Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Current and future applications of light-sheet imaging for identifying molecular and developmental processes in autism spectrum disorders

Abstract

Autism spectrum disorder (ASD) is identified by a set of neurodevelopmental divergences that typically affect the social communication domain. ASD is also characterized by heterogeneous cognitive impairments and is associated with cooccurring physical and medical conditions. As behaviors emerge as the brain matures, it is particularly essential to identify any gaps in neurodevelopmental trajectories during early perinatal life. Here, we introduce the potential of light-sheet imaging for studying developmental biology and cross-scale interactions among genetic, cellular, molecular and macroscale levels of circuitry and connectivity. We first report the core principles of light-sheet imaging and the recent progress in studying brain development in preclinical animal models and human organoids. We also present studies using light-sheet imaging to understand the development and function of other organs, such as the skin and gastrointestinal tract. We also provide information on the potential of light-sheet imaging in preclinical drug development. Finally, we speculate on the translational benefits of light-sheet imaging for studying individual brain-body interactions in advancing ASD research and creating personalized interventions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic for confocal and light-sheet fluorescent imaging framework.
Fig. 2: Workflow for light-sheet imaging in tissue.
Fig. 3: Co-occurring conditions and multi-system inter-connectivity in autism spectrum disorders.
Fig. 4: Light-sheet imaging potentials for advancing ASD research.

Similar content being viewed by others

References

  1. Ahrens MB, Orger MB, Robson DN, Li JM, Keller PJ. Whole-brain functional imaging at cellular resolution using light-sheet microscopy. Nat Methods. 2013;10:413–20.

    Article  CAS  PubMed  Google Scholar 

  2. Economo MN, Clack NG, Lavis LD, Gerfen CR, Svoboda K, Myers EW, et al. A platform for brain-wide imaging and reconstruction of individual neurons. eLife. 2016;5:e10566.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Peng H, Xie P, Liu L, Kuang X, Wang Y, Qu L, et al. Brain-wide single neuron reconstruction reveals morphological diversity in molecularly defined striatal, thalamic, cortical and claustral neuron types. bioRxiv. 2020;675280.

  4. Roostalu U, Salinas CBG, Thorbek DD, Skytte JL, Fabricius K, Barkholt P, et al. Quantitative whole-brain 3D imaging of tyrosine hydroxylase-labeled neuron architecture in the mouse MPTP model of Parkinson’s disease. Dis Models Mechanisms. 2019;12:dmm042200.

    Article  CAS  Google Scholar 

  5. Winnubst J, Bas E, Ferreira TA, Wu Z, Economo MN, Edson P, et al. Reconstruction of 1,000 Projection Neurons Reveals New Cell Types and Organization of Long-Range Connectivity in the Mouse Brain. Cell. 2019;179:268–281.e13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Helmchen F, Denk W. Deep tissue two-photon microscopy. Nat Methods. 2005;2:932–40.

    Article  CAS  PubMed  Google Scholar 

  7. Yoon S, Kim M, Jang M, Choi Y, Choi W, Kang S, et al. Deep optical imaging within complex scattering media. Nat Rev Phys. 2020;2:141–58.

    Article  Google Scholar 

  8. Li A, Gong H, Zhang B, Wang Q, Yan C, Wu J, et al. Micro-Optical Sectioning Tomography to Obtain a High-Resolution Atlas of the Mouse Brain. Science. 2010;330:1404–8.

    Article  CAS  ADS  PubMed  Google Scholar 

  9. Wang M, Liu K, Pan J, Li J, Sun P, Zhang Y, et al. Brain-wide projection reconstruction of single functionally defined neurons. Nat Commun. 2022;13:1531.

    Article  CAS  PubMed Central  ADS  PubMed  Google Scholar 

  10. Dean KM, Chakraborty T, Daetwyler S, Lin J, Garrelts G, M’Saad O, et al. Isotropic imaging across spatial scales with axially swept light-sheet microscopy. Nat Protoc. 2022;17:2025–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Daetwyler S, Fiolka RP. Light-sheets and smart microscopy, an exciting future is dawning. Commun Biol. 2023;6:502.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Weber M, Huisken J. Light sheet microscopy for real-time developmental biology. Curr Opin Genet Dev. 2011;21:566–72.

    Article  CAS  PubMed  Google Scholar 

  13. Choquet D, Sainlos M, Sibarita J-B. Advanced imaging and labelling methods to decipher brain cell organization and function. Nat Rev Neurosci. 2021;22:237–55.

    Article  CAS  PubMed  Google Scholar 

  14. Dodt H-U, Leischner U, Schierloh A, Jährling N, Mauch CP, Deininger K, et al. Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain. Nat Methods. 2007;4:331–6.

    Article  CAS  PubMed  Google Scholar 

  15. Ertürk A, Becker K, Jährling N, Mauch CP, Hojer CD, Egen JG, et al. Three-dimensional imaging of solvent-cleared organs using 3DISCO. Nat Protoc. 2012;7:1983–95.

    Article  PubMed  Google Scholar 

  16. Chung K, Wallace J, Kim S-Y, Kalyanasundaram S, Andalman AS, Davidson TJ, et al. Structural and molecular interrogation of intact biological systems. Nature. 2013;497:332–7.

    Article  CAS  PubMed Central  ADS  PubMed  Google Scholar 

  17. Tomer R, Ye L, Hsueh B, Deisseroth K. Advanced CLARITY for rapid and high-resolution imaging of intact tissues. Nat Protoc. 2014;9:1682–97.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Susaki EA, Ueda HR. Whole-body and Whole-Organ Clearing and Imaging Techniques with Single-Cell Resolution: Toward Organism-Level Systems Biology in Mammals. Cell Chem Biol. 2016;23:137–57.

    Article  CAS  PubMed  Google Scholar 

  19. Vieites-Prado A, Renier N. Tissue clearing and 3D imaging in developmental biology. Development. 2021;148:dev199369.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Power RM, Huisken J. A guide to light-sheet fluorescence microscopy for multiscale imaging. Nat Methods. 2017;14:360–73.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang Z, Yao X, Yin X, Ding Z, Huang T, Huo Y, et al. Multi-Scale Light-Sheet Fluorescence Microscopy for Fast Whole Brain Imaging. Front Neuroanat. 2021;15:732464.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Adams MW, Loftus AF, Dunn SE, Joens MS, Fitzpatrick JAJ. Light Sheet Fluorescence Microscopy (LSFM). Curr Protoc Cytom. 2015;71:12.37.1–12.37.15.

    PubMed  Google Scholar 

  23. Gagliano G, Nelson T, Saliba N, Vargas-Hernández S, Gustavsson A-K. Light Sheet Illumination for 3D Single-Molecule Super-Resolution Imaging of Neuronal Synapses. Front Synaptic Neurosci. 2021;13:761530.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Corsetti S, Gunn-Moore F, Dholakia K. Light sheet fluorescence microscopy for neuroscience. J Neurosci Methods. 2019;319:16–27.

    Article  CAS  PubMed  Google Scholar 

  25. Huisken J, Swoger J, Del Bene F, Wittbrodt J, Stelzer EHK. Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science. 2004;305:1007–9.

    Article  CAS  ADS  PubMed  Google Scholar 

  26. Weber M, Mickoleit M, Huisken J. Light sheet microscopy. Methods Cell Biol. 2014;123:193–215.

    Article  PubMed  Google Scholar 

  27. Chen B-C, Legant WR, Wang K, Shao L, Milkie DE, Davidson MW, et al. Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science. 2014;346:1257998.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Reynaud EG, Peychl J, Huisken J, Tomancak P. Guide to light-sheet microscopy for adventurous biologists. Nat Methods. 2015;12:30–34.

    Article  CAS  PubMed  Google Scholar 

  29. Huisken J. Slicing embryos gently with laser light sheets. Bioessays. 2012;34:406–11.

    Article  PubMed  Google Scholar 

  30. Huisken J, Stainier DYR. Selective plane illumination microscopy techniques in developmental biology. Development. 2009;136:1963–75.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Gualda EJ, Vale T, Almada P, Feijó JA, Martins GG, Moreno N. OpenSpinMicroscopy: an open-source integrated microscopy platform. Nat Methods. 2013;10:599–600.

    Article  CAS  PubMed  Google Scholar 

  32. Pitrone PG, Schindelin J, Stuyvenberg L, Preibisch S, Weber M, Eliceiri KW, et al. OpenSPIM: an open-access light-sheet microscopy platform. Nat Methods. 2013;10:598–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Millett-Sikking A, York A. AndrewGYork/high_na_single_objective_lightsheet: Work-in-progress. https://doi.org/10.5281/ZENODO.3244420. 2019.

  34. Akitegetse C, Charland T, Quémener M, Gora C, Rioux V, Piché M, et al. Millimetric scale two-photon Bessel-Gauss beam light sheet microscopy with three-axis isotropic resolution using an axicon lens. Neurophotonics. 2023;10:035002.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Delgado-Rodriguez P, Brooks CJ, Vaquero JJ, Muñoz-Barrutia A. Innovations in ex vivo Light Sheet Fluorescence Microscopy. Prog Biophysics Mol Biol. 2022;168:37–51.

    Article  CAS  Google Scholar 

  36. Sapoznik E, Chang B-J, Huh J, Ju RJ, Azarova EV, Pohlkamp T, et al. A versatile oblique plane microscope for large-scale and high-resolution imaging of subcellular dynamics. Elife. 2020;9:e57681.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Fang C, Yu T, Chu T, Feng W, Zhao F, Wang X, et al. Minutes-timescale 3D isotropic imaging of entire organs at subcellular resolution by content-aware compressed-sensing light-sheet microscopy. Nat Commun. 2021;12:107.

    Article  CAS  PubMed Central  ADS  PubMed  Google Scholar 

  38. Chakraborty T, Driscoll MK, Jeffery E, Murphy MM, Roudot P, Chang B-J, et al. Light-sheet microscopy of cleared tissues with isotropic, subcellular resolution. Nat Methods. 2019;16:1109–13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Stockhausen A, Rodriguez-Gatica JE, Schweihoff J, Schwarz MK, Kubitscheck U. Airy beam light sheet microscopy boosted by deep learning deconvolution. Opt Express. 2023;31:10918–35.

    Article  ADS  PubMed  Google Scholar 

  40. Renier N, Wu Z, Simon DJ, Yang J, Ariel P, Tessier-Lavigne M. iDISCO: a simple, rapid method to immunolabel large tissue samples for volume imaging. Cell. 2014;159:896–910.

    Article  CAS  PubMed  Google Scholar 

  41. Ueda HR, Ertürk A, Chung K, Gradinaru V, Chédotal A, Tomancak P, et al. Tissue clearing and its applications in neuroscience. Nat Rev Neurosci. 2020;21:61–79.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Molbay M, Kolabas ZI, Todorov MI, Ohn T-L, Ertürk A. A guidebook for DISCO tissue clearing. Mol Syst Biol. 2021;17:e9807.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Ariel P. A beginner’s guide to tissue clearing. Int J Biochem Cell Biol. 2017;84:35–39.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Pan C, Cai R, Quacquarelli FP, Ghasemigharagoz A, Lourbopoulos A, Matryba P, et al. Shrinkage-mediated imaging of entire organs and organisms using uDISCO. Nat Methods. 2016;13:859–67.

    Article  CAS  PubMed  Google Scholar 

  45. Mai H, Rong Z, Zhao S, Cai R, Steinke H, Bechmann I, et al. Scalable tissue labeling and clearing of intact human organs. Nat Protoc. 2022;17:2188–215.

    Article  CAS  PubMed  Google Scholar 

  46. Tainaka K, Kuno A, Kubota SI, Murakami T, Ueda HR. Chemical Principles in Tissue Clearing and Staining Protocols for Whole-Body Cell Profiling. Annu Rev Cell Dev Biol. 2016;32:713–41.

    Article  CAS  PubMed  Google Scholar 

  47. Cai R, Kolabas ZI, Pan C, Mai H, Zhao S, Kaltenecker D, et al. Whole-mouse clearing and imaging at the cellular level with vDISCO. Nat Protoc. 2023;18:1197–242.

    Article  CAS  PubMed  Google Scholar 

  48. Mai H, Luo J, Hoeher L, Al-Maskari R, Horvath I, Chen Y, et al. Whole-body cellular mapping in mouse using standard IgG antibodies. Nat Biotechnol. 2023. https://doi.org/10.1038/s41587-023-01846-0.

  49. Tainaka K, Kubota SI, Suyama TQ, Susaki EA, Perrin D, Ukai-Tadenuma M, et al. Whole-body imaging with single-cell resolution by tissue decolorization. Cell. 2014;159:911–24.

    Article  CAS  PubMed  Google Scholar 

  50. Treweek JB, Chan KY, Flytzanis NC, Yang B, Deverman BE, Greenbaum A, et al. Whole-body tissue stabilization and selective extractions via tissue-hydrogel hybrids for high-resolution intact circuit mapping and phenotyping. Nat Protoc. 2015;10:1860–96.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Elisa Z, Toon B, De Smedt SC, Katrien R, Kristiaan N, Kevin B. Technical implementations of light sheet microscopy. Microsc Res Tech. 2018;81:941–58.

    Article  PubMed  Google Scholar 

  52. Lemon WC, McDole K. Live-cell imaging in the era of too many microscopes. Curr Opin Cell Biol. 2020;66:34–42.

    Article  CAS  PubMed  Google Scholar 

  53. Keller PJ, Ahrens MB. Visualizing whole-brain activity and development at the single-cell level using light-sheet microscopy. Neuron. 2015;85:462–83.

    Article  CAS  PubMed  Google Scholar 

  54. Haslehurst P, Yang Z, Dholakia K, Emptage N. Fast volume-scanning light sheet microscopy reveals transient neuronal events. Biomed Opt Express. 2018;9:2154–67.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Launay P-S, Godefroy D, Khabou H, Rostene W, Sahel J-A, Baudouin C, et al. Combined 3DISCO clearing method, retrograde tracer and ultramicroscopy to map corneal neurons in a whole adult mouse trigeminal ganglion. Exp Eye Res. 2015;139:136–43.

    Article  CAS  PubMed  Google Scholar 

  56. Newmaster KT, Kronman FA, Wu Y-T, Kim Y. Seeing the Forest and Its Trees Together: Implementing 3D Light Microscopy Pipelines for Cell Type Mapping in the Mouse Brain. Front Neuroanat. 2021;15:787601.

    Article  CAS  PubMed  Google Scholar 

  57. Niedworok CJ, Schwarz I, Ledderose J, Giese G, Conzelmann K-K, Schwarz MK. Charting monosynaptic connectivity maps by two-color light-sheet fluorescence microscopy. Cell Rep. 2012;2:1375–86.

    Article  CAS  PubMed  Google Scholar 

  58. Menegas W, Bergan JF, Ogawa SK, Isogai Y, Umadevi Venkataraju K, Osten P, et al. Dopamine neurons projecting to the posterior striatum form an anatomically distinct subclass. eLife. 2015;4:e10032.

    Article  PubMed Central  PubMed  Google Scholar 

  59. Watabe-Uchida M, Zhu L, Ogawa SK, Vamanrao A, Uchida N. Whole-Brain Mapping of Direct Inputs to Midbrain Dopamine Neurons. Neuron. 2012;74:858–73.

    Article  CAS  PubMed  Google Scholar 

  60. Renier N, Adams EL, Kirst C, Wu Z, Azevedo R, Kohl J, et al. Mapping of Brain Activity by Automated Volume Analysis of Immediate Early Genes. Cell. 2016;165:1789–802.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Richardson DS, Lichtman JW. Clarifying Tissue Clearing. Cell. 2015;162:246–57.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Friedmann D, Pun A, Adams EL, Lui JH, Kebschull JM, Grutzner SM, et al. Mapping mesoscale axonal projections in the mouse brain using a 3D convolutional network. Proc Natl Acad Sci USA. 2020;117:11068–75.

    Article  CAS  PubMed Central  ADS  PubMed  Google Scholar 

  63. Gibbs HC, Mota SM, Hart NA, Min SW, Vernino AO, Pritchard AL, et al. Navigating the Light-Sheet Image Analysis Software Landscape: Concepts for Driving Cohesion From Data Acquisition to Analysis. Front Cell Dev Biol. 2021;9:739079.

    Article  PubMed Central  PubMed  Google Scholar 

  64. Oostrom M, Muniak MA, Eichler West RM, Akers S, Pande P, Obiri M, et al. Fine-tuning TrailMap: The utility of transfer learning to improve the performance of deep learning in axon segmentation of lightsheet microscopy images. bioRxiv. 2023. 2023.10.23.563546.

  65. Peng H, Ruan Z, Long F, Simpson JH, Myers EW. V3D enables real-time 3D visualization and quantitative analysis of large-scale biological image data sets. Nat Biotechnol. 2010;28:348–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Li Z, Shang Z, Liu J, Zhen H, Zhu E, Zhong S, et al. D-LMBmap: a fully automated deep-learning pipeline for whole-brain profiling of neural circuitry. Nat Methods. 2023;20:1593–604.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Perens J, Salinas CG, Skytte JL, Roostalu U, Dahl AB, Dyrby TB, et al. An Optimized Mouse Brain Atlas for Automated Mapping and Quantification of Neuronal Activity Using iDISCO+ and Light Sheet Fluorescence Microscopy. Neuroinform. 2021;19:433–46.

    Article  Google Scholar 

  68. Tian Y, Cook JJ, Johnson GA. Restoring morphology of light sheet microscopy data based on magnetic resonance histology. Front Neurosci. 2022;16:1011895.

    Article  PubMed  Google Scholar 

  69. Todorov MI, Paetzold JC, Schoppe O, Tetteh G, Shit S, Efremov V, et al. Machine learning analysis of whole mouse brain vasculature. Nat Methods. 2020;17:442–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Kirst C, Skriabine S, Vieites-Prado A, Topilko T, Bertin P, Gerschenfeld G, et al. Mapping the Fine-Scale Organization and Plasticity of the Brain Vasculature. Cell. 2020;180:780–.e25.

    Article  CAS  PubMed  Google Scholar 

  71. Kennel P, Dichamp J, Barreau C, Guissard C, Teyssedre L, Rouquette J, et al. From whole-organ imaging to in-silico blood flow modeling: A new multi-scale network analysis for revisiting tissue functional anatomy. PLoS Comput Biol. 2020;16:e1007322.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Anwer M, LeDue J, Wang S, Wang S, Cheng WH, Burdyniuk M et al. Leveraging the power of 3D brain-wide imaging and mapping tools for brain injury research in murine models. bioRxiv 2023.04.27.537761

  73. Azevedo H, Ferreira M, Mascarello A, Osten P, Guimarães CRW. Brain-wide mapping of c-fos expression in the single prolonged stress model and the effects of pretreatment with ACH-000029 or prazosin. Neurobiol Stress. 2020;13:100226.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Bonapersona V, Schuler H, Damsteegt R, Adolfs Y, Pasterkamp RJ, van den Heuvel MP, et al. The mouse brain after foot shock in four dimensions: Temporal dynamics at a single-cell resolution. Proc Natl Acad Sci USA. 2022;119:e2114002119.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Franceschini A, Costantini I, Pavone FS, Silvestri L. Dissecting Neuronal Activation on a Brain-Wide Scale With Immediate Early Genes. Front Neurosci. 2020;14:569517.

    Article  PubMed Central  PubMed  Google Scholar 

  76. Roy DS, Park Y-G, Kim ME, Zhang Y, Ogawa SK, DiNapoli N, et al. Brain-wide mapping reveals that engrams for a single memory are distributed across multiple brain regions. Nat Commun. 2022;13:1799.

    Article  CAS  PubMed Central  ADS  PubMed  Google Scholar 

  77. Verpeut JL, Bergeler S, Kislin M, William Townes F, Klibaite U, Dhanerawala ZM, et al. Cerebellar contributions to a brainwide network for flexible behavior in mice. Commun Biol. 2023;6:605.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Liu T-L, Upadhyayula S, Milkie DE, Singh V, Wang K, Swinburne IA, et al. Observing the cell in its native state: Imaging subcellular dynamics in multicellular organisms. Science. 2018;360:eaaq1392.

    Article  PubMed Central  PubMed  Google Scholar 

  79. Habart M, Lio G, Soumier A, Demily C, Sirigu A. An optimized iDISCO+ protocol for tissue clearing and 3D analysis of oxytocin and vasopressin cell network in the developing mouse brain. STAR Protoc. 2023;4:101968.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Stelzer EHK. Light-sheet fluorescence microscopy for quantitative biology. Nat Methods. 2015;12:23–26.

    Article  CAS  PubMed  Google Scholar 

  81. Silvestri L, Paciscopi M, Soda P, Biamonte F, Iannello G, Frasconi P, et al. Quantitative neuroanatomy of all Purkinje cells with light sheet microscopy and high-throughput image analysis. Front Neuroanat. 2015;9:68.

    Article  PubMed Central  PubMed  Google Scholar 

  82. Soumier A, Habart M, Lio G, Demily C, Sirigu A. Differential fate between oxytocin and vasopressin cells in the developing mouse brain. iScience. 2022;25:103655.

    Article  CAS  ADS  PubMed  Google Scholar 

  83. Caria A, Ciringione L, de Falco S. Morphofunctional Alterations of the Hypothalamus and Social Behavior in Autism Spectrum Disorders. Brain Sci. 2020;10:435.

    Article  PubMed Central  PubMed  Google Scholar 

  84. Mapelli L, Soda T, D’Angelo E, Prestori F. The Cerebellar Involvement in Autism Spectrum Disorders: From the Social Brain to Mouse Models. Int J Mol Sci. 2022;23:3894.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Lewis EM, Stein-O’Brien GL, Patino AV, Nardou R, Grossman CD, Brown M, et al. Parallel Social Information Processing Circuits Are Differentially Impacted in Autism. Neuron. 2020;108:659–675.e6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. van der Heijden ME, Lackey EP, Perez R, Ișleyen FS, Brown AM, Donofrio SG, et al. Maturation of Purkinje cell firing properties relies on neurogenesis of excitatory neurons. Elife. 2021;10:e68045.

    Article  PubMed Central  PubMed  Google Scholar 

  87. Nojima S, Susaki EA, Yoshida K, Takemoto H, Tsujimura N, Iijima S, et al. CUBIC pathology: three-dimensional imaging for pathological diagnosis. Sci Rep. 2017;7:9269.

    Article  PubMed Central  ADS  PubMed  Google Scholar 

  88. Puelles VG, Combes AN, Bertram JF. Clearly imaging and quantifying the kidney in 3D. Kidney Int. 2021;100:780–6.

    Article  PubMed  Google Scholar 

  89. Ertürk A, Bradke F. High-resolution imaging of entire organs by 3-dimensional imaging of solvent cleared organs (3DISCO). Exp Neurol. 2013;242:57–64.

    Article  PubMed  Google Scholar 

  90. Casoni F, Malone SA, Belle M, Luzzati F, Collier F, Allet C, et al. Development of the neurons controlling fertility in humans: new insights from 3D imaging and transparent fetal brains. Development. 2016;143:3969–81.

    Article  CAS  PubMed  Google Scholar 

  91. Costantini I, Ghobril J-P, Di Giovanna AP, Allegra Mascaro AL, Silvestri L, et al. A versatile clearing agent for multi-modal brain imaging. Sci Rep. 2015;5:9808.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Hildebrand S, Schueth A, Herrler A, Galuske R, Roebroeck A. Scalable Labeling for Cytoarchitectonic Characterization of Large Optically Cleared Human Neocortex Samples. Sci Rep. 2019;9:10880.

    Article  PubMed Central  ADS  PubMed  Google Scholar 

  93. Morawski M, Kirilina E, Scherf N, Jäger C, Reimann K, Trampel R, et al. Developing 3D microscopy with CLARITY on human brain tissue: Towards a tool for informing and validating MRI-based histology. Neuroimage. 2018;182:417–28.

    Article  PubMed  Google Scholar 

  94. Isaacson D, McCreedy D, Calvert M, Shen J, Sinclair A, Cao M, et al. Imaging the developing human external and internal urogenital organs with light sheet fluorescence microscopy. Differentiation. 2020;111:12–21.

    Article  CAS  PubMed  Google Scholar 

  95. Icha J, Schmied C, Sidhaye J, Tomancak P, Preibisch S, Norden C. Using Light Sheet Fluorescence Microscopy to Image Zebrafish Eye Development. J Vis Exp. 2016;110:e53966.

  96. Pang M, Bai L, Zong W, Wang X, Bu Y, Xiong C, et al. Light-sheet fluorescence imaging charts the gastrula origin of vascular endothelial cells in early zebrafish embryos. Cell Discov. 2020;6:74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  97. Schlaeppi A, Graves A, Weber M, Huisken J Light Sheet Microscopy of Fast Cardiac Dynamics in Zebrafish Embryos. J Vis Exp. 2021. https://doi.org/10.3791/62741.

  98. Bernardello M, Gora RJ, Van Hage P, Castro-Olvera G, Gualda EJ, Schaaf MJM, et al. Analysis of intracellular protein dynamics in living zebrafish embryos using light-sheet fluorescence single-molecule microscopy. Biomed Opt Express. 2021;12:6205–27.

    Article  PubMed Central  PubMed  Google Scholar 

  99. Bernardello M, Marsal M, Gualda EJ, Loza-Alvarez P. Light-sheet fluorescence microscopy for the in vivo study of microtubule dynamics in the zebrafish embryo. Biomed Opt Express. 2021;12:6237–54.

    Article  PubMed Central  PubMed  Google Scholar 

  100. Tayanloo-Beik A, Hamidpour SK, Abedi M, Shojaei H, Tavirani MR, Namazi N, et al. Zebrafish Modeling of Autism Spectrum Disorders, Current Status and Future Prospective. Front Psychiatry. 2022;13:911770.

    Article  PubMed Central  PubMed  Google Scholar 

  101. Turrini L, Roschi L, de Vito G, Pavone FS, Vanzi F. Imaging Approaches to Investigate Pathophysiological Mechanisms of Brain Disease in Zebrafish. Int J Mol Sci. 2023;24:9833.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  102. Elagoz AM, Styfhals R, Maccuro S, Masin L, Moons L, Seuntjens E. Optimization of Whole Mount RNA Multiplexed in situ Hybridization Chain Reaction With Immunohistochemistry, Clearing and Imaging to Visualize Octopus Embryonic Neurogenesis. Front Physiol. 2022;13:882413.

    Article  PubMed Central  PubMed  Google Scholar 

  103. Kanatani S, Kreutzmann JC, Li Y, West Z, Vougesi Nikou D, Lercke Skytte J, et al. Whole-brain three-dimensional imaging of RNAs at single-cell resolution. bioRxiv. 2022.2012.2028.521740.

  104. Murakami YC, Heintz N. Multiplexed and scalable cellular phenotyping toward the standardized three-dimensional human neuroanatomy. bioRxiv 2022.11.23.517711

  105. Reder NP, Glaser AK, McCarty EF, Chen Y, True LD, Liu JTC. Open-Top Light-Sheet Microscopy Image Atlas of Prostate Core Needle Biopsies. Arch Pathol Lab Med. 2019;143:1069–75.

    Article  PubMed Central  PubMed  Google Scholar 

  106. Schueth A, Hildebrand S, Samarska I, Sengupta S, Kiessling A, Herrler A, et al. Efficient 3D light-sheet imaging of very large-scale optically cleared human brain and prostate tissue samples. Commun Biol. 2023;6:170.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  107. Xie W, Glaser AK, Vakar-Lopez F, Wright JL, Reder NP, Liu JTC, et al. Diagnosing 12 prostate needle cores within an hour of biopsy via open-top light-sheet microscopy. J Biomed Opt. 2020;25:126502.

    Article  PubMed Central  PubMed  Google Scholar 

  108. Alladin A, Chaible L, Garcia Del Valle L, Sabine R, Loeschinger M, Wachsmuth M, et al. Tracking cells in epithelial acini by light sheet microscopy reveals proximity effects in breast cancer initiation. Elife. 2020;9:e54066.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  109. Sabdyusheva Litschauer I, Becker K, Saghafi S, Ballke S, Bollwein C, Foroughipour M, et al. 3D histopathology of human tumours by fast clearing and ultramicroscopy. Sci Rep. 2020;10:17619.

    Article  CAS  PubMed Central  ADS  PubMed  Google Scholar 

  110. American Psychiatric Asscoiation. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (DSM−5). (2021).

  111. Robertson CE, Baron-Cohen S. Sensory perception in autism. Nat Rev Neurosci. 2017;18:671–84.

    Article  CAS  PubMed  Google Scholar 

  112. Hossain MM, Khan N, Sultana A, Ma P, McKyer ELJ, Ahmed HU, et al. Prevalence of comorbid psychiatric disorders among people with autism spectrum disorder: An umbrella review of systematic reviews and meta-analyses. Psychiatry Res. 2020;287:112922.

    Article  PubMed  Google Scholar 

  113. Wasilewska J, Klukowski M. Gastrointestinal symptoms and autism spectrum disorder: links and risks - a possible new overlap syndrome. Pediatr Health Med Ther. 2015;6:153–66.

    Article  Google Scholar 

  114. Baeza-Velasco C, Cohen D, Hamonet C, Vlamynck E, Diaz L, Cravero C, et al. Autism, Joint Hypermobility-Related Disorders and Pain. Front Psychiatry. 2018;9:656.

    Article  PubMed Central  PubMed  Google Scholar 

  115. Bayés À, Collins MO, Galtrey CM, Simonnet C, Roy M, Croning MDR, et al. Human post-mortem synapse proteome integrity screening for proteomic studies of postsynaptic complexes. Mol Brain. 2014;7:88.

    Article  PubMed Central  PubMed  Google Scholar 

  116. Schwede M, Nagpal S, Gandal MJ, Parikshak NN, Mirnics K, Geschwind DH, et al. Strong correlation of downregulated genes related to synaptic transmission and mitochondria in post-mortem autism cerebral cortex. J Neurodev Disord. 2018;10:18.

    Article  PubMed Central  PubMed  Google Scholar 

  117. Goikolea-Vives A, Stolp HB. Connecting the Neurobiology of Developmental Brain Injury: Neuronal Arborisation as a Regulator of Dysfunction and Potential Therapeutic Target. Int J Mol Sci. 2021;22:8220.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  118. Chung C, Shin W, Kim E. Early and Late Corrections in Mouse Models of Autism Spectrum Disorder. Biol Psychiatry. 2022;91:934–44.

    Article  CAS  PubMed  Google Scholar 

  119. Jaber M. Genetic and environmental mouse models of autism reproduce the spectrum of the disease. J Neural Transm. 2023;130:425–32.

    Article  PubMed  Google Scholar 

  120. Nicolini C, Fahnestock M. The valproic acid-induced rodent model of autism. Exp Neurol. 2018;299:217–27.

    Article  CAS  PubMed  Google Scholar 

  121. Evans MM, Kim J, Abel T, Nickl-Jockschat T, Stevens HE. Developmental Disruptions of the Dorsal Striatum in Autism Spectrum Disorder. Biol Psychiatry. 2023;S0006-3223:01527–5.

    Google Scholar 

  122. Gompers AL, Su-Feher L, Ellegood J, Copping NA, Riyadh MA, Stradleigh TW, et al. Germline Chd8 haploinsufficiency alters brain development in mouse. Nat Neurosci. 2017;20:1062–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  123. Silverman JL, Yang M, Turner SM, Katz AM, Bell DB, Koenig JI, et al. Low stress reactivity and neuroendocrine factors in the BTBR T+tf/J mouse model of autism. Neuroscience. 2010;171:1197–208.

    Article  CAS  PubMed  Google Scholar 

  124. Peça J, Feliciano C, Ting JT, Wang W, Wells MF, Venkatraman TN, et al. Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature. 2011;472:437–42.

    Article  PubMed Central  ADS  PubMed  Google Scholar 

  125. Zerbi V, Pagani M, Markicevic M, Matteoli M, Pozzi D, Fagiolini M, et al. Brain mapping across 16 autism mouse models reveals a spectrum of functional connectivity subtypes. Mol Psychiatry. 2021;26:7610–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  126. Jiang C-C, Lin L-S, Long S, Ke X-Y, Fukunaga K, Lu Y-M, et al. Signalling pathways in autism spectrum disorder: mechanisms and therapeutic implications. Sig Transduct Target Ther. 2022;7:229.

    Article  Google Scholar 

  127. Hutsler JJ, Zhang H. Increased dendritic spine densities on cortical projection neurons in autism spectrum disorders. Brain Res. 2010;1309:83–94.

    Article  CAS  PubMed  Google Scholar 

  128. Lo LH-Y, Lai K-O. Dysregulation of protein synthesis and dendritic spine morphogenesis in ASD: studies in human pluripotent stem cells. Mol Autism. 2020;11:40.

    Article  PubMed Central  PubMed  Google Scholar 

  129. Fetit R, Hillary RF, Price DJ, Lawrie SM. The neuropathology of autism: A systematic review of post-mortem studies of autism and related disorders. Neurosci Biobehav Rev. 2021;129:35–62.

    Article  PubMed  Google Scholar 

  130. Courchesne E. Abnormal early brain development in autism. Mol Psychiatry. 2002;7:S21–23.

    Article  PubMed  Google Scholar 

  131. Dierker DL, Feczko E, Pruett JR, Petersen SE, Schlaggar BL, Constantino JN, et al. Analysis of cortical shape in children with simplex autism. Cereb Cortex. 2015;25:1042–51.

    Article  PubMed  Google Scholar 

  132. Hazlett HC, Gu H, Munsell BC, Kim SH, Styner M, Wolff JJ, et al. Early brain development in infants at high risk for autism spectrum disorder. Nature. 2017;542:348–51.

    Article  CAS  PubMed Central  ADS  PubMed  Google Scholar 

  133. Hazlett HC, Poe M, Gerig G, Smith RG, Provenzale J, Ross A, et al. Magnetic resonance imaging and head circumference study of brain size in autism: birth through age 2 years. Arch Gen Psychiatry. 2005;62:1366–76.

    Article  PubMed  Google Scholar 

  134. Pote I, Wang S, Sethna V, Blasi A, Daly E, Kuklisova-Murgasova M, et al. Familial risk of autism alters subcortical and cerebellar brain anatomy in infants and predicts the emergence of repetitive behaviors in early childhood. Autism Res. 2019;12:614–27.

    Article  PubMed Central  PubMed  Google Scholar 

  135. Courchesne E, Karns CM, Davis HR, Ziccardi R, Carper RA, Tigue ZD, et al. Unusual brain growth patterns in early life in patients with autistic disorder: an MRI study. Neurology. 2001;57:245–54.

    Article  CAS  PubMed  Google Scholar 

  136. Lange N, Travers BG, Bigler ED, Prigge MBD, Froehlich AL, Nielsen JA, et al. Longitudinal volumetric brain changes in autism spectrum disorder ages 6-35 years. Autism Res. 2015;8:82–93.

    Article  PubMed  Google Scholar 

  137. Wolff JJ, Gerig G, Lewis JD, Soda T, Styner MA, Vachet C, et al. Altered corpus callosum morphology associated with autism over the first 2 years of life. Brain. 2015;138:2046–58.

    Article  PubMed Central  PubMed  Google Scholar 

  138. Zielinski BA, Prigge MBD, Nielsen JA, Froehlich AL, Abildskov TJ, Anderson JS, et al. Longitudinal changes in cortical thickness in autism and typical development. Brain. 2014;137:1799–812.

    Article  PubMed Central  PubMed  Google Scholar 

  139. Dubois J, Dehaene-Lambertz G, Perrin M, Mangin J-F, Cointepas Y, Duchesnay E, et al. Asynchrony of the early maturation of white matter bundles in healthy infants: quantitative landmarks revealed noninvasively by diffusion tensor imaging. Hum Brain Mapp. 2008;29:14–27.

    Article  PubMed  Google Scholar 

  140. Gilmore JH, Lin W, Corouge I, Vetsa YSK, Smith JK, Kang C, et al. Early postnatal development of corpus callosum and corticospinal white matter assessed with quantitative tractography. AJNR Am J Neuroradiol. 2007;28:1789–95.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  141. Qiu A, Mori S, Miller MI. Diffusion tensor imaging for understanding brain development in early life. Annu Rev Psychol. 2015;66:853–76.

    Article  PubMed Central  PubMed  Google Scholar 

  142. Andrews DS, Lee JK, Solomon M, Rogers SJ, Amaral DG, Nordahl CW. A diffusion-weighted imaging tract-based spatial statistics study of autism spectrum disorder in preschool-aged children. J Neurodev Disord. 2019;11:32.

    Article  PubMed Central  PubMed  Google Scholar 

  143. Nordahl CW, Iosif A-M, Young GS, Perry LM, Dougherty R, Lee A, et al. Sex differences in the corpus callosum in preschool-aged children with autism spectrum disorder. Mol Autism. 2015;6:26.

    Article  PubMed Central  PubMed  Google Scholar 

  144. Qin B, Wang L, Zhang Y, Cai J, Chen J, Li T. Enhanced Topological Network Efficiency in Preschool Autism Spectrum Disorder: A Diffusion Tensor Imaging Study. Front Psychiatry. 2018;9:278.

    Article  PubMed Central  PubMed  Google Scholar 

  145. De Asis-Cruz J, Andescavage N, Limperopoulos C. Adverse Prenatal Exposures and Fetal Brain Development: Insights From Advanced Fetal Magnetic Resonance Imaging. Biol Psychiatry Cogn Neurosci Neuroimaging. 2022;7:480–90.

    PubMed  Google Scholar 

  146. De Asis-Cruz J, Limperopoulos C. Harnessing the Power of Advanced Fetal Neuroimaging to Understand In Utero Footprints for Later Neuropsychiatric Disorders. Biol Psychiatry. 2023;93:867–79.

    Article  PubMed  Google Scholar 

  147. Mansour AA, Gonçalves JT, Bloyd CW, Li H, Fernandes S, Quang D, et al. An in vivo model of functional and vascularized human brain organoids. Nat Biotechnol. 2018;36:432–41.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  148. Perez-Nievas BG. Brain organoids fill the gap. Nat Neurosci. 2023;26:365–365.

    Article  CAS  PubMed  Google Scholar 

  149. Quadrato G, Nguyen T, Macosko EZ, Sherwood JL, Min Yang S, Berger DR, et al. Cell diversity and network dynamics in photosensitive human brain organoids. Nature. 2017;545:48–53.

    Article  CAS  PubMed Central  ADS  PubMed  Google Scholar 

  150. Sharf T, Van Der Molen T, Glasauer SMK, Guzman E, Buccino AP, Luna G, et al. Functional neuronal circuitry and oscillatory dynamics in human brain organoids. Nat Commun. 2022;13:4403.

    Article  CAS  PubMed Central  ADS  PubMed  Google Scholar 

  151. Kazdoba TM, Leach PT, Yang M, Silverman JL, Solomon M, Crawley JN. Translational Mouse Models of Autism: Advancing Toward Pharmacological Therapeutics. Curr Top. Behav Neurosci. 2016;28:1–52.

    CAS  Google Scholar 

  152. Aguet F, Upadhyayula S, Gaudin R, Chou Y-Y, Cocucci E, He K, et al. Membrane dynamics of dividing cells imaged by lattice light-sheet microscopy. Mol Biol Cell. 2016;27:3418–35.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  153. Majoul IV, Gao L, Betzig E, Onichtchouk D, Butkevich E, Kozlov Y, et al. Fast structural responses of gap junction membrane domains to AB5 toxins. Proc Natl Acad Sci USA. 2013;110:E4125–4133.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  154. Schöneberg J, Dambournet D, Liu T-L, Forster R, Hockemeyer D, Betzig E, et al. 4D cell biology: big data image analytics and lattice light-sheet imaging reveal dynamics of clathrin-mediated endocytosis in stem cell-derived intestinal organoids. Mol Biol Cell. 2018;29:2959–68.

    Article  PubMed Central  PubMed  Google Scholar 

  155. Yamashita N, Morita M, Legant WR, Chen B-C, Betzig E, Yokota H, et al. Three-dimensional tracking of plus-tips by lattice light-sheet microscopy permits the quantification of microtubule growth trajectories within the mitotic apparatus. J Biomed Opt. 2015;20:101206.

    Article  PubMed  Google Scholar 

  156. Tomer R, Khairy K, Amat F, Keller PJ. Quantitative high-speed imaging of entire developing embryos with simultaneous multiview light-sheet microscopy. Nat Methods. 2012;9:755–63.

    Article  CAS  PubMed  Google Scholar 

  157. de Medeiros G, Balázs B, Hufnagel L. Light-sheet imaging of mammalian development. Semin Cell Dev Biol. 2016;55:148–55.

    Article  PubMed  Google Scholar 

  158. Belle M, Godefroy D, Couly G, Malone SA, Collier F, Giacobini P, et al. Tridimensional Visualization and Analysis of Early Human Development. Cell. 2017;169:161–173.e12.

    Article  CAS  PubMed  Google Scholar 

  159. Wan Y, McDole K, Keller PJ. Light-Sheet Microscopy and Its Potential for Understanding Developmental Processes. Annu Rev Cell Dev Biol. 2019;35:655–81.

    Article  CAS  PubMed  Google Scholar 

  160. Madrigal MP, Jurado S. Specification of oxytocinergic and vasopressinergic circuits in the developing mouse brain. Commun Biol. 2021;4:586.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  161. Gómez HF, Hodel L, Michos O, Iber D. Morphological study of embryonic Chd8+/- mouse brains using light-sheet microscopy. BMC Res Notes. 2021;14:23.

    Article  PubMed Central  PubMed  Google Scholar 

  162. Trujillo CA, Muotri AR. Brain Organoids and the Study of Neurodevelopment. Trends Mol Med. 2018;24:982–90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  163. Lancaster MA, Renner M, Martin C-A, Wenzel D, Bicknell LS, Hurles ME, et al. Cerebral organoids model human brain development and microcephaly. Nature. 2013;501:373–9.

    Article  CAS  ADS  PubMed  Google Scholar 

  164. Qian X, Song H, Ming G-L. Brain organoids: advances, applications and challenges. Development. 2019;146:dev166074.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  165. Saglam-Metiner P, Devamoglu U, Filiz Y, Akbari S, Beceren G, Goker B, et al. Spatio-temporal dynamics enhance cellular diversity, neuronal function and further maturation of human cerebral organoids. Commun Biol. 2023;6:173.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  166. Chan WK, Griffiths R, Price DJ, Mason JO. Cerebral organoids as tools to identify the developmental roots of autism. Mol Autism. 2020;11:58.

    Article  PubMed Central  PubMed  Google Scholar 

  167. Fernandes S, Klein D, Marchetto MC. Unraveling Human Brain Development and Evolution Using Organoid Models. Front Cell Dev Biol. 2021;9:737429.

    Article  PubMed Central  PubMed  Google Scholar 

  168. Whiteley JT, Fernandes S, Sharma A, Mendes APD, Racha V, Benassi SK, et al. Reaching into the toolbox: Stem cell models to study neuropsychiatric disorders. Stem Cell Rep. 2022;17:187–210.

    Article  CAS  Google Scholar 

  169. Adegbola A, Bury LA, Fu C, Zhang M, Wynshaw-Boris A. Concise Review: Induced Pluripotent Stem Cell Models for Neuropsychiatric Diseases. Stem Cells Transl Med. 2017;6:2062–70.

    Article  PubMed Central  PubMed  Google Scholar 

  170. Jourdon A, Wu F, Mariani J, Capauto D, Norton S, Tomasini L, et al. Modeling idiopathic autism in forebrain organoids reveals an imbalance of excitatory cortical neuron subtypes during early neurogenesis. Nat Neurosci. 2023;26:1505–15.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  171. Mariani J, Simonini MV, Palejev D, Tomasini L, Coppola G, Szekely AM, et al. Modeling human cortical development in vitro using induced pluripotent stem cells. Proc Natl Acad Sci USA. 2012;109:12770–5.

    Article  CAS  PubMed Central  ADS  PubMed  Google Scholar 

  172. Birey F, Li M-Y, Gordon A, Thete MV, Valencia AM, Revah O, et al. Dissecting the molecular basis of human interneuron migration in forebrain assembloids from Timothy syndrome. Cell Stem Cell. 2022;29:248–264.e7.

    Article  CAS  PubMed  Google Scholar 

  173. de Jong JO, Llapashtica C, Genestine M, Strauss K, Provenzano F, Sun Y, et al. Cortical overgrowth in a preclinical forebrain organoid model of CNTNAP2-associated autism spectrum disorder. Nat Commun. 2021;12:4087.

    Article  PubMed Central  ADS  PubMed  Google Scholar 

  174. Dutta D, Heo I, Clevers H. Disease Modeling in Stem Cell-Derived 3D Organoid Systems. Trends Mol Med. 2017;23:393–410.

    Article  CAS  PubMed  Google Scholar 

  175. Clevers H. Modeling Development and Disease with Organoids. Cell. 2016;165:1586–97.

    Article  CAS  PubMed  Google Scholar 

  176. de Medeiros G, Ortiz R, Strnad P, Boni A, Moos F, Repina N, et al. Multiscale light-sheet organoid imaging framework. Nat Commun. 2022;13:4864.

    Article  PubMed Central  ADS  PubMed  Google Scholar 

  177. Slingsby B, Yatchmink Y, Goldberg A. Typical Skin Injuries in Children With Autism Spectrum Disorder. Clin Pediatr (Philos). 2017;56:942–6.

    Article  Google Scholar 

  178. Thye MD, Bednarz HM, Herringshaw AJ, Sartin EB, Kana RK. The impact of atypical sensory processing on social impairments in autism spectrum disorder. Dev Cogn Neurosci. 2018;29:151–67.

    Article  PubMed  Google Scholar 

  179. Tommerdahl M, Tannan V, Holden JK, Baranek GT. Absence of stimulus-driven synchronization effects on sensory perception in autism: Evidence for local underconnectivity? Behav Brain Funct. 2008;4:19.

    Article  PubMed Central  PubMed  Google Scholar 

  180. Accordino RE, Lucarelli J, Yan AC. Cutaneous Disease in Autism Spectrum Disorder: A Review. Pediatr Dermatol. 2015;32:455–60.

    Article  PubMed  Google Scholar 

  181. Jameson C, Boulton KA, Silove N, Nanan R, Guastella AJ. Ectodermal origins of the skin-brain axis: a novel model for the developing brain, inflammation, and neurodevelopmental conditions. Mol Psychiatry. 2023;28:108–17.

    Article  CAS  PubMed  Google Scholar 

  182. Morton JT, Jin D-M, Mills RH, Shao Y, Rahman G, McDonald D, et al. Multi-level analysis of the gut-brain axis shows autism spectrum disorder-associated molecular and microbial profiles. Nat Neurosci. 2023. https://doi.org/10.1038/s41593-023-01361-0.

  183. Garrett L, Trümbach D, Spielmann N, Wurst W, Fuchs H, Gailus-Durner V, et al. A rationale for considering heart/brain axis control in neuropsychiatric disease. Mamm Genome. 2023;34:331–50.

    Article  CAS  PubMed  Google Scholar 

  184. Reiner O, Sapir T, Parichha A. Using multi-organ culture systems to study Parkinson’s disease. Mol Psychiatry. 2021;26:725–35.

    Article  PubMed  Google Scholar 

  185. Picollet-D’hahan N, Zuchowska A, Lemeunier I, Le Gac S. Multiorgan-on-a-Chip: A Systemic Approach To Model and Decipher Inter-Organ Communication. Trends Biotechnol. 2021;39:788–810.

    Article  PubMed  Google Scholar 

  186. Mueller JPJ, Dobosz M, O’Brien N, Abdoush N, Giusti AM, Lechmann M, et al. ROCKETS - a novel one-for-all toolbox for light sheet microscopy in drug discovery. Front Immunol. 2023;14:1034032.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  187. Skovbjerg G, Roostalu U, Salinas CG, Skytte JL, Perens J, Clemmensen C, et al. Uncovering CNS access of lipidated exendin-4 analogues by quantitative whole-brain 3D light sheet imaging. Neuropharmacology. 2023;238:109637.

    Article  CAS  PubMed  Google Scholar 

  188. Chen GT, Geschwind DH. Challenges and opportunities for precision medicine in neurodevelopmental disorders. Adv Drug Deliv Rev. 2022;191:114564.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  189. Distler O, Ludwig RJ, Niemann S, Riemekasten G, Schreiber S. Editorial: Precision Medicine in Chronic Inflammation. Front Immunol. 2021;12:770462.

    Article  PubMed Central  PubMed  Google Scholar 

  190. Peñate Medina T, Kolb JP, Hüttmann G, Huber R, Peñate Medina O, Ha L, et al. Imaging Inflammation – From Whole Body Imaging to Cellular Resolution. Front Immunol. 2021;12:692222.

    Article  PubMed Central  PubMed  Google Scholar 

  191. Gomes A, Russo A, Vidal G, Demange E, Pannetier P, Souguir Z, et al. Evaluation by quantitative image analysis of anticancer drug activity on multicellular spheroids grown in 3D matrices. Oncol Lett. 2016;12:4371–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  192. Nath S, Devi GR. Three-dimensional culture systems in cancer research: Focus on tumor spheroid model. Pharmacol Therapeutics. 2016;163:94–108.

    Article  CAS  Google Scholar 

  193. Abadie S, Jardet C, Colombelli J, Chaput B, David A, Grolleau J, et al. 3D imaging of cleared human skin biopsies using light‐sheet microscopy: A new way to visualize in‐depth skin structure. Ski Res Technol. 2018;24:294–303.

    Article  CAS  Google Scholar 

  194. Poola PK, Afzal MI, Yoo Y, Kim KH, Chung E. Light sheet microscopy for histopathology applications. Biomed Eng Lett. 2019;9:279–91.

    Article  PubMed Central  PubMed  Google Scholar 

  195. Stanke-Labesque F, Gautier-Veyret E, Chhun S, Guilhaumou R. Inflammation is a major regulator of drug metabolizing enzymes and transporters: Consequences for the personalization of drug treatment. Pharmacol Therapeutics. 2020;215:107627.

    Article  CAS  Google Scholar 

  196. Amaral DG, Schumann CM, Nordahl CW. Neuroanatomy of autism. Trends Neurosci. 2008;31:137–45.

    Article  CAS  PubMed  Google Scholar 

  197. Smith E, Thurm A, Greenstein D, Farmer C, Swedo S, Giedd J, et al. Cortical thickness change in autism during early childhood. Hum Brain Mapp. 2016;37:2616–29.

    Article  PubMed Central  PubMed  Google Scholar 

  198. Shen MD, Piven J. Brain and behavior development in autism from birth through infancy. Dialogues Clin Neurosci. 2017;19:325–33.

    Article  PubMed Central  PubMed  Google Scholar 

  199. Wolff JJ, Jacob S, Elison JT. The journey to autism: Insights from neuroimaging studies of infants and toddlers. Dev Psychopathol. 2018;30:479–95.

    Article  PubMed  Google Scholar 

  200. Rosen NE, Lord C, Volkmar FR. The Diagnosis of Autism: From Kanner to DSM-III to DSM-5 and Beyond. J Autism Dev Disord. 2021;51:4253–70.

    Article  PubMed Central  PubMed  Google Scholar 

  201. Bougeard C, Picarel-Blanchot F, Schmid R, Campbell R, Buitelaar J. Prevalence of Autism Spectrum Disorder and Co-morbidities in Children and Adolescents: A Systematic Literature Review. Front Psychiatry. 2021;12:744709.

    Article  PubMed Central  PubMed  Google Scholar 

  202. Robinson-Agramonte MdeLA, Noris García E, Fraga Guerra J, Vega Hurtado Y, Antonucci N, Semprún-Hernández N, et al. Immune Dysregulation in Autism Spectrum Disorder: What Do We Know about It? Int J Mol Sci. 2022;23:3033.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  203. Csecs JLL, Iodice V, Rae CL, Brooke A, Simmons R, Quadt L, et al. Joint Hypermobility Links Neurodivergence to Dysautonomia and Pain. Front Psychiatry. 2021;12:786916.

    Article  PubMed  Google Scholar 

  204. Miller HL, Licari MK, Bhat A, Aziz-Zadeh LS, Van Damme T, Fears NE, et al. Motor problems in autism: Co-occurrence or feature? Dev Med Child Neurol. 2023. https://doi.org/10.1111/dmcn.15674.

  205. Balasco L, Provenzano G, Bozzi Y. Sensory Abnormalities in Autism Spectrum Disorders: A Focus on the Tactile Domain, From Genetic Mouse Models to the Clinic. Front Psychiatry. 2019;10:1016.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by Le Vinatier Hospital Center, Bron, France.

Author information

Authors and Affiliations

Authors

Contributions

A. Soumier wrote the original draft manuscript, made the figures, and revised the manuscript. G. Lio revised the draft manuscript. C. Demily conceptualized, edited and revised the draft manuscript and the different versions of the manuscript.

Corresponding author

Correspondence to Amelie Soumier.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soumier, A., Lio, G. & Demily, C. Current and future applications of light-sheet imaging for identifying molecular and developmental processes in autism spectrum disorders. Mol Psychiatry (2024). https://doi.org/10.1038/s41380-024-02487-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41380-024-02487-8

Search

Quick links