Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Microglial over-pruning of synapses during development in autism-associated SCN2A-deficient mice and human cerebral organoids

Abstract

Autism spectrum disorder (ASD) is a major neurodevelopmental disorder affecting 1 in 36 children in the United States. While neurons have been the focus of understanding ASD, an altered neuro-immune response in the brain may be closely associated with ASD, and a neuro-immune interaction could play a role in the disease progression. As the resident immune cells of the brain, microglia regulate brain development and homeostasis via core functions including phagocytosis of synapses. While ASD has been traditionally considered a polygenic disorder, recent large-scale human genetic studies have identified SCN2A deficiency as a leading monogenic cause of ASD and intellectual disability. We generated a Scn2a-deficient mouse model, which displays major behavioral and neuronal phenotypes. However, the role of microglia in this disease model is unknown. Here, we reported that Scn2a-deficient mice have impaired learning and memory, accompanied by reduced synaptic transmission and lower spine density in neurons of the hippocampus. Microglia in Scn2a-deficient mice are partially activated, exerting excessive phagocytic pruning of post-synapses related to the complement C3 cascades during selective developmental stages. The ablation of microglia using PLX3397 partially restores synaptic transmission and spine density. To extend our findings from rodents to human cells, we established a microglia-incorporated human cerebral organoid model carrying an SCN2A protein-truncating mutation identified in children with ASD. We found that human microglia display increased elimination of post-synapse in cerebral organoids carrying the SCN2A mutation. Our study establishes a key role of microglia in multi-species autism-associated models of SCN2A deficiency from mouse to human cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Adult Scn2a-deficient (HOM) mice exhibit impaired learning and memory as well as impaired synaptic functions and structures.
Fig. 2: Hippocampal microglia in Scn2a-deficient (HOM) mice exhibit altered morphology and increased volume of the lysosome (CD68 marker).
Fig. 3: Excessive phagocytic pruning of microglia occurs during development and continues into adulthood in the hippocampus of Scn2a-deficient (HOM) mice.
Fig. 4: Complement components C3 localized to post-synapses (PSD95) in hippocampal CA1 of Scn2a-deficient (HOM) mice during development.
Fig. 5: Microglia depletion during development restores neural transmission and spine density of hippocampal pyramidal neurons of Scn2a-deficient (HOM) mice.
Fig. 6: Increased post-synapse elimination by hiPSC-derived microglia in cortical organoid carrying autism-associated SCN2A-C959X mutation.

Similar content being viewed by others

Data availability

The datasets and additional materials can be obtained by contacting the corresponding author (YY) upon request. Supplementary information is accessible on MP’s website.

References

  1. Maenner MJ, Warren Z, Williams AR, Amoakohene E, Bakian AV, Bilder DA, et al. Prevalence and characteristics of autism spectrum disorder among children aged 8 years—Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2020. MMWR Surveill Summ. 2023;72:1–14.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Rolland T, Cliquet F, Anney RJL, Moreau C, Traut N, Mathieu A, et al. Phenotypic effects of genetic variants associated with autism. Nat Med. 2023;29:1671–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Qin Y, Kang J, Jiao Z, Wang Y, Wang J, Wang H, et al. Polygenic risk for autism spectrum disorder affects left amygdala activity and negative emotion in schizophrenia. Transl Psychiatry. 2020;10:322.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Satterstrom FK, Kosmicki JA, Wang J, Breen MS, De Rubeis S, An JY, et al. Large-scale exome sequencing study implicates both developmental and functional changes in the neurobiology of autism. Cell. 2020;180:568–84.e523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sanders SJ, Murtha MT, Gupta AR, Murdoch JD, Raubeson MJ, Willsey AJ, et al. De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature. 2012;485:237–41.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sanders SJ, Campbell AJ, Cottrell JR, Moller RS, Wagner FF, Auldridge AL, et al. Progress in understanding and treating SCN2A-mediated disorders. Trends Neurosci. 2018;41:442–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gazina EV, Leaw BT, Richards KL, Wimmer VC, Kim TH, Aumann TD, et al. 'Neonatal’ Nav1.2 reduces neuronal excitability and affects seizure susceptibility and behaviour. Hum Mol Genet. 2015;24:1457–68.

    Article  CAS  PubMed  Google Scholar 

  8. Sanders SJ, He X, Willsey AJ, Ercan-Sencicek AG, Samocha KE, Cicek AE, et al. Insights into autism spectrum disorder genomic architecture and biology from 71 risk loci. Neuron. 2015;87:1215–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Miyamoto H, Tatsukawa T, Shimohata A, Yamagata T, Suzuki T, Amano K, et al. Impaired cortico-striatal excitatory transmission triggers epilepsy. Nat Commun. 2019;10:1917.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  10. Middleton SJ, Kneller EM, Chen S, Ogiwara I, Montal M, Yamakawa K, et al. Altered hippocampal replay is associated with memory impairment in mice heterozygous for the Scn2a gene. Nat Neurosci. 2018;21:996–1003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tatsukawa T, Raveau M, Ogiwara I, Hattori S, Miyamoto H, Mazaki E, et al. Scn2a haploinsufficient mice display a spectrum of phenotypes affecting anxiety, sociability, memory flexibility and ampakine CX516 rescues their hyperactivity. Mol Autism. 2019;10:15.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Eaton M, Zhang J, Ma Z, Park AC, Lietzke E, Romero CM, et al. Generation and basic characterization of a gene-trap knockout mouse model of Scn2a with a substantial reduction of voltage-gated sodium channel Na(v) 1.2 expression. Genes Brain Behav. 2021;20:e12725.

    Article  CAS  PubMed  Google Scholar 

  13. Ma Z, Eaton M, Liu Y, Zhang J, Chen X, Tu X, et al. Deficiency of autism-related Scn2a gene in mice disrupts sleep patterns and circadian rhythms. Neurobiol Dis. 2022;168:105690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Suzuki K, Sugihara G, Ouchi Y, Nakamura K, Futatsubashi M, Takebayashi K, et al. Microglial activation in young adults with autism spectrum disorder. JAMA Psychiatry. 2013;70:49–58.

    Article  PubMed  Google Scholar 

  15. Estes ML, McAllister AK. Immune mediators in the brain and peripheral tissues in autism spectrum disorder. Nat Rev Neurosci. 2015;16:469–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhan Y, Paolicelli RC, Sforazzini F, Weinhard L, Bolasco G, Pagani F, et al. Deficient neuron-microglia signaling results in impaired functional brain connectivity and social behavior. Nat Neurosci. 2014;17:400–6.

    Article  CAS  PubMed  Google Scholar 

  17. Filipello F, Morini R, Corradini I, Zerbi V, Canzi A, Michalski B, et al. The microglial innate immune receptor TREM2 is required for synapse elimination and normal brain connectivity. Immunity. 2018;48:979–91.e978.

    Article  CAS  PubMed  Google Scholar 

  18. Andoh M, Shibata K, Okamoto K, Onodera J, Morishita K, Miura Y, et al. Exercise reverses behavioral and synaptic abnormalities after maternal inflammation. Cell Rep. 2019;27:2817–25.e2815.

    Article  CAS  PubMed  Google Scholar 

  19. Kim HJ, Cho MH, Shim WH, Kim JK, Jeon EY, Kim DH, et al. Deficient autophagy in microglia impairs synaptic pruning and causes social behavioral defects. Mol Psychiatry. 2017;22:1576–84.

    Article  CAS  PubMed  Google Scholar 

  20. Parkhurst CN, Yang G, Ninan I, Savas JN, Yates JR 3rd, Lafaille JJ, et al. Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell. 2013;155:1596–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Miyamoto A, Wake H, Ishikawa AW, Eto K, Shibata K, Murakoshi H, et al. Microglia contact induces synapse formation in developing somatosensory cortex. Nat Commun. 2016;7:12540.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jawaid S, Kidd GJ, Wang J, Swetlik C, Dutta R, Trapp BD. Alterations in CA1 hippocampal synapses in a mouse model of fragile X syndrome. Glia. 2018;66:789–800.

    Article  PubMed  Google Scholar 

  23. Schafer DP, Heller CT, Gunner G, Heller M, Gordon C, Hammond T, et al. Microglia contribute to circuit defects in Mecp2 null mice independent of microglia-specific loss of Mecp2 expression. Elife. 2016;5:e15224.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Arsenault J, Hooper AWM, Gholizadeh S, Kong T, Pacey LK, Koxhioni E, et al. Interregulation between fragile X mental retardation protein and methyl CpG binding protein 2 in the mouse posterior cerebral cortex. Hum Mol Genet. 2021;29:3744–56.

    Article  PubMed  Google Scholar 

  25. Bach S, Shovlin S, Moriarty M, Bardoni B, Tropea D. Rett syndrome and fragile X syndrome: different etiology with common molecular dysfunctions. Front Cell Neurosci. 2021;15:764761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Black JA, Liu S, Waxman SG. Sodium channel activity modulates multiple functions in microglia. Glia. 2009;57:1072–81.

    Article  PubMed  Google Scholar 

  27. Lai MC, Lombardo MV, Baron-Cohen S. Autism. Lancet. 2014;383:896–910.

    Article  PubMed  Google Scholar 

  28. Kraeuter AK, Guest PC, Sarnyai Z. The Y-maze for assessment of spatial working and reference memory in mice. Methods Mol Biol. 2019;1916:105–11.

    Article  CAS  PubMed  Google Scholar 

  29. Kennedy MB. Synaptic signaling in learning and memory. Cold Spring Harb Perspect Biol. 2013;8:a016824.

    Article  PubMed  Google Scholar 

  30. Nisar S, Bhat AA, Masoodi T, Hashem S, Akhtar S, Ali TA, et al. Genetics of glutamate and its receptors in autism spectrum disorder. Mol Psychiatry. 2022;27:2380–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Spratt PWE, Ben-Shalom R, Keeshen CM, Burke KJ Jr, Clarkson RL, Sanders SJ, et al. The autism-associated gene Scn2a contributes to dendritic excitability and synaptic function in the prefrontal cortex. Neuron. 2019;103:673–85.e675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shin W, Kweon H, Kang R, Kim D, Kim K, Kang M, et al. Scn2a haploinsufficiency in mice suppresses hippocampal neuronal excitability, excitatory synaptic drive, and long-term potentiation, and spatial learning and memory. Front Mol Neurosci. 2019;12:145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang J, Chen X, Eaton M, Wu J, Ma Z, Lai S, et al. Severe deficiency of the voltage-gated sodium channel Na(V)1.2 elevates neuronal excitability in adult mice. Cell Rep. 2021;36:109495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cserep C, Posfai B, Denes A. Shaping neuronal fate: functional heterogeneity of direct microglia-neuron interactions. Neuron. 2021;109:222–40.

    Article  CAS  PubMed  Google Scholar 

  35. Posfai B, Cserep C, Orsolits B, Denes A. New insights into microglia-neuron interactions: a neuron’s perspective. Neuroscience. 2019;405:103–17.

    Article  CAS  PubMed  Google Scholar 

  36. Choudhury ME, Miyanishi K, Takeda H, Islam A, Matsuoka N, Kubo M, et al. Phagocytic elimination of synapses by microglia during sleep. Glia. 2020;68:44–59.

    Article  PubMed  Google Scholar 

  37. Matta SM, Hill-Yardin EL, Crack PJ. The influence of neuroinflammation in autism spectrum disorder. Brain Behav Immun. 2019;79:75–90.

    Article  PubMed  Google Scholar 

  38. Umpierre AD, Wu LJ. How microglia sense and regulate neuronal activity. Glia. 2021;69:1637–53.

    Article  CAS  PubMed  Google Scholar 

  39. Andoh M, Koyama R. Microglia regulate synaptic development and plasticity. Dev Neurobiol. 2021;81:568–90.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS, Nouri N, et al. The classical complement cascade mediates CNS synapse elimination. Cell. 2007;131:1164–78.

    Article  CAS  PubMed  Google Scholar 

  41. Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R, et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron. 2012;74:691–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wallace J, Lord J, Dissing-Olesen L, Stevens B, Murthy VN. Microglial depletion disrupts normal functional development of adult-born neurons in the olfactory bulb. Elife. 2020;9:e50531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M, Panzanelli P, et al. Synaptic pruning by microglia is necessary for normal brain development. Science. 2011;333:1456–8.

    Article  ADS  CAS  PubMed  Google Scholar 

  44. Nguyen PT, Dorman LC, Pan S, Vainchtein ID, Han RT, Nakao-Inoue H, et al. Microglial remodeling of the extracellular matrix promotes synapse plasticity. Cell. 2020;182:388–403 e315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ben-Shalom R, Keeshen CM, Berrios KN, An JY, Sanders SJ, Bender KJ. Opposing effects on Na(V)1.2 function underlie differences between SCN2A variants observed in individuals with autism spectrum disorder or infantile seizures. Biol Psychiatry. 2017;82:224–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ramos DM, Skarnes WC, Singleton AB, Cookson MR, Ward ME. Tackling neurodegenerative diseases with genomic engineering: a new stem cell initiative from the NIH. Neuron. 2021;109:1080–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pantazis CB, Yang A, Lara E, McDonough JA, Blauwendraat C, Peng L, et al. A reference human induced pluripotent stem cell line for large-scale collaborative studies. Cell Stem Cell. 2022;29:1685–702 e1622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Que Z, Olivero-Acosta MI, Zhang J, Eaton M, Tukker AM, Chen X, et al. Hyperexcitability and pharmacological responsiveness of cortical neurons derived from human iPSCs carrying epilepsy-associated sodium channel Nav1.2-L1342P genetic variant. J Neurosci. 2021;41:10194–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Skarnes WC, Pellegrino E, McDonough JA. Improving homology-directed repair efficiency in human stem cells. Methods. 2019;164-165:18–28.

    Article  CAS  PubMed  Google Scholar 

  50. Thion MS, Ginhoux F, Garel S. Microglia and early brain development: an intimate journey. Science. 2018;362:185–9.

    Article  ADS  CAS  PubMed  Google Scholar 

  51. Tseng CJ, McDougle CJ, Hooker JM, Zurcher NR. Epigenetics of autism spectrum disorder: histone deacetylases. Biol Psychiatry. 2022;91:922–33.

    Article  CAS  PubMed  Google Scholar 

  52. Hegarty JP 2nd, Pegoraro LFL, Lazzeroni LC, Raman MM, Hallmayer JF, Monterrey JC, et al. Genetic and environmental influences on structural brain measures in twins with autism spectrum disorder. Mol Psychiatry. 2020;25:2556–66.

    Article  PubMed  Google Scholar 

  53. Spratt PWE, Alexander RPD, Ben-Shalom R, Sahagun A, Kyoung H, Keeshen CM, et al. Paradoxical hyperexcitability from Na(V)1.2 sodium channel loss in neocortical pyramidal cells. Cell Rep. 2021;36:109483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ogiwara I, Miyamoto H, Tatsukawa T, Yamagata T, Nakayama T, Atapour N, et al. Nav1.2 haplodeficiency in excitatory neurons causes absence-like seizures in mice. Commun Biol. 2018;1:96.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Witcher KG, Bray CE, Chunchai T, Zhao F, O’Neil SM, Gordillo AJ, et al. Traumatic brain injury causes chronic cortical inflammation and neuronal dysfunction mediated by microglia. J Neurosci. 2021;41:1597–616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hui CW, St-Pierre A, El Hajj H, Remy Y, Hebert SS, Luheshi GN, et al. Prenatal immune challenge in mice leads to partly sex-dependent behavioral, microglial, and molecular abnormalities associated with schizophrenia. Front Mol Neurosci. 2018;11:13.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Sarn N, Jaini R, Thacker S, Lee H, Dutta R, Eng C. Cytoplasmic-predominant Pten increases microglial activation and synaptic pruning in a murine model with autism-like phenotype. Mol Psychiatry. 2021;26:1458–71.

    Article  CAS  PubMed  Google Scholar 

  58. Bennett FC, Molofsky AV. The immune system and psychiatric disease: a basic science perspective. Clin Exp Immunol. 2019;197:294–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Meltzer A, Van de Water J. The role of the immune system in autism spectrum disorder. Neuropsychopharmacology. 2017;42:284–98.

    Article  CAS  PubMed  Google Scholar 

  60. Saitoh BY, Tanaka E, Yamamoto N, Kruining DV, Iinuma K, Nakamuta Y, et al. Early postnatal allergic airway inflammation induces dystrophic microglia leading to excitatory postsynaptic surplus and autism-like behavior. Brain Behav Immun. 2021;95:362–80.

    Article  CAS  PubMed  Google Scholar 

  61. Williams JA, Burgess S, Suckling J, Lalousis PA, Batool F, Griffiths SL, et al. Inflammation and brain structure in schizophrenia and other neuropsychiatric disorders: a Mendelian randomization study. JAMA Psychiatry. 2022;79:498–507.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Onore CE, Schwartzer JJ, Careaga M, Berman RF, Ashwood P. Maternal immune activation leads to activated inflammatory macrophages in offspring. Brain Behav Immun. 2014;38:220–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cieslik M, Gassowska-Dobrowolska M, Jesko H, Czapski GA, Wilkaniec A, Zawadzka A, et al. Maternal immune activation induces neuroinflammation and cortical synaptic deficits in the adolescent rat offspring. Int J Mol Sci. 2020;21:4097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Werneburg S, Jung J, Kunjamma RB, Ha SK, Luciano NJ, Willis CM, et al. Targeted complement inhibition at synapses prevents microglial synaptic engulfment and synapse loss in demyelinating disease. Immunity. 2020;52:167–82 e167.

    Article  CAS  PubMed  Google Scholar 

  65. Weinhard L, di Bartolomei G, Bolasco G, Machado P, Schieber NL, Neniskyte U, et al. Microglia remodel synapses by presynaptic trogocytosis and spine head filopodia induction. Nat Commun. 2018;9:1228.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  66. Cong Q, Soteros BM, Wollet M, Kim JH, Sia GM. The endogenous neuronal complement inhibitor SRPX2 protects against complement-mediated synapse elimination during development. Nat Neurosci. 2020;23:1067–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hammond JW, Bellizzi MJ, Ware C, Qiu WQ, Saminathan P, Li H, et al. Complement-dependent synapse loss and microgliosis in a mouse model of multiple sclerosis. Brain Behav Immun. 2020;87:739–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Cao P, Chen C, Liu A, Shan Q, Zhu X, Jia C, et al. Early-life inflammation promotes depressive symptoms in adolescence via microglial engulfment of dendritic spines. Neuron. 2021;109:2573–89.e2579.

    Article  CAS  PubMed  Google Scholar 

  69. Xu ZX, Kim GH, Tan JW, Riso AE, Sun Y, Xu EY, et al. Elevated protein synthesis in microglia causes autism-like synaptic and behavioral aberrations. Nat Commun. 2020;11:1797.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ding X, Wang J, Huang M, Chen Z, Liu J, Zhang Q, et al. Loss of microglial SIRPalpha promotes synaptic pruning in preclinical models of neurodegeneration. Nat Commun. 2021;12:2030.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  71. Pinto B, Morelli G, Rastogi M, Savardi A, Fumagalli A, Petretto A, et al. Rescuing over-activated microglia restores cognitive performance in juvenile animals of the Dp(16) mouse model of Down syndrome. Neuron. 2020;108:887–904.e812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Paolicelli RC, Jawaid A, Henstridge CM, Valeri A, Merlini M, Robinson JL, et al. TDP-43 depletion in microglia promotes amyloid clearance but also induces synapse loss. Neuron. 2017;95:297–308.e296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lui H, Zhang J, Makinson SR, Cahill MK, Kelley KW, Huang HY, et al. Progranulin deficiency promotes circuit-specific synaptic pruning by microglia via complement activation. Cell. 2016;165:921–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Druart M, Le Magueresse C. Emerging roles of complement in psychiatric disorders. Front Psychiatry. 2019;10:573.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Wei Y, Chen T, Bosco DB, Xie M, Zheng J, Dheer A, et al. The complement C3-C3aR pathway mediates microglia–astrocyte interaction following status epilepticus. Glia. 2021;69:1155–69.

    Article  CAS  PubMed  Google Scholar 

  76. Wu J, Bie B, Foss JF, Naguib M. Amyloid fibril-induced astrocytic glutamate transporter disruption contributes to complement C1q-mediated microglial pruning of glutamatergic synapses. Mol Neurobiol. 2020;57:2290–2300.

    Article  CAS  PubMed  Google Scholar 

  77. Shi Y, Yamada K, Liddelow SA, Smith ST, Zhao L, Luo W, et al. ApoE4 markedly exacerbates tau-mediated neurodegeneration in a mouse model of tauopathy. Nature. 2017;549:523–7.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  78. Lian H, Yang L, Cole A, Sun L, Chiang AC, Fowler SW, et al. NFkappaB-activated astroglial release of complement C3 compromises neuronal morphology and function associated with Alzheimer’s disease. Neuron. 2015;85:101–15.

    Article  CAS  PubMed  Google Scholar 

  79. Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O’Keeffe S, et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci. 2014;34:11929–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. De Schepper S, Crowley G, Hong S. Understanding microglial diversity and implications for neuronal function in health and disease. Dev Neurobiol. 2021;81:507–23.

    Article  PubMed  Google Scholar 

  81. Lehrman EK, Wilton DK, Litvina EY, Welsh CA, Chang ST, Frouin A, et al. CD47 protects synapses from excess microglia-mediated pruning during development. Neuron. 2018;100:120–34.e126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Li T, Chiou B, Gilman CK, Luo R, Koshi T, Yu D, et al. A splicing isoform of GPR56 mediates microglial synaptic refinement via phosphatidylserine binding. EMBO J. 2020;39:e104136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Scott-Hewitt N, Perrucci F, Morini R, Erreni M, Mahoney M, Witkowska A, et al. Local externalization of phosphatidylserine mediates developmental synaptic pruning by microglia. EMBO J. 2020;39:e105380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Vainchtein ID, Chin G, Cho FS, Kelley KW, Miller JG, Chien EC, et al. Astrocyte-derived interleukin-33 promotes microglial synapse engulfment and neural circuit development. Science. 2018;359:1269–73.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  85. Eyo U, Molofsky AV. Defining microglial-synapse interactions. Science. 2023;381:1155–6.

    Article  ADS  CAS  PubMed  Google Scholar 

  86. Kasahara Y, Koyama R, Ikegaya Y. Depth and time-dependent heterogeneity of microglia in mouse hippocampal slice cultures. Neurosci Res. 2016;111:64–69.

    Article  PubMed  Google Scholar 

  87. Zhang W, Jiang J, Xu Z, Yan H, Tang B, Liu C, et al. Microglia-containing human brain organoids for the study of brain development and pathology. Mol Psychiatry. 2023;28:96–107.

    Article  PubMed  Google Scholar 

  88. Ginhoux F, Garel S. The mysterious origins of microglia. Nat Neurosci. 2018;21:897–9.

    Article  CAS  PubMed  Google Scholar 

  89. Abud EM, Ramirez RN, Martinez ES, Healy LM, Nguyen CHH, Newman SA, et al. iPSC-derived human microglia-like cells to study neurological diseases. Neuron. 2017;94:278–93.e279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. McQuade A, Coburn M, Tu CH, Hasselmann J, Davtyan H, Blurton-Jones M. Development and validation of a simplified method to generate human microglia from pluripotent stem cells. Mol Neurodegener. 2018;13:67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Sabate-Soler S, Nickels SL, Saraiva C, Berger E, Dubonyte U, Barmpa K, et al. Microglia integration into human midbrain organoids leads to increased neuronal maturation and functionality. Glia. 2022;70:1267–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Jin M, Xu R, Wang L, Alam MM, Ma Z, Zhu S, et al. Type-I-interferon signaling drives microglial dysfunction and senescence in human iPSC models of Down syndrome and Alzheimer’s disease. Cell Stem Cell. 2022;29:1135–53.e1138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Xu R, Boreland AJ, Li X, Erickson C, Jin M, Atkins C, et al. Developing human pluripotent stem cell-based cerebral organoids with a controllable microglia ratio for modeling brain development and pathology. Stem Cell Rep. 2021;16:1923–37.

    Article  Google Scholar 

  94. Cope EC, Gould E. Adult neurogenesis, glia, and the extracellular matrix. Cell Stem Cell. 2019;24:690–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Hammond TR, Robinton D, Stevens B. Microglia and the brain: complementary partners in development and disease. Annu Rev Cell Dev Biol. 2018;34:523–44.

    Article  CAS  PubMed  Google Scholar 

  96. Cakir B, Xiang Y, Tanaka Y, Kural MH, Parent M, Kang YJ, et al. Engineering of human brain organoids with a functional vascular-like system. Nat Methods. 2019;16:1169–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Skarnes WC, von Melchner H, Wurst W, Hicks G, Nord AS, Cox T, et al. A public gene trap resource for mouse functional genomics. Nat Genet. 2004;36:543–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, et al. A conditional knockout resource for the genome-wide study of mouse gene function. Nature. 2011;474:337–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Zhang J, Zhang C, Chen X, Wang B, Ma W, Yang Y, et al. PKA-RIIbeta autophosphorylation modulates PKA activity and seizure phenotypes in mice. Commun Biol. 2021;4:263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Elmore MR, Najafi AR, Koike MA, Dagher NN, Spangenberg EE, Rice RA, et al. Colony-stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain. Neuron. 2014;82:380–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Miura Y, Li MY, Revah O, Yoon SJ, Narazaki G, Pasca SP. Engineering brain assembloids to interrogate human neural circuits. Nat Protoc. 2022;17:15–35.

    Article  CAS  PubMed  Google Scholar 

  102. Madhu V, Dighe AS, Cui Q, Deal DN. Dual inhibition of activin/nodal/TGF-beta and BMP signaling pathways by SB431542 and dorsomorphin induces neuronal differentiation of human adipose derived stem cells. Stem Cells Int. 2016;2016:1035374.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. William C. Skarnes from Jackson Laboratory Genomic Medicine for providing the reference and edited iPSC lines, and Dr. Adam Kimbrough from Purdue University kindly provided access to Imaris software. This work is partially supported by the Showalter Research Trust, and the Purdue Big Idea Challenge 2.0 on Autism (to YY). The research reported in this publication was also supported by the NINDS of the NIH (R01NS117585 and R01NS123154 to YY). The authors gratefully acknowledge support from the FamilieSCN2A Foundation for the Hodgkin-Huxley Award as well as Action Potential Award. This project was supported in part by the Indiana Spinal Cord & Brain Injury Research Fund and the Indiana CTSI, funded in part by UL1TR002529 from the NIH. The authors thank all members of the Yang laboratory at Purdue University for insightful discussions.

Author information

Authors and Affiliations

Authors

Contributions

JW, JZ, and YY conceived and designed the experiments. JW, JZ, XC, KW, ZQ, BAD, MIO-A, NC, ME, YY, YZ, SML, MS, IC, TX, MSH, PM performed the experiments and analysis the data. CY, RX, WAK, DD, FC, and L-JW participated in data analysis and experimental design. YY supervised the project. JW and YY wrote the paper with input from all authors.

Corresponding author

Correspondence to Yang Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Zhang, J., Chen, X. et al. Microglial over-pruning of synapses during development in autism-associated SCN2A-deficient mice and human cerebral organoids. Mol Psychiatry (2024). https://doi.org/10.1038/s41380-024-02518-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41380-024-02518-4

Search

Quick links