Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

NAc-DBS corrects depression-like behaviors in CUMS mouse model via disinhibition of DA neurons in the VTA

Abstract

Major depressive disorder (MDD) is characterized by diverse debilitating symptoms that include loss of motivation and anhedonia. If multiple medications, psychotherapy, and electroconvulsive therapy fail in some patients with MDD, their condition is then termed treatment-resistant depression (TRD). MDD can be associated with abnormalities in the reward-system–dopaminergic mesolimbic pathway, in which the nucleus accumbens (NAc) and ventral tegmental area (VTA) play major roles. Deep brain stimulation (DBS) applied to the NAc alleviates the depressive symptoms of MDD. However, the mechanism underlying the effects of this DBS has remained elusive. In this study, using the chronic unpredictable mild stress (CUMS) mouse model, we investigated the behavioral and neurobiological effects of NAc-DBS on the multidimensional depression-like phenotypes induced by CUMS by integrating behavioral, in vivo microdialysis coupled with high-performance liquid chromatography–electrochemical detector (HPLC-ECD), calcium imaging, pharmacological, and genetic manipulation methods in freely moving mice. We found that long-term and repeated, but not single, NAc-DBS induced robust antidepressant responses in CUMS mice. Moreover, even a single trial NAc-DBS led to the elevation of the γ-aminobutyric acid (GABA) neurotransmitter, accompanied by the increase in dopamine (DA) neuron activity in the VTA. Both the inhibition of the GABAA receptor activity and knockdown of the GABAA-α1 gene in VTA-GABA neurons blocked the antidepressant effect of NAc-DBS in CUMS mice. Our results showed that NAc-DBS could disinhibit VTA-DA neurons by regulating the level of GABA and the activity of VTA-GABA in the VTA and could finally correct the depression-like behaviors in the CUMS mouse model.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Long-term and high-frequency-dependent nucleus accumbens deep brain stimulation (NAc-DBS) attenuated depression-like behaviors in chronic unpredictable mild stress (CUMS) mice.
Fig. 2: A single trial of high-frequency-dependent nucleus accumbens deep brain stimulation (NAc-DBS) increased both the level of the γ-aminobutyric acid (GABA) neurotransmitter and dopaminergic neuron activity in the ventral tegmental area (VTA).
Fig. 3: Chronic optical stimulation of VTA-GABA-projecting MSN terminals of NAc alleviates the depression-like behavior in CUMS mice.
Fig. 4: Pharmacological characterization of bicuculline showing that it can block the antidepressant effect of long-term and high-frequency-dependent nucleus accumbens deep brain stimulation (NAc-DBS).
Fig. 5: Knockdown of γ-aminobutyric acid A subunit alpha 1 (GABAA-α1) receptors blocked the antidepressant effect of long-term and high-frequency-dependent nucleus accumbens deep brain stimulation (NAc-DBS).
Fig. 6: GABAA-α1 receptors in VTA-GABA neurons mediate the process of NAc-DBS disinhibition of VTA-DA neurons.

Similar content being viewed by others

Data availability

All data needed to evaluate the conclusions in the paper are present in the paper or the supplementary materials.

References

  1. Friedman A, Frankel M, Flaumenhaft Y, Merenlender A, Pinhasov A, Feder Y, et al. Programmed acute electrical stimulation of ventral tegmental area alleviates depressive-like behavior. Neuropsychopharmacology. 2009;34:1057–66.

    Article  CAS  PubMed  Google Scholar 

  2. Orgnization WHO. Depressive disorder (depression). https://www.who.int/news-room/fact-sheets/detail/depression, 2023.

  3. Al-Harbi KS. Treatment-resistant depression: therapeutic trends, challenges, and future directions. Patient Prefer Adherence. 2012;6:369–88.

    Article  MathSciNet  PubMed  PubMed Central  Google Scholar 

  4. Vieta E, Colom F. Therapeutic options in treatment-resistant depression. Ann Med. 2011;43:512–30.

    Article  CAS  PubMed  Google Scholar 

  5. Fostick L, Silberman A, Beckman M, Spivak B, Amital D. The economic impact of depression: resistance or severity? Eur Neuropsychopharmacol. 2010;20:671–5.

    Article  CAS  PubMed  Google Scholar 

  6. Luciano M, Del Vecchio V, Giacco D, De Rosa C, Malangone C, Fiorillo A. A ‘family affair’? The impact of family psychoeducational interventions on depression. Expert Rev Neurother. 2012;12:83–91.

    Article  PubMed  Google Scholar 

  7. Huang Y, Wang Y, Wang H, Liu Z, Yu X, Yan J, et al. Prevalence of mental disorders in China: a cross-sectional epidemiological study. Lancet Psychiatry. 2019;6:211–24.

    Article  PubMed  Google Scholar 

  8. Pitzer C, Kurpiers B, Eltokhi A. Sex differences in depression-like behaviors in adult mice depend on endophenotype and strain. Front Behav Neurosci. 2022;16:838122.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Schmuckermair C, Gaburro S, Sah A, Landgraf R, Sartori SB, Singewald N. Behavioral and neurobiological effects of deep brain stimulation in a mouse model of high anxiety- and depression-like behavior. Neuropsychopharmacology. 2013;38:1234–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bewernick BH, Kayser S, Sturm V, Schlaepfer TE. Long-term effects of nucleus accumbens deep brain stimulation in treatment-resistant depression: evidence for sustained efficacy. Neuropsychopharmacology. 2012;37:1975–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lozano AM, Giacobbe P, Hamani C, Rizvi SJ, Kennedy SH, Kolivakis TT, et al. A multicenter pilot study of subcallosal cingulate area deep brain stimulation for treatment-resistant depression. J Neurosurg. 2012;116:315–22.

    Article  PubMed  Google Scholar 

  12. Benabid AL, Pollak P, Louveau A, Henry S, de Rougemont J. Combined (thalamotomy and stimulation) stereotactic surgery of the VIM thalamic nucleus for bilateral Parkinson disease. Appl Neurophysiol. 1987;50:344–6.

    CAS  PubMed  Google Scholar 

  13. Dougherty DD. Deep brain stimulation: clinical applications. Psychiatr Clin North Am. 2018;41:385–94.

    Article  PubMed  Google Scholar 

  14. Haber SN, Knutson B. The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology. 2010;35:4–26.

    Article  PubMed  Google Scholar 

  15. Tremblay LK, Naranjo CA, Graham SJ, Herrmann N, Mayberg HS, Hevenor S, et al. Functional neuroanatomical substrates of altered reward processing in major depressive disorder revealed by a dopaminergic probe. Arch Gen Psychiatry. 2005;62:1228–36.

    Article  PubMed  Google Scholar 

  16. Sesack SR, Grace AA. Cortico-basal ganglia reward network: microcircuitry. Neuropsychopharmacology. 2010;35:27–47.

    Article  PubMed  Google Scholar 

  17. Schlaepfer TE, Cohen MX, Frick C, Kosel M, Brodesser D, Axmacher N, et al. Deep brain stimulation to reward circuitry alleviates anhedonia in refractory major depression. Neuropsychopharmacology. 2008;33:368–77.

    Article  PubMed  Google Scholar 

  18. Gorwood P. Neurobiological mechanisms of anhedonia. Dialogues Clin Neurosci. 2008;10:291–9.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Nauczyciel C, Robic S, Dondaine T, Verin M, Robert G, Drapier D, et al. The nucleus accumbens: a target for deep brain stimulation in resistant major depressive disorder. J Mol Psychiatry. 2013;1:17.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Gershon AA, Vishne T, Grunhaus L. Dopamine D2-like receptors and the antidepressant response. Biol Psychiatry. 2007;61:145–53.

    Article  CAS  PubMed  Google Scholar 

  21. Kapur S, Mann JJ. Role of the dopaminergic system in depression. Biol Psychiatry. 1992;32:1–17.

    Article  CAS  PubMed  Google Scholar 

  22. Reddy PL, Khanna S, Subhash MN, Channabasavanna SM, Rao BS. CSF amine metabolites in depression. Biol Psychiatry. 1992;31:112–8.

    Article  CAS  PubMed  Google Scholar 

  23. Price JL, Drevets WC. Neurocircuitry of mood disorders. Neuropsychopharmacology. 2010;35:192–216.

    Article  PubMed  Google Scholar 

  24. Edwards NJ, Tejeda HA, Pignatelli M, Zhang S, McDevitt RA, Wu J, et al. Circuit specificity in the inhibitory architecture of the VTA regulates cocaine-induced behavior. Nat Neurosci. 2017;20:438–48.

    Article  CAS  PubMed  Google Scholar 

  25. Naranjo CA, Tremblay LK, Busto UE. The role of the brain reward system in depression. Prog Neuropsychopharmacol Biol Psychiatry. 2001;25:781–823.

    Article  CAS  PubMed  Google Scholar 

  26. Herrington TM, Cheng JJ, Eskandar EN. Mechanisms of deep brain stimulation. J Neurophysiol. 2016;115:19–38.

    Article  CAS  PubMed  Google Scholar 

  27. Benabid AL, Benazzous A, Pollak P. Mechanisms of deep brain stimulation. Mov Disord. 2002;17:S73–74.

    Article  PubMed  Google Scholar 

  28. Moser A, Gieselberg A, Ro B, Keller C, Qadri F. Deep brain stimulation: response to neuronal high frequency stimulation is mediated through GABA(A) receptor activation in rats. Neurosci Lett. 2003;341:57–60.

    Article  CAS  PubMed  Google Scholar 

  29. Yan N, Chen N, Zhu H, Zhang J, Sim M, Ma Y, et al. High-frequency stimulation of nucleus accumbens changes in dopaminergic reward circuit. PLoS One. 2013;8:e79318.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  30. Zhu Z, Wang G, Ma K, Cui S, Wang JH. GABAergic neurons in nucleus accumbens are correlated to resilience and vulnerability to chronic stress for major depression. Oncotarget. 2017;8:35933–45.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Henny P, Brown MT, Northrop A, Faunes M, Ungless MA, Magill PJ, et al. Structural correlates of heterogeneous in vivo activity of midbrain dopaminergic neurons. Nat Neurosci. 2012;15:613–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Vitek JL. Mechanisms of deep brain stimulation: excitation or inhibition. Mov Disord. 2002;17:S69–72.

    Article  PubMed  Google Scholar 

  33. Elizalde N, Garcia-Garcia AL, Totterdell S, Gendive N, Venzala E, Ramirez MJ, et al. Sustained stress-induced changes in mice as a model for chronic depression. Psychopharmacology (Berl). 2010;210:393–406.

    Article  CAS  PubMed  Google Scholar 

  34. Chen Y, Cai W, Li C, Su Z, Guo Z, Li Z, et al. Sex differences in peripheral monoamine transmitter and related hormone levels in chronic stress mice with a depression-like phenotype. PeerJ. 2022;10:e14014.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Willner P, Muscat R, Papp M. Chronic mild stress-induced anhedonia: a realistic animal model of depression. Neurosci Biobehav Rev. 1992;16:525–34.

    Article  CAS  PubMed  Google Scholar 

  36. Duman CH. Models of depression. Vitam Horm. 2010;82:1–21.

    Article  PubMed  Google Scholar 

  37. Mutlu O, Gumuslu E, Ulak G, Celikyurt IK, Kokturk S, Kir HM, et al. Effects of fluoxetine, tianeptine and olanzapine on unpredictable chronic mild stress-induced depression-like behavior in mice. Life Sci. 2012;91:1252–62.

    Article  CAS  PubMed  Google Scholar 

  38. Goodwill HL, Manzano-Nieves G, Gallo M, Lee HI, Oyerinde E, Serre T, et al. Early life stress leads to sex differences in development of depressive-like outcomes in a mouse model. Neuropsychopharmacology. 2019;44:711–20.

    Article  PubMed  Google Scholar 

  39. Cryan JF, Mombereau C. In search of a depressed mouse: utility of models for studying depression-related behavior in genetically modified mice. Mol Psychiatry. 2004;9:326–57.

    Article  CAS  PubMed  Google Scholar 

  40. Cryan JF, Mombereau C, Vassout A. The tail suspension test as a model for assessing antidepressant activity: review of pharmacological and genetic studies in mice. Neurosci Biobehav Rev. 2005;29:571–625.

    Article  CAS  PubMed  Google Scholar 

  41. Francis TC, Chandra R, Friend DM, Finkel E, Dayrit G, Miranda J, et al. Nucleus accumbens medium spiny neuron subtypes mediate depression-related outcomes to social defeat stress. Biol Psychiatry. 2015;77:212–22.

    Article  PubMed  Google Scholar 

  42. Gross M, Pinhasov A. Chronic mild stress in submissive mice: Marked polydipsia and social avoidance without hedonic deficit in the sucrose preference test. Behav Brain Res. 2016;298:25–34.

    Article  PubMed  Google Scholar 

  43. Liu MY, Yin CY, Zhu LJ, Zhu XH, Xu C, Luo CX, et al. Sucrose preference test for measurement of stress-induced anhedonia in mice. Nat Protoc. 2018;13:1686–98.

    Article  CAS  PubMed  Google Scholar 

  44. Yankelevitch-Yahav R, Franko M, Huly A, Doron R The forced swim test as a model of depressive-like behavior. J Vis Exp 2015.

  45. Falowski SM, Sharan A, Reyes BA, Sikkema C, Szot P, Van Bockstaele EJ. An evaluation of neuroplasticity and behavior after deep brain stimulation of the nucleus accumbens in an animal model of depression. Neurosurgery. 2011;69:1281–90.

    Article  PubMed  Google Scholar 

  46. Engel M, Eggert C, Kaplick PM, Eder M, Roh S, Tietze L, et al. The Role of m(6)A/m-RNA methylation in stress response regulation. Neuron. 2018;99:389–403.e389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zingg B, Peng B, Huang J, Tao HW, Zhang LI. Synaptic specificity and application of anterograde transsynaptic AAV for probing neural circuitry. J Neurosci. 2020;40:3250–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. McCracken CB, Grace AA. Nucleus accumbens deep brain stimulation produces region-specific alterations in local field potential oscillations and evoked responses in vivo. J Neurosci. 2009;29:5354–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Song N, Du J, Gao Y, Yang S. Epitranscriptome of the ventral tegmental area in a deep brain-stimulated chronic unpredictable mild stress mouse model. Transl Neurosci. 2020;11:402–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tye KM, Mirzabekov JJ, Warden MR, Ferenczi EA, Tsai HC, Finkelstein J, et al. Dopamine neurons modulate neural encoding and expression of depression-related behaviour. Nature. 2013;493:537–41.

    Article  CAS  PubMed  ADS  Google Scholar 

  51. Friedman AK, Walsh JJ, Juarez B, Ku SM, Chaudhury D, Wang J, et al. Enhancing depression mechanisms in midbrain dopamine neurons achieves homeostatic resilience. Science. 2014;344:313–9.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  52. Okada H, Matsushita N, Kobayashi K, Kobayashi K. Identification of GABAA receptor subunit variants in midbrain dopaminergic neurons. J Neurochem. 2004;89:7–14.

    Article  CAS  PubMed  Google Scholar 

  53. Tan KR, Brown M, Labouebe G, Yvon C, Creton C, Fritschy JM, et al. Neural bases for addictive properties of benzodiazepines. Nature. 2010;463:769–74.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  54. Perlmutter JS, Mink JW. Deep brain stimulation. Annu Rev Neurosci. 2006;29:229–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Miocinovic S, Somayajula S, Chitnis S, Vitek JL. History, applications, and mechanisms of deep brain stimulation. JAMA Neurol. 2013;70:163–71.

    Article  PubMed  Google Scholar 

  56. Bewernick BH, Hurlemann R, Matusch A, Kayser S, Grubert C, Hadrysiewicz B, et al. Nucleus accumbens deep brain stimulation decreases ratings of depression and anxiety in treatment-resistant depression. Biol Psychiatry. 2010;67:110–6.

    Article  PubMed  Google Scholar 

  57. Berton O, McClung CA, Dileone RJ, Krishnan V, Renthal W, Russo SJ, et al. Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science. 2006;311:864–8.

    Article  CAS  PubMed  ADS  Google Scholar 

  58. Krishnan V, Han MH, Graham DL, Berton O, Renthal W, Russo SJ, et al. Molecular adaptations underlying susceptibility and resistance to social defeat in brain reward regions. Cell. 2007;131:391–404.

    Article  CAS  PubMed  Google Scholar 

  59. Russo SJ, Nestler EJ. The brain reward circuitry in mood disorders. Nat Rev Neurosci. 2013;14:609–25.

    Article  CAS  PubMed  Google Scholar 

  60. Lim BK, Huang KW, Grueter BA, Rothwell PE, Malenka RC. Anhedonia requires MC4R-mediated synaptic adaptations in nucleus accumbens. Nature. 2012;487:183–9.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  61. Stuber GD, Sparta DR, Stamatakis AM, van Leeuwen WA, Hardjoprajitno JE, Cho S, et al. Excitatory transmission from the amygdala to nucleus accumbens facilitates reward seeking. Nature. 2011;475:377–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Britt JP, Benaliouad F, McDevitt RA, Stuber GD, Wise RA, Bonci A. Synaptic and behavioral profile of multiple glutamatergic inputs to the nucleus accumbens. Neuron. 2012;76:790–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Nicola SM. The nucleus accumbens as part of a basal ganglia action selection circuit. Psychopharmacology (Berl). 2007;191:521–50.

    Article  CAS  PubMed  Google Scholar 

  64. Smith RJ, Lobo MK, Spencer S, Kalivas PW. Cocaine-induced adaptations in D1 and D2 accumbens projection neurons (a dichotomy not necessarily synonymous with direct and indirect pathways). Curr Opin Neurobiol. 2013;23:546–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lenz JD, Lobo MK. Optogenetic insights into striatal function and behavior. Behav Brain Res. 2013;255:44–54.

    Article  CAS  PubMed  Google Scholar 

  66. Kravitz AV, Kreitzer AC. Striatal mechanisms underlying movement, reinforcement, and punishment. Physiology (Bethesda). 2012;27:167–77.

    PubMed  Google Scholar 

  67. Maia TV, Frank MJ. From reinforcement learning models to psychiatric and neurological disorders. Nat Neurosci. 2011;14:154–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lobo MK, Nestler EJ. The striatal balancing act in drug addiction: distinct roles of direct and indirect pathway medium spiny neurons. Front Neuroanat. 2011;5:41.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Freeze BS, Kravitz AV, Hammack N, Berke JD, Kreitzer AC. Control of basal ganglia output by direct and indirect pathway projection neurons. J Neurosci. 2013;33:18531–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sah A, Schmuckermair C, Sartori SB, Gaburro S, Kandasamy M, Irschick R, et al. Anxiety- rather than depression-like behavior is associated with adult neurogenesis in a female mouse model of higher trait anxiety- and comorbid depression-like behavior. Transl Psychiatry. 2012;2:e171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Barr LC, Heninger GR, Goodman W, Charney DS, Price LH. Effects of fluoxetine administration on mood response to tryptophan depletion in healthy subjects. Biol Psychiatry. 1997;41:949–54.

    Article  CAS  PubMed  Google Scholar 

  72. Gelfin Y, Gorfine M, Lerer B. Effect of clinical doses of fluoxetine on psychological variables in healthy volunteers. Am J Psychiatry. 1998;155:290–2.

    Article  CAS  PubMed  Google Scholar 

  73. Koob GF, Le Moal M. Drug addiction, dysregulation of reward, and allostasis. Neuropsychopharmacology. 2001;24:97–129.

    Article  CAS  PubMed  Google Scholar 

  74. Ikemoto S. Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens-olfactory tubercle complex. Brain Res Rev. 2007;56:27–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lammel S, Hetzel A, Hackel O, Jones I, Liss B, Roeper J. Unique properties of mesoprefrontal neurons within a dual mesocorticolimbic dopamine system. Neuron. 2008;57:760–73.

    Article  CAS  PubMed  Google Scholar 

  76. Ciccarelli A, Calza A, Panzanelli P, Concas A, Giustetto M, Sassoe-Pognetto M. Organization of GABAergic synaptic circuits in the rat ventral tegmental area. PLoS ONE. 2012;7:e46250.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  77. Margolis EB, Toy B, Himmels P, Morales M, Fields HL. Identification of rat ventral tegmental area GABAergic neurons. PLoS ONE. 2012;7:e42365.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  78. Nair-Roberts RG, Chatelain-Badie SD, Benson E, White-Cooper H, Bolam JP, Ungless MA. Stereological estimates of dopaminergic, GABAergic and glutamatergic neurons in the ventral tegmental area, substantia nigra and retrorubral field in the rat. Neuroscience. 2008;152:1024–31.

    Article  CAS  PubMed  Google Scholar 

  79. Johnson SW, North RA. Opioids excite dopamine neurons by hyperpolarization of local interneurons. J Neurosci. 1992;12:483–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Bocklisch C, Pascoli V, Wong JC, House DR, Yvon C, de Roo M, et al. Cocaine disinhibits dopamine neurons by potentiation of GABA transmission in the ventral tegmental area. Science. 2013;341:1521–5.

    Article  CAS  PubMed  ADS  Google Scholar 

  81. Zhong P, Vickstrom CR, Liu X, Hu Y, Yu L, Yu HG, et al. HCN2 channels in the ventral tegmental area regulate behavioral responses to chronic stress. Elife. 2018;7:e32420.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Vega-Quiroga I, Yarur HE, Gysling K. Lateral septum stimulation disinhibits dopaminergic neurons in the antero-ventral region of the ventral tegmental area: Role of GABA-A alpha 1 receptors. Neuropharmacology. 2018;128:76–85.

    Article  CAS  PubMed  Google Scholar 

  83. Enz R. GABA(C) receptors: a molecular view. Biol Chem. 2001;382:1111–22.

    Article  CAS  PubMed  Google Scholar 

  84. Morales M, Margolis EB. Ventral tegmental area: cellular heterogeneity, connectivity and behaviour. Nat Rev Neurosci. 2017;18:73–85.

    Article  CAS  PubMed  Google Scholar 

  85. Omelchenko N, Sesack SR. Ultrastructural analysis of local collaterals of rat ventral tegmental area neurons: GABA phenotype and synapses onto dopamine and GABA cells. Synapse. 2009;63:895–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Watabe-Uchida M, Zhu L, Ogawa SK, Vamanrao A, Uchida N. Whole-brain mapping of direct inputs to midbrain dopamine neurons. Neuron. 2012;74:858–73.

    Article  CAS  PubMed  Google Scholar 

  87. Beier KT, Steinberg EE, DeLoach KE, Xie S, Miyamichi K, Schwarz L, et al. Circuit architecture of VTA dopamine neurons revealed by systematic input-output mapping. Cell. 2015;162:622–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Faget L, Osakada F, Duan J, Ressler R, Johnson AB, Proudfoot JA, et al. Afferent inputs to neurotransmitter-defined cell types in the ventral tegmental area. Cell Rep. 2016;15:2796–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Xi ZX, Stein EA. Nucleus accumbens dopamine release modulation by mesolimbic GABAA receptors-an in vivo electrochemical study. Brain Res. 1998;798:156–65.

    Article  CAS  PubMed  Google Scholar 

  90. van Zessen R, Phillips JL, Budygin EA, Stuber GD. Activation of VTA GABA neurons disrupts reward consumption. Neuron. 2012;73:1184–94.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Steffensen SC, Svingos AL, Pickel VM, Henriksen SJ. Electrophysiological characterization of GABAergic neurons in the ventral tegmental area. J Neurosci. 1998;18:8003–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Bespalov A, Steckler T, Altevogt B, Koustova E, Skolnick P, Deaver D, et al. Failed trials for central nervous system disorders do not necessarily invalidate preclinical models and drug targets. Nat Rev Drug Discov. 2016;15:516.

    Article  CAS  PubMed  Google Scholar 

  93. Nestler EJ, Hyman SE. Animal models of neuropsychiatric disorders. Nat Neurosci. 2010;13:1161–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Shemesh Y, Chen A. A paradigm shift in translational psychiatry through rodent neuroethology. Mol Psychiatry. 2023;28:993–1003.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Academician Yizheng Wang and his team from the Center of Military Brain Science, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences for their support of the experiment.

Funding

The study was supported by the Beijing Natural Science Foundation (Grant No. 7244369).

Author information

Authors and Affiliations

Authors

Contributions

NS, SY, YG and ZL initiated and designed the research. NS wrote the manuscript. NS, SL, CY and ZL performed all experiments and analyzed and interpreted the results. All the authors approved the submission.

Corresponding authors

Correspondence to Nan Song or Zhenhong Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, N., Liu, Z., Gao, Y. et al. NAc-DBS corrects depression-like behaviors in CUMS mouse model via disinhibition of DA neurons in the VTA. Mol Psychiatry (2024). https://doi.org/10.1038/s41380-024-02476-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41380-024-02476-x

Search

Quick links