Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Correspondence
  • Published:

The involvement of serotonin in major depression: nescience in disguise?

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Moncrieff J, Cooper RE, Stockmann T, Amendola S, Hengartner MP, Horowitz MA. The serotonin theory of depression: a systematic umbrella review of the evidence. Mol Psychiatry. 2022. https://doi.org/10.1038/s41380-022-01661-0.

  2. Cowen PJ, Browning M. What has serotonin to do with depression? World Psychiatry. 2015;14:158–60.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Beliveau V, Ozenne B, Strother S, Greve DN, Svarer C, Knudsen GM, et al. The structure of the serotonin system: a PET imaging study. NeuroImage. 2020;205:116240.

    Article  PubMed  CAS  Google Scholar 

  4. Erritzoe D, Godlewska BR, Rizzo G, Searle GE, Agnorelli C, Lewis Y, et al. Brain serotonin release is reduced in patients with depression: a [11c]cimbi-36 pet study with a d-amphetamine challenge. Biol Psychiatry. 2022:S0006322322017048.

  5. Murakami M, Mainen ZF. Preparing and selecting actions with neural populations: toward cortical circuit mechanisms. Curr Opin Neurobiol. 2015;33:40–46.

    Article  PubMed  CAS  Google Scholar 

  6. Disner SG, Beevers CG, Haigh EAP, Beck AT. Neural mechanisms of the cognitive model of depression. Nat Rev Neurosci. 2011;12:467–77.

    Article  PubMed  CAS  Google Scholar 

  7. Harmer CJ, Shelley NC, Cowen PJ, Goodwin GM. Increased positive versus negative affective perception and memory in healthy volunteers following selective serotonin and norepinephrine reuptake inhibition. AJP. 2004;161:1256–63.

    Article  Google Scholar 

  8. Godlewska BR, Browning M, Norbury R, Cowen PJ, Harmer CJ. Early changes in emotional processing as a marker of clinical response to SSRI treatment in depression. Transl Psychiatry. 2016;6:e957.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Lan DCL, Browning M. What can reinforcement learning models of dopamine and serotonin tell us about the action of antidepressants? Comput Psychiatry. 2022;6:166–88.

    Article  Google Scholar 

  10. Seymour B, Daw ND, Roiser JP, Dayan P, Dolan R. Serotonin selectively modulates reward value in human decision-making. J Neurosci. 2012;32:5833–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Cools R, Nakamura K, Daw ND. Serotonin and dopamine: unifying affective, activational, and decision functions. Neuropsychopharmacol. 2011;36:98–113.

    Article  CAS  Google Scholar 

  12. Worbe Y, Palminteri S, Savulich G, Daw ND, Fernandez-Egea E, Robbins TW, et al. Valence-dependent influence of serotonin depletion on model-based choice strategy. Mol Psychiatry. 2016;21:624–9.

    Article  PubMed  CAS  Google Scholar 

  13. Pike AC, Robinson OJ. Reinforcement learning in patients with mood and anxiety disorders vs control individuals: a systematic review and meta-analysis. JAMA Psychiatry. 2022;79:313–22.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Huys QJ, Pizzagalli DA, Bogdan R, Dayan P. Mapping anhedonia onto reinforcement learning: a behavioural meta-analysis. Biol Mood Anxiety Disord. 2013;3:12.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Michely J, Eldar E, Erdman A, Martin IM, Dolan RJ. Serotonin modulates asymmetric learning from reward and punishment in healthy human volunteers. Commun Biol. 2022;5:812.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bari A, Theobald DE, Caprioli D, Mar AC, Aidoo-Micah A, Dalley JW, et al. Serotonin modulates sensitivity to reward and negative feedback in a probabilistic reversal learning task in rats. Neuropsychopharmacology. 2010;35:1290–301.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Frey A-L, McCabe C. Effects of serotonin and dopamine depletion on neural prediction computations during social learning. Neuropsychopharmacol. 2020;45:1431–7.

    Article  CAS  Google Scholar 

  18. Scholl J, Kolling N, Nelissen N, Browning M, Rushworth MFS, Harmer CJ. Beyond negative valence: 2-week administration of a serotonergic antidepressant enhances both reward and effort learning signals. PLoS Biol. 2017;15:e2000756.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Langley C, Armand S, Luo Q, Savulich G, Segerberg T, Søndergaard A, et al. Chronic escitalopram in healthy volunteers has specific effects on reinforcement sensitivity: a double-blind, placebo-controlled semi-randomised study. Neuropsychopharmacology. 2023. https://doi.org/10.1038/s41386-022-01523-x. 23 January 2023

    Article  PubMed  PubMed Central  Google Scholar 

  20. Anderson RJ, Hoy KE, Daskalakis ZJ, Fitzgerald PB. Repetitive transcranial magnetic stimulation for treatment resistant depression: Re-establishing connections. Clin Neurophysiol. 2016;127:3394–405.

    Article  PubMed  Google Scholar 

  21. Celada P, Puig MV, Artigas F. Serotonin modulation of cortical neurons and networks. Front Integr Neurosci. 2013;7:25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Hahn A, Wadsak W, Windischberger C, Baldinger P, Höflich AS, Losak J, et al. Differential modulation of the default mode network via serotonin-1A receptors. Proc Natl Acad Sci USA. 2012;109:2619–24.

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  23. Wise T, Marwood L, Perkins AM, Herane-Vives A, Joules R, Lythgoe DJ, et al. Instability of default mode network connectivity in major depression: a two-sample confirmation study. Transl Psychiatry. 2017;7:e1105.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Sibon I, Strafella AP, Gravel P, Ko JH, Booij L, Soucy JP, et al. Acute prefrontal cortex TMS in healthy volunteers: effects on brain 11C-αMtrp trapping. NeuroImage. 2007;34:1658–64.

    Article  PubMed  CAS  Google Scholar 

  25. Baeken C, De Raedt R, Bossuyt A, Van Hove C, Mertens J, Dobbeleir A, et al. The impact of HF-rTMS treatment on serotonin2A receptors in unipolar melancholic depression. Brain Stimul. 2011;4:104–11.

    Article  PubMed  Google Scholar 

  26. Lanzenberger R, Baldinger P, Hahn A, Ungersboeck J, Mitterhauser M, Winkler D, et al. Global decrease of serotonin-1A receptor binding after electroconvulsive therapy in major depression measured by PET. Mol Psychiatry. 2013;18:93–100.

    Article  PubMed  CAS  Google Scholar 

  27. Cipriani A, Furukawa TA, Salanti G, Chaimani A, Atkinson LZ, Ogawa Y, et al. Comparative efficacy and acceptability of 21 antidepressant drugs for the acute treatment of adults with major depressive disorder: a systematic review and network meta-analysis. Lancet. 2018;391:1357–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Leucht S, Helfer B, Gartlehner G, Davis JM. How effective are common medications: a perspective based on meta-analyses of major drugs. BMC Med. 2015;13:253.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Turner EH, Cipriani A, Furukawa TA, Salanti G, de Vries YA. Selective publication of antidepressant trials and its influence on apparent efficacy: updated comparisons and meta-analyses of newer versus older trials. PLoS Med. 2022;19:e1003886.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Goodwin GM, Aaronson ST, Alvarez O, Arden PC, Baker A, Bennett JC, et al. Single-dose psilocybin for a treatment-resistant episode of major depression. N Engl J Med. 2022;387:1637–48.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

CJH is supported by the Oxford Health NIHR Biomedical Research Centre. In the last 3 years PBF is supported by a National Health and Medical Research Council of Australia Investigator grant (1193596). The other authors report no source of funding or financial support to declare.

Funding

CJH has received consultancy payments from P1vital, Lundbeck, Zogenix, J&J, Medscape and Compass Pathways. She holds current grants from UCB, J&J and Pfizer. PBF has received equipment for research from Neurosoft, Nexstim and Brainsway Ltd. He has served on scientific advisory boards for Magstim and LivaNova and received speaker fees from Otsuka. He has also acted as a founder and board member for TMS Clinics Australia and Resonance Therapeutics. The other authors have no financial disclosures or conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Contributions

DA developed the idea and wrote the first draft. TW, PBF, CJH contributed to the conceptualisation of the article and the writing of the subsequent versions of the manuscript. All authors approved the final version.

Corresponding author

Correspondence to Danilo Arnone.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arnone, D., Wise, T., Fitzgerald, P.B. et al. The involvement of serotonin in major depression: nescience in disguise?. Mol Psychiatry (2024). https://doi.org/10.1038/s41380-024-02459-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41380-024-02459-y

This article is cited by

Search

Quick links