tropea TF, Satpute SS, Sinnegger-Brauns MJ, Striessnig J, Kosofsky BE, et al. Molecular switch from L-type Ca v 1.3 to Ca v 1.2 Ca2+ channel signaling underlies long-term psychostimulant-induced behavioral and molecular plasticity. J Neurosci. 2010;30:17051–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. El-Ghundi M, O’Dowd BF, George SR. Prolonged fear responses in mice lacking dopamine D1 receptor. Brain Res. 2001;892:86–93.

    Article  CAS  PubMed  Google Scholar 

  17. Lee AS, Ra S, Rajadhyaksha AM, Britt JK, De Jesus-Cortes H, Gonzales KL, et al. Forebrain elimination of cacna1c mediates anxiety-like behavior in mice. Mol Psychiatry. 2012;17:1054–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Burgdorf CE, Schierberl KC, Lee AS, Fischer DK, Van Kempen TA, Mudragel V, et al. Extinction of contextual cocaine memories requires Cav1.2 within D1R-expressing cells and recruits hippocampal Cav1.2-dependent signaling mechanisms. J Neurosci. 2017;37:11894–911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bavley CC, Rice RC, Fischer DK, Fakira AK, Byrne M, Kosovsky M, et al. Rescue of learning and memory deficits in the human nonsyndromic intellectual disability cereblon knock-out mouse model by targeting the AMP-activated protein kinase-mTORC1 translational pathway. J Neurosci. 2018;38:2780–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kabir ZD, Che A, Fischer DK, Rice RC, Rizzo BK, Byrne M, et al. Rescue of impaired sociability and anxiety-like behavior in adult cacna1c-deficient mice by pharmacologically targeting eIF2alpha. Mol Psychiatry. 2017;22:1096–109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Norrholm SD, Jovanovic T, Olin IW, Sands LA, Karapanou I, Bradley B, et al. Fear extinction in traumatized civilians with posttraumatic stress disorder: relation to symptom severity. Biol Psychiatry. 2011;69:556–63.

    Article  PubMed  Google Scholar 

  22. Cerda M, Sagdeo A, Johnson J, Galea S. Genetic and environmental influences on psychiatric comorbidity: a systematic review. J Affect Disord. 2010;126:14–38.

    Article  CAS  PubMed  Google Scholar 

  23. Astur RS, St Germain SA, Tolin D, Ford J, Russell D, Stevens M. Hippocampus function predicts severity of post-traumatic stress disorder. Cyberpsychol Behav. 2006;9:234–40.

    Article  PubMed  Google Scholar 

  24. Morris R. Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods. 1984;11:47–60.

    Article  CAS  PubMed  Google Scholar 

  25. Ishikawa R, Fukushima H, Frankland PW, Kida S. Hippocampal neurogenesis enhancers promote forgetting of remote fear memory after hippocampal reactivation by retrieval. Elife. 2016;5:e17464.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Gao A, Xia F, Guskjolen AJ, Ramsaran AI, Santoro A, Josselyn SA, et al. Elevation of hippocampal neurogenesis induces a temporally graded pattern of forgetting of contextual fear memories. J Neurosci. 2018;38:3190–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Takamura N, Nakagawa S, Masuda T, Boku S, Kato A, Song N, et al. The effect of dopamine on adult hippocampal neurogenesis. Prog Neuropsychopharmacol Biol Psychiatry. 2014;50:116–24.

    Article  CAS  PubMed  Google Scholar 

  28. Lee AS, De Jesus-Cortes H, Kabir ZD, Knobbe W, Orr M, Burgdorf C et al. The Neuropsychiatric Disease-Associated Gene cacna1c Mediates Survival of Young Hippocampal Neurons. eNeuro. 2016;3:1–11.

    Article  CAS  Google Scholar 

  29. De Jesus-Cortes H, Rajadhyaksha AM, Pieper AA. Cacna1c: protecting young hippocampal neurons in the adult brain. Neurogenesis (Austin). 2016;3:e1231160.

    Article  CAS  Google Scholar 

  30. Temme SJ, Bell RZ, Fisher GL, Murphy GG. Deletion of the mouse homolog of CACNA1C disrupts discrete forms of hippocampal-dependent memory and neurogenesis within the dentate gyrus. eNeuro. 2016;3:ENEURO.0118-16.2016.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wang JW, David DJ, Monckton JE, Battaglia F, Hen R. Chronic fluoxetine stimulates maturation and synaptic plasticity of adult-born hippocampal granule cells. J Neurosci. 2008;28:1374–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Malberg JE, Eisch AJ, Nestler EJ, Duman RS. Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci. 2000;20:9104–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Boldrini M, Underwood MD, Hen R, Rosoklija GB, Dwork AJ, John Mann J, et al. Antidepressants increase neural progenitor cells in the human hippocampus. Neuropsychopharmacology. 2009;34:2376–89.

    Article  CAS  PubMed  Google Scholar 

  34. Alexander W. Pharmacotherapy for post-traumatic stress disorder in combat veterans: focus on antidepressants and atypical antipsychotic agents. P T. 2012;37:32–8.

    PubMed  PubMed Central  Google Scholar 

  35. Hoskins M, Pearce J, Bethell A, Dankova L, Barbui C, Tol WA, et al. Pharmacotherapy for post-traumatic stress disorder: systematic review and meta-analysis. Br J Psychiatry. 2015;206:93–100.

    Article  PubMed  Google Scholar 

  36. Pieper AA, McKnight SL. Benefits of enhancing nicotinamide adenine dinucleotide levels in damaged or diseased nerve cells. Cold Spring Harb Symp Quant Biol. 2019;LXXXIII:207–17.

    Google Scholar 

  37. Bauman MD, Schumann CM, Carlson EL, Taylor SL, Vazquez-Rosa E, Cintron-Perez CJ, et al. Neuroprotective efficacy of P7C3 compounds in primate hippocampus. Transl Psychiatry. 2018;8:202.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Loris ZB, Hynton JR, Pieper AA, Dietrich WD. Beneficial effects of delayed P7C3-A20 treatment after transient MCAO in rats. Transl Stroke Res. 2018;9:146–56.

    Article  CAS  PubMed  Google Scholar 

  39. Blaya MO, Bramlett HM, Naidoo J, Pieper AA, Dietrich WD. Neuroprotective efficacy of a proneurogenic compound after traumatic brain injury. J Neurotrauma. 2014;31:476–86.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Esposito MS, Piatti VC, Laplagne DA, Morgenstern NA, Ferrari CC, Pitossi FJ, et al. Neuronal differentiation in the adult hippocampus recapitulates embryonic development. J Neurosci. 2005;25:10074–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Loris ZB, Pieper AA, Dietrich WD. The neuroprotective compound P7C3-A20 promotes neurogenesis and improves cognitive function after ischemic stroke. Exp Neurol. 2017;290:63–73.

    Article  CAS  PubMed  Google Scholar 

  42. Liberzon I, Abelson JL. Context processing and the neurobiology of post-traumatic stress disorder. Neuron. 2016;92:14–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Phillips RG, LeDoux JE. Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav Neurosci. 1992;106:274–85.

    Article  CAS  PubMed  Google Scholar 

  44. van der Kolk BA, Spinazzola J, Blaustein ME, Hopper JW, Hopper EK, Korn DL, et al. A randomized clinical trial of eye movement desensitization and reprocessing (EMDR), fluoxetine, and pill placebo in the treatment of posttraumatic stress disorder: treatment effects and long-term maintenance. J Clin Psychiatry. 2007;68:37–46.

    Article  PubMed  Google Scholar 

  45. Patriarchi T, Buonarati OR, Hell JW. Postsynaptic localization and regulation of AMPA receptors and Cav1.2 by beta2 adrenergic receptor/PKA and Ca(2+)/CaMKII signaling. EMBO J. 2018;37:e99771.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Jhaveri DJ, Nanavaty I, Prosper BW, Marathe S, Husain BF, Kernie SG, et al. Opposing effects of alpha2- and beta-adrenergic receptor stimulation on quiescent neural precursor cell activity and adult hippocampal neurogenesis. PLoS One. 2014;9:e98736.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Mishra A, Singh S, Tiwari V, Bano S, Shukla S. Dopamine D1 receptor agonism induces dynamin related protein-1 inhibition to improve mitochondrial biogenesis and dopaminergic neurogenesis in rat model of Parkinson’s disease. Behav Brain Res. 2020;378:112304.

    Article  CAS  PubMed  Google Scholar 

  48. Shuto T, Kuroiwa M, Sotogaku N, Kawahara Y, Oh YS, Jang JH et al. Obligatory roles of dopamine D1 receptors in the dentate gyrus in antidepressant actions of a selective serotonin reuptake inhibitor, fluoxetine. Mol Psychiatry. 2018;9:146–56.

    Google Scholar 

  49. Duman RS, Monteggia LM. A neurotrophic model for stress-related mood disorders. Biol Psychiatry. 2006;59:1116–27.

    Article  CAS  PubMed  Google Scholar 

  50. Steenkamp MM, Litz BT, Hoge CW, Marmar CR. Psychotherapy for Military-Related PTSD: A Review of Randomized Clinical Trials. JAMA. 2015;314:489–500.

    Article  CAS  PubMed  Google Scholar 

  51. Ernst A, Alkass K, Bernard S, Salehpour M, Perl S, Tisdale J, et al. Neurogenesis in the striatum of the adult human brain. Cell. 2014;156:1072–83.

    Article  CAS  PubMed  Google Scholar 

  52. Spalding KL, Bergmann O, Alkass K, Bernard S, Salehpour M, Huttner HB, et al. Dynamics of hippocampal neurogenesis in adult humans. Cell. 2013;153:1219–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Dennis CV, Suh LS, Rodriguez ML, Kril JJ, Sutherland GT. Human adult neurogenesis across the ages: an immunohistochemical study. Neuropathol Appl Neurobiol. 2016;42:621–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Eriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn AM, Nordborg C, Peterson DA, et al. Neurogenesis in the adult human hippocampus. Nat Med. 1998;4:1313–7.

    Article  CAS  PubMed  Google Scholar 

  55. Knoth R, Singec I, Ditter M, Pantazis G, Capetian P, Meyer RP, et al. Murine features of neurogenesis in the human hippocampus across the lifespan from 0 to 100 years. PLoS ONE. 2010;5:e8809.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Yang P, Zhang J, Shi H, Zhang J, Xu X, Xiao X, et al. Developmental profile of neurogenesis in prenatal human hippocampus: an immunohistochemical study. Int J Dev Neurosci. 2014;38:1–9.

    Article  PubMed  Google Scholar 

  57. Sorrells SF, Paredes MF, Cebrian-Silla A, Sandoval K, Qi D, Kelley KW, et al. Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Nature. 2018;555:377–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tobin MK, Musaraca K, Disouky A, Shetti A, Bheri A, Honer WG, et al. Human hippocampal neurogenesis persists in aged adults and Alzheimer’s disease patients. Cell Stem Cell. 2019;24:974–82. e973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants to AMR by the National Institute of Drug Abuse, The Hartwell Foundation and the Paul Fund, and to AAP by the Brockman Foundation, the Elizabeth Ring Mather & William Gwinn Mather Fund, the S. Livingston Samuel Mather Trust, the G.R. Lincoln Family Foundation, and Gordon & Evie Safran. CCB was supported by a T32 grant from NIDA, a TL1 grant from the National Center for Advancing Translation Sciences/NIH, and the Frank & Blanche Mowrer Memorial Fellowship. EV-R was also supported by the Training Program in Free Radical and Radiation Biology from the University of Iowa (T32 CA078586). Some of this material is the result of work supported with resources and the use of facilities at the Louis Stokes VA Medical Center in Cleveland.

Author information

Authors and Affiliations

Authors

Contributions

CCB, ZDK, AAP, and AMR designed experiments and wrote the paper. CCB, ZDK, APW, MK, JH, and HS ran behavioral experiments and all treatments. CCB and ZDK analyzed data. EV-R, CJC-P, EM, YK, AAP performed neurogenesis and neuronal survival experiments.

Corresponding authors

Correspondence to Andrew A. Pieper or Anjali M. Rajadhyaksha.

Ethics declarations

Conflict of interest

AAP is a consultant for Proneurotech, Inc. All other authors declare no conflicts of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bavley, C.C., Kabir, Z.D., Walsh, A.P. et al. Dopamine D1R-neuron cacna1c deficiency: a new model of extinction therapy-resistant post-traumatic stress. Mol Psychiatry 26, 2286–2298 (2021). https://doi.org/10.1038/s41380-020-0730-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-020-0730-8

This article is cited by

Search

Quick links