Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The complex etiology of autism spectrum disorder due to missense mutations of CHD8

Abstract

CHD8 is an ATP-dependent chromatin-remodeling factor encoded by the most frequently mutated gene in individuals with autism spectrum disorder (ASD). Although many studies have examined the consequences of CHD8 haploinsufficiency in cells and mice, few have focused on missense mutations, the most common type of CHD8 alteration in ASD patients. We here characterized CHD8 missense mutations in ASD patients according to six prediction scores and experimentally examined the effects of such mutations on the biochemical activities of CHD8, neural differentiation of embryonic stem cells, and mouse behavior. Only mutations with high prediction scores gave rise to ASD-like phenotypes in mice, suggesting that not all CHD8 missense mutations detected in ASD patients are directly responsible for the development of ASD. Furthermore, we found that mutations with high scores cause ASD by mechanisms either dependent on or independent of loss of chromatin-remodeling function. Our results thus provide insight into the molecular underpinnings of ASD pathogenesis caused by missense mutations of CHD8.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Missense mutations of CHD8 in ASD patients show a score distribution distinct from that for SNPs of CHD8 in healthy individuals.
Fig. 2: The chromatin-remodeling activity of CHD8 is impaired by missense mutations associated with ASD.
Fig. 3: Molecular dysfunction of CHD8 gives rise to embryonic mortality in mice.
Fig. 4: Molecular dysfunction of CHD8 results in ASD-like behavior in mice.
Fig. 5: Neural differentiation–related gene expression is downregulated in both Chd8+/− and Chd8+/R1242Q NPCs.
Fig. 6: The L1072F mutation results in ectopic binding of CHD8 to DNA in ESCs and ASD-like behavior in mice.
Fig. 7: Molecular basis for ASD etiology due to missense mutations of the CHD8 gene.

Similar content being viewed by others

Data availability

All sequence data have been deposited in GEO under the accession number GSE227579.

References

  1. Abrahams BS, Geschwind DH. Advances in autism genetics: on the threshold of a new neurobiology. Nat Rev Genet. 2008;9:341–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bernier R, Golzio C, Xiong B, Stessman HA, Coe BP, Penn O, et al. Disruptive CHD8 mutations define a subtype of autism early in development. Cell. 2014;158:263–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. O’Roak BJ, Stessman HA, Boyle EA, Witherspoon KT, Martin B, Lee C, et al. Recurrent de novo mutations implicate novel genes underlying simplex autism risk. Nat Commun. 2014;5:5595.

    Article  ADS  PubMed  Google Scholar 

  4. De Rubeis S, He X, Goldberg AP, Poultney CS, Samocha K, Cicek AE, et al. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature. 2014;515:209–15.

    Article  PubMed  PubMed Central  Google Scholar 

  5. D’Gama AM, Pochareddy S, Li M, Jamuar SS, Reiff RE, Lam AN, et al. Targeted DNA sequencing from autism spectrum disorder brains implicates multiple genetic mechanisms. Neuron. 2015;88:910–7.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Zhou X, Feliciano P, Shu C, Wang T, Astrovskaya I, Hall JB, et al. Integrating de novo and inherited variants in 42,607 autism cases identifies mutations in new moderate-risk genes. Nat Genet. 2022;54:1305–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang T, Hoekzema K, Vecchio D, Wu H, Sulovari A, Coe BP, et al. Large-scale targeted sequencing identifies risk genes for neurodevelopmental disorders. Nat Commun. 2020;11:4932.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. O’Roak BJ, Vives L, Fu W, Egertson JD, Stanaway IB, Phelps IG, et al. Multiplex targeted sequencing identifies recurrently mutated genes in autism spectrum disorders. Science. 2012;338:1619–22.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  9. Talkowski ME, Rosenfeld JA, Blumenthal I, Pillalamarri V, Chiang C, Heilbut A, et al. Sequencing chromosomal abnormalities reveals neurodevelopmental loci that confer risk across diagnostic boundaries. Cell. 2012;149:525–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Neale BM, Kou Y, Liu L, Ma’ayan A, Samocha KE, Sabo A, et al. Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature. 2012;485:242–5.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. O’Roak BJ, Vives L, Girirajan S, Karakoc E, Krumm N, Coe BP, et al. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature. 2012;485:246–50.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  12. Nishiyama M, Nakayama K, Tsunematsu R, Tsukiyama T, Kikuchi A, Nakayama KI. Early embryonic death in mice lacking the beta-catenin-binding protein Duplin. Mol Cell Biol. 2004;24:8386–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nishiyama M, Oshikawa K, Tsukada Y, Nakagawa T, Iemura S, Natsume T, et al. CHD8 suppresses p53-mediated apoptosis through histone H1 recruitment during early embryogenesis. Nat Cell Biol. 2009;11:172–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Katayama Y, Nishiyama M, Shoji H, Ohkawa Y, Kawamura A, Sato T, et al. CHD8 haploinsufficiency results in autistic-like phenotypes in mice. Nature. 2016;537:675–9.

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Platt RJ, Zhou Y, Slaymaker IM, Shetty AS, Weisbach NR, Kim JA, et al. Chd8 mutation leads to autistic-like behaviors and impaired striatal circuits. Cell Rep. 2017;19:335–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gompers AL, Su-Feher L, Ellegood J, Copping NA, Riyadh MA, Stradleigh TW, et al. Germline Chd8 haploinsufficiency alters brain development in mouse. Nat Neurosci. 2017;20:1062–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Suetterlin P, Hurley S, Mohan C, Riegman KLH, Pagani M, Caruso A, et al. Altered neocortical gene expression, brain overgrowth and functional over-connectivity in Chd8 haploinsufficient mice. Cereb Cortex. 2018;28:2192–206.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Jung H, Park H, Choi Y, Kang H, Lee E, Kweon H, et al. Sexually dimorphic behavior, neuronal activity, and gene expression in Chd8-mutant mice. Nat Neurosci. 2018;21:1218–28.

    Article  CAS  PubMed  Google Scholar 

  19. Kawamura A, Katayama Y, Nishiyama M, Shoji H, Tokuoka K, Ueta Y, et al. Oligodendrocyte dysfunction due to Chd8 mutation gives rise to behavioral deficits in mice. Hum Mol Genet. 2020;29:1274–91.

    Article  CAS  PubMed  Google Scholar 

  20. Jimenez JA, Ptacek TS, Tuttle AH, Schmid RS, Moy SS, Simon JM, et al. Correction to: Chd8 haploinsufficiency impairs early brain development and protein homeostasis later in life. Mol Autism. 2021;12:33.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hulbert SW, Wang X, Gbadegesin SO, Xu Q, Xu X, Jiang YH. A novel Chd8 mutant mouse displays altered ultrasonic vocalizations and enhanced motor coordination. Autism Res. 2020;13:1685–97.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wang P, Lin M, Pedrosa E, Hrabovsky A, Zhang Z, Guo W, et al. CRISPR/Cas9-mediated heterozygous knockout of the autism gene CHD8 and characterization of its transcriptional networks in neurodevelopment. Mol Autism. 2015;6:55.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sood S, Weber CM, Hodges HC, Krokhotin A, Shalizi A, Crabtree GR. CHD8 dosage regulates transcription in pluripotency and early murine neural differentiation. Proc Natl Acad Sci USA. 2020;117:22331–40.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ding S, Lan X, Meng Y, Yan C, Li M, Li X, et al. CHD8 safeguards early neuroectoderm differentiation in human ESCs and protects from apoptosis during neurogenesis. Cell Death Dis. 2021;12:981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tyagi M, Imam N, Verma K, Patel AK. Chromatin remodelers: we are the drivers!! Nucl (Calcutta). 2016;7:388–404.

    Article  CAS  Google Scholar 

  26. Clapier CR, Iwasa J, Cairns BR, Peterson CL. Mechanisms of action and regulation of ATP-dependent chromatin-remodelling complexes. Nat Rev Mol Cell Biol. 2017;18:407–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hall JA, Georgel PT. CHD proteins: a diverse family with strong ties. Biochem Cell Biol. 2007;85:463–76.

    Article  CAS  PubMed  Google Scholar 

  28. Marfella CG, Imbalzano AN. The Chd family of chromatin remodelers. Mutat Res. 2007;618:30–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tajul-Arifin K, Teasdale R, Ravasi T, Hume DA, Mattick JS, Group RG, et al. Identification and analysis of chromodomain-containing proteins encoded in the mouse transcriptome. Genome Res. 2003;13:1416–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yap KL, Zhou MM. Structure and mechanisms of lysine methylation recognition by the chromodomain in gene transcription. Biochemistry. 2011;50:1966–80.

    Article  CAS  PubMed  Google Scholar 

  31. Min J, Zhang Y, Xu RM. Structural basis for specific binding of Polycomb chromodomain to histone H3 methylated at Lys 27. Genes Dev. 2003;17:1823–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hargreaves DC, Crabtree GR. ATP-dependent chromatin remodeling: genetics, genomics and mechanisms. Cell Res. 2011;21:396–420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ryan DP, Sundaramoorthy R, Martin D, Singh V, Owen-Hughes T. The DNA-binding domain of the Chd1 chromatin-remodelling enzyme contains SANT and SLIDE domains. EMBO J. 2011;30:2596–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhong Y, Moghaddas Sani H, Paudel BP, Low JKK, Silva APG, Mueller S, et al. The role of auxiliary domains in modulating CHD4 activity suggests mechanistic commonality between enzyme families. Nat Commun. 2022;13:7524.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. Allen MD, Religa TL, Freund SM, Bycroft M. Solution structure of the BRK domains from CHD7. J Mol Biol. 2007;371:1135–40.

    Article  CAS  PubMed  Google Scholar 

  36. Ishihara K, Oshimura M, Nakao M. CTCF-dependent chromatin insulator is linked to epigenetic remodeling. Mol Cell. 2006;23:733–42.

    Article  CAS  PubMed  Google Scholar 

  37. Thompson BA, Tremblay V, Lin G, Bochar DA. CHD8 is an ATP-dependent chromatin remodeling factor that regulates beta-catenin target genes. Mol Cell Biol. 2008;28:3894–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Manning BJ, Yusufzai T. The ATP-dependent chromatin remodeling enzymes CHD6, CHD7, and CHD8 exhibit distinct nucleosome binding and remodeling activities. J Biol Chem. 2017;292:11927–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kawamura A, Katayama Y, Kakegawa W, Ino D, Nishiyama M, Yuzaki M, et al. The autism-associated protein CHD8 is required for cerebellar development and motor function. Cell Rep. 2021;35:108932.

    Article  CAS  PubMed  Google Scholar 

  40. Snijders Blok L, Rousseau J, Twist J, Ehresmann S, Takaku M, Venselaar H, et al. Author correction: CHD3 helicase domain mutations cause a neurodevelopmental syndrome with macrocephaly and impaired speech and language. Nat Commun. 2019;10:2079.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  41. Bouazoune K, Kingston RE. Chromatin remodeling by the CHD7 protein is impaired by mutations that cause human developmental disorders. Proc Natl Acad Sci USA. 2012;109:19238–43.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hijikata A, Raju R, Keerthikumar S, Ramabadran S, Balakrishnan L, Ramadoss SK, et al. Mutation@A Glance: an integrative web application for analysing mutations from human genetic diseases. DNA Res. 2010;17:197–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Landrum MJ, Lee JM, Riley GR, Jang W, Rubinstein WS, Church DM, et al. ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res. 2014;42:D980–985.

    Article  CAS  PubMed  Google Scholar 

  44. Amberger JS, Bocchini CA, Schiettecatte F, Scott AF, Hamosh A. OMIM.org: online Mendelian Inheritance in Man (OMIM(R)), an online catalog of human genes and genetic disorders. Nucleic Acids Res. 2015;43:D789–798.

    Article  PubMed  Google Scholar 

  45. Arroyo JI, Apperson SA, Cropp CB, Marafino BJ Jr., Monath TP, Tesh RB, et al. Effect of human gamma interferon on yellow fever virus infection. Am J Trop Med Hyg 1988;38:647–50.

    CAS  PubMed  Google Scholar 

  46. Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 2001;29:308–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alfoldi J, Wang Q, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020;581:434–43.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tadaka S, Hishinuma E, Komaki S, Motoike IN, Kawashima J, Saigusa D, et al. jMorp updates in 2020: large enhancement of multi-omics data resources on the general Japanese population. Nucleic Acids Res. 2021;49:D536–D544.

    Article  CAS  PubMed  Google Scholar 

  49. Kircher M, Witten DM, Jain P, O’Roak BJ, Cooper GM, Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet. 2014;46:310–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ioannidis NM, Rothstein JH, Pejaver V, Middha S, McDonnell SK, Baheti S, et al. REVEL: An ensemble method for predicting the pathogenicity of rare missense variants. Am J Hum Genet. 2016;99:877–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–9.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  52. Shrake A, Rupley JA. Environment and exposure to solvent of protein atoms. Lysozyme and insulin. J Mol Biol. 1973;79:351–71.

    Article  CAS  PubMed  Google Scholar 

  53. Mishina M, Sakimura K. Conditional gene targeting on the pure C57BL/6 genetic background. Neurosci Res. 2007;58:105–12.

    Article  CAS  PubMed  Google Scholar 

  54. Bibel M, Richter J, Lacroix E, Barde YA. Generation of a defined and uniform population of CNS progenitors and neurons from mouse embryonic stem cells. Nat Protoc. 2007;2:1034–43.

    Article  CAS  PubMed  Google Scholar 

  55. Wong WR, Brugman KI, Maher S, Oh JY, Howe K, Kato M, et al. Autism-associated missense genetic variants impact locomotion and neurodevelopment in caenorhabditis elegans. Hum Mol Genet. 2019;28:2271–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Kimura H, Wang C, Ishizuka K, Xing J, Takasaki Y, Kushima I, et al. Identification of a rare variant in CHD8 that contributes to schizophrenia and autism spectrum disorder susceptibility. Schizophr Res. 2016;178:104–6.

    Article  PubMed  Google Scholar 

  57. McCarthy SE, Gillis J, Kramer M, Lihm J, Yoon S, Berstein Y, et al. De novo mutations in schizophrenia implicate chromatin remodeling and support a genetic overlap with autism and intellectual disability. Mol Psychiatry. 2014;19:652–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chao HT, Chen H, Samaco RC, Xue M, Chahrour M, Yoo J, et al. Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes. Nature. 2010;468:263–9.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  59. Spencer CM, Alekseyenko O, Serysheva E, Yuva-Paylor LA, Paylor R. Altered anxiety-related and social behaviors in the Fmr1 knockout mouse model of fragile X syndrome. Genes Brain Behav. 2005;4:420–30.

    Article  CAS  PubMed  Google Scholar 

  60. Scheeren AM, Koot HM, Begeer S. Social interaction style of children and adolescents with high-functioning autism spectrum disorder. J Autism Dev Disord. 2012;42:2046–55.

    Article  PubMed  Google Scholar 

  61. Cherepanov SM, Gerasimenko M, Yuhi T, Furuhara K, Tsuji C, Yokoyama S, et al. Oxytocin ameliorates impaired social behavior in a Chd8 haploinsufficiency mouse model of autism. BMC Neurosci. 2021;22:32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Esmailpour T, Huang T. TBX3 promotes human embryonic stem cell proliferation and neuroepithelial differentiation in a differentiation stage-dependent manner. Stem Cells. 2012;30:2152–63.

    Article  CAS  PubMed  Google Scholar 

  63. Xu X, Li C, Gao X, Xia K, Guo H, Li Y, et al. Excessive UBE3A dosage impairs retinoic acid signaling and synaptic plasticity in autism spectrum disorders. Cell Res. 2018;28:48–68.

    Article  CAS  PubMed  Google Scholar 

  64. Reya T, Clevers H. Wnt signalling in stem cells and cancer. Nature. 2005;434:843–50.

    Article  ADS  CAS  PubMed  Google Scholar 

  65. Nusse R. Wnt signaling and stem cell control. Cell Res. 2008;18:523–7.

    Article  CAS  PubMed  Google Scholar 

  66. Nishiyama M, Skoultchi AI, Nakayama KI. Histone H1 recruitment by CHD8 is essential for suppression of the Wnt-beta-catenin signaling pathway. Mol Cell Biol. 2012;32:501–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Batsukh T, Pieper L, Koszucka AM, von Velsen N, Hoyer-Fender S, Elbracht M, et al. CHD8 interacts with CHD7, a protein which is mutated in CHARGE syndrome. Hum Mol Genet. 2010;19:2858–66.

    Article  CAS  PubMed  Google Scholar 

  68. Rodriguez-Paredes M, Ceballos-Chavez M, Esteller M, Garcia-Dominguez M, Reyes JC. The chromatin remodeling factor CHD8 interacts with elongating RNA polymerase II and controls expression of the cyclin E2 gene. Nucleic Acids Res. 2009;37:2449–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank K. Tsunematsu and the Research Promotion Unit of the Medical Institute of Bioregulation at Kyushu University for technical assistance as well as A. Ohta for help with preparation of the manuscript. We also thank U. Kiyoe (Chiba University) for technical guidance on chromatin-remodeling assays and Y. Takamiya (Fujita Health University) for the assistance with behavioral analyses. Computations were performed in part on the NIG supercomputer at ROIS National Institute of Genetics. This research was supported in part by KAKENHI grants from the Japan Society for the Promotion of Science (JSPS) to K.I.N. (JP23H00378) and to T.M. (JP16H06276 and JP22H04922), as well as by a grant from MEXT Promotion of Distinctive Joint Research Center Program to H.S. (JPMXP0621467949) and that from the Japan Agency for Medical Research and Development (AMED) to K.I.N. (23wm0425002).

Author information

Authors and Affiliations

Authors

Contributions

T. Shiraishi performed experiments and wrote the manuscript. YK, MN, and AM conceived and supervised experimental design. T. Mizoo, HS, and T. Miyakawa performed behavioral tests for Chd8 mutant mice. AH, T. Shirai, and KM performed analysis of CHD8 mutations. KIN coordinated the study and wrote the manuscript.

Corresponding author

Correspondence to Keiichi I. Nakayama.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shiraishi, T., Katayama, Y., Nishiyama, M. et al. The complex etiology of autism spectrum disorder due to missense mutations of CHD8. Mol Psychiatry (2024). https://doi.org/10.1038/s41380-024-02491-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41380-024-02491-y

Search

Quick links