Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Microbial infection promotes amyloid pathology in a mouse model of Alzheimer’s disease via modulating γ-secretase

Abstract

Microbial infection as a type of environmental risk factors is considered to be associated with long-term increased risk of dementia, including Alzheimer’s disease (AD). AD is characterized by two neuropathologically molecular hallmarks of hyperphosphorylated tau and amyloid-β (Aβ), the latter generated by several biochemically reactive enzymes, including γ-secretase. However, how infectious risk factors contribute to pathological development of the AD core molecules remains to be addressed. In this work, we utilized a modified herpes simplex virus type 1 (mHSV-1) and found that its hippocampal infection locally promotes Aβ pathology in 5 × FAD mice, the commonly used amyloid model. Mechanistically, we identified HSV-1 membrane glycoprotein US7 (Envelope gI) that interacts with and modulates γ-secretase and consequently facilitates Aβ production. Furthermore, we presented evidence that adenovirus-associated virus-mediated locally hippocampal overexpression of the US7 aggravates Aβ pathology in 5 × FAD mice. Collectively, these findings identify a herpesviral factor regulating γ-secretase in the development and progression of AD and represent a causal molecular link between infectious pathogens and neurodegeneration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Microbial herpesvirus infection promotes Aβ pathology in 5 × FAD mouse model.
Fig. 2: HSV-1 infection increases amyloid-β production in vitro.
Fig. 3: HSV-1 glycoprotein US7 modulates γ-secretase to facilitate Aβ production.
Fig. 4: Local overexpression of US7 via adenovirus-associated virus promotes Aβ pathology in 5 × FAD mice.

Similar content being viewed by others

References

  1. Querfurth HW, Laferla FM. Alzheimer’s disease. N Engl J Med. 2010;362:329–44.

    Article  CAS  PubMed  Google Scholar 

  2. Zhou R, Yang G, Guo X, Zhou Q, Lei J, Shi Y. Recognition of the amyloid precursor protein by human gamma-secretase. Science. 2019;363:eaaw0930.

    Article  CAS  PubMed  Google Scholar 

  3. Yang G, Zhou R, Zhou Q, Guo X, Yan C, Ke M, et al. Structural basis of Notch recognition by human gamma-secretase. Nature. 2019;565:192–7.

    Article  CAS  PubMed  Google Scholar 

  4. Yang G, Zhou R, Shi Y. Cryo-EM structures of human gamma-secretase. Curr Opin Struct Biol. 2017;46:55–64.

    Article  PubMed  Google Scholar 

  5. De Strooper B. Aph-1, Pen-2, and Nicastrin with Presenilin generate an active gamma-Secretase complex. Neuron. 2003;38:9–12.

    Article  PubMed  Google Scholar 

  6. Migliore L, Coppede F. Gene-environment interactions in Alzheimer disease: the emerging role of epigenetics. Nat Rev Neurol. 2022;18:643–60.

    Article  CAS  PubMed  Google Scholar 

  7. Long JM, Holtzman DM. Alzheimer disease: an update on pathobiology and treatment strategies. Cell. 2019;179:312–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sipila PN, Heikkila N, Lindbohm JV, Hakulinen C, Vahtera J, Elovainio M, et al. Hospital-treated infectious diseases and the risk of dementia: a large, multicohort, observational study with a replication cohort. Lancet Infect Dis. 2021;21:1557–67.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Levine KS, Leonard HL, Blauwendraat C, Iwaki H, Johnson N, Bandres-Ciga S, et al. Virus exposure and neurodegenerative disease risk across national biobanks. Neuron. 2023;111:1–8.

    Article  Google Scholar 

  10. Weaver DF. Alzheimer’s disease as an innate autoimmune disease (AD2): A new molecular paradigm. Alzheimers Dement. 2022. https://doi.org/10.1002/alz.12789

    Article  PubMed  Google Scholar 

  11. Ganz T, Fainstein N, Ben-Hur T. When the infectious environment meets the AD brain. Mol Neurodegeneration. 2022;17:53.

    Article  CAS  Google Scholar 

  12. Holmes C, El-Okl M, Williams AL, Cunningham C, Wilcockson D, Perry VH. Systemic infection, interleukin 1beta, and cognitive decline in Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 2003;74:788–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Perry VH, Cunningham C, Holmes C. Systemic infections and inflammation affect chronic neurodegeneration. Nat Rev Immunol. 2007;7:161–7.

    Article  CAS  PubMed  Google Scholar 

  14. Xie J, Cools L, Van Imschoot G, Van Wonterghem E, Pauwels MJ, Vlaeminck I, et al. Helicobacter pylori-derived outer membrane vesicles contribute to Alzheimer’s disease pathogenesis via C3-C3aR signalling. J Extracell Vesicles. 2023;12:e12306.

    Article  PubMed  Google Scholar 

  15. Sadrameli M, Bathini P, Alberi L. Linking mechanisms of periodontitis to Alzheimer’s disease. Curr Opin Neurol. 2020;33:230–8.

    Article  PubMed  Google Scholar 

  16. Minter MR, Zhang C, Leone V, Ringus DL, Zhang X, Oyler-Castrillo P, et al. Antibiotic-induced perturbations in gut microbial diversity influences neuro-inflammation and amyloidosis in a murine model of Alzheimer’s disease. Sci Rep. 2016;6:30028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gallo PM, Rapsinski GJ, Wilson RP, Oppong GO, Sriram U, Goulian M, et al. Amyloid-DNA composites of bacterial biofilms stimulate autoimmunity. Immunity. 2015;42:1171–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ezzat K, Pernemalm M, Palsson S, Roberts TC, Jarver P, Dondalska A, et al. The viral protein corona directs viral pathogenesis and amyloid aggregation. Nat Commun. 2019;10:2331.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Tang T, Jia J, Garbarino E, Chen L, Ma J, Li P, et al. Human herpesvirus 6A U4 inhibits proteasomal degradation of the amyloid precursor protein. J Virol. 2022;96:e0168821.

    Article  PubMed  Google Scholar 

  20. Ma G, Zhang DF, Zou QC, Xie X, Xu L, Feng XL, et al. SARS-CoV-2 spike protein S2 subunit modulates gamma-secretase and enhances amyloid-beta production in COVID-19 neuropathy. Cell Discov. 2022;8:99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Heneka MT, Kummer MP, Stutz A, Delekate A, Schwartz S, Vieira-Saecker A, et al. NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature. 2013;493:674–8.

    Article  CAS  PubMed  Google Scholar 

  22. Ising C, Venegas C, Zhang SS, Scheiblich H, Schmidt SV, Vieira-Saecker A, et al. NLRP3 inflammasome activation drives tau pathology. Nature. 2019;575:669–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Xie X, Ma G, Li X, Zhao J, Zhao Z, Zeng J. Activation of innate immune cGAS-STING pathway contributes to Alzheimer’s pathogenesis in 5×FAD mice. Nat Aging. 2023;3:202–12.

    Article  CAS  PubMed  Google Scholar 

  24. Rangasamy SB, Jana M, Roy A, Corbett GT, Kundu M, Chandra S, et al. Selective disruption of TLR2-MyD88 interaction inhibits inflammation and attenuates Alzheimer’s pathology. J Clin Invest. 2018;128:4297–312.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hur JY, Frost GR, Wu X, Crump C, Pan SJ, Wong E, et al. The innate immunity protein IFITM3 modulates gamma-secretase in Alzheimer’s disease. Nature. 2020;586:735–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wainberg M, Luquez T, Koelle DM, Readhead B, Johnston C, Darvas M, et al. The viral hypothesis: how herpesviruses may contribute to Alzheimer’s disease. Mol Psychiatry. 2021;26:5476–80.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Marcocci ME, Napoletani G, Protto V, Kolesova O, Piacentini R, Li Puma DD, et al. Herpes simplex virus-1 in the brain: the dark side of a sneaky infection. Trends Microbiol. 2020;28:808–20.

    Article  CAS  PubMed  Google Scholar 

  28. Cairns DM, Rouleau N, Parker RN, Walsh KG, Gehrke L, Kaplan DL. A 3D human brain-like tissue model of herpes-induced Alzheimer’s disease. Sci Adv. 2020;6:eaay8828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Eimer WA, Kumar DKV, Shanmugam NKN, Rodriguez AS, Mitchell T, Washicosky KJ, et al. Alzheimer’s sisease-associated beta-amyloid Is rapidly seeded by herpesviridae to protect against brain infection. Neuron. 2018;100:1527–32.

    Article  CAS  PubMed  Google Scholar 

  30. Jamieson GA, Maitland NJ, Wilcock GK, Craske J, Itzhaki RF. Latent herpes simplex virus type 1 in normal and Alzheimer’s disease brains. J Med Virol. 1991;33:224–7.

    Article  CAS  PubMed  Google Scholar 

  31. Wozniak MA, Itzhaki RF, Shipley SJ, Dobson CB. Herpes simplex virus infection causes cellular beta-amyloid accumulation and secretase upregulation. Neurosci Lett. 2007;429:95–100.

    Article  CAS  PubMed  Google Scholar 

  32. Wozniak MA, Mee AP, Itzhaki RF. Herpes simplex virus type 1 DNA is located within Alzheimer’s disease amyloid plaques. J Pathol. 2009;217:131–8.

    Article  CAS  PubMed  Google Scholar 

  33. Lovheim H, Gilthorpe J, Adolfsson R, Nilsson LG, Elgh F. Reactivated herpes simplex infection increases the risk of Alzheimer’s disease. Alzheimers Dement. 2015;11:593–9.

    Article  PubMed  Google Scholar 

  34. Allnutt MA, Johnson K, Bennett DA, Connor SM, Troncoso JC, Pletnikova O, et al. Human herpesvirus 6 detection in Alzheimer’s disease cases and controls across multiple cohorts. Neuron. 2020;105:1027–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Readhead B, Haure-Mirande JV, Funk CC, Richards MA, Shannon P, Haroutunian V, et al. Multiscale analysis of independent Alzheimer’s cohorts finds disruption of molecular, genetic, and clinical networks by human herpesvirus. Neuron. 2018;99:64–82 e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Linard M, Baillet M, Letenneur L, Garrigue I, Catheline G, Dartigues JF, et al. Herpes simplex virus, early neuroimaging markers and incidence of Alzheimer’s disease. Transl Psychiatry. 2021;11:414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Duggan MR, Peng Z, An Y, Kitner Triolo MH, Shafer AT, Davatzikos C, et al. Herpes viruses in the baltimore longitudinal study of aging: associations with brain volumes, cognitive performance, and plasma biomarkers. Neurology. 2022;99:e2014–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Linard M, Letenneur L, Garrigue I, Doize A, Dartigues JF, Helmer C. Interaction between APOE4 and herpes simplex virus type 1 in Alzheimer’s disease. Alzheimers Dement. 2020;16:200–8.

    Article  PubMed  Google Scholar 

  39. Tzeng NS, Chung CH, Lin FH, Chiang CP, Yeh CB, Huang SY, et al. Anti-herpetic medications and reduced risk of dementia in patients with herpes simplex virus infections-a nationwide, population-based cohort study in Taiwan. Neurotherapeutics. 2018;15:417–29.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lopatko Lindman K, Hemmingsson ES, Weidung B, Brannstrom J, Josefsson M, Olsson J, et al. Herpesvirus infections, antiviral treatment, and the risk of dementia-a registry-based cohort study in Sweden. Alzheimers Dement. 2021;7:e12119.

    Article  Google Scholar 

  41. De Chiara G, Piacentini R, Fabiani M, Mastrodonato A, Marcocci ME, Limongi D, et al. Recurrent herpes simplex virus-1 infection induces hallmarks of neurodegeneration and cognitive deficits in mice. PLoS Pathog. 2019;15:e1007617.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Sil A, Erfani A, Lamb N, Copland R, Riedel G, Platt B. Sex Differences in Behavior and Molecular Pathology in the 5XFAD Model. J Alzheimers Dis. 2022;85:755–78.

    Article  PubMed  Google Scholar 

  43. Zeng J, Wang Y, Luo Z, Chang LC, Yoo JS, Yan H, et al. TRIM9-mediated resolution of neuroinflammation confers neuroprotection upon ischemic stroke in mice. Cell Rep. 2019;27:549–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Huang X, Li X, Yang L, Wang P, Yan J, Nie Z, et al. Construction and optimization of herpes simplex virus vectors for central nervous system gene delivery based on CRISPR/Cas9-mediated genome editing. Curr Gene Ther. 2022;22:66–77.

    CAS  PubMed  Google Scholar 

  45. Wang E, Huang X, Ye Y, Zou S, Chen G, Yang L, et al. Persistent inflammation and neuronal loss in the mouse brain induced by a modified form of attenuated herpes simplex virus type I. Virol Sin. 2023;38:108–18.

    Article  CAS  PubMed  Google Scholar 

  46. Luo R, Fan Y, Yang J, Ye M, Zhang DF, Guo K, et al. A novel missense variant in ACAA1 contributes to early-onset Alzheimer’s disease, impairs lysosomal function, and facilitates amyloid-beta pathology and cognitive decline. Signal Transduct Target Ther. 2021;6:325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Xie XC, Han JB, Ma GQ, Feng XL, Li XH, Zou QC, et al. Emerging SARS-CoV-2 B.1.621/Mu variant is prominently resistant to inactivated vaccine-elicited antibodies. Zool Res. 2021;42:789–91.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Zeng J, Xie X, Feng XL, Xu L, Han JB, Yu D, et al. Specific inhibition of the NLRP3 inflammasome suppresses immune overactivation and alleviates COVID-19 like pathology in mice. eBioMedicine. 2022;75:103803.

    Article  CAS  PubMed  Google Scholar 

  49. Sagare AP, Bell RD, Zhao Z, Ma QY, Winkler EA, Ramanathan A, et al. Pericyte loss influences Alzheimer-like neurodegeneration in mice. Nat Commun. 2013;4:2932.

    Article  PubMed  Google Scholar 

  50. Zeng J, Dong S, Luo Z, Xie X, Fu B, Li P, et al. The zika virus capsid disrupts corticogenesis by suppressing dicer activity and miRNA biogenesis. Cell Stem Cell. 2020;27:618–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Eimer WA, Kumar DKV, Shanmugam NKN, Rodriguez AS, Mitchell T, Washicosky KJ, et al. Alzheimer’s disease-associated beta-amyloid Is rapidly seeded by herpesviridae to protect against brain infection. Neuron. 2018;100:1527–32.

    Article  CAS  PubMed  Google Scholar 

  52. Martin C, Aguila B, Araya P, Vio K, Valdivia S, Zambrano A, et al. Inflammatory and neurodegeneration markers during asymptomatic HSV-1 reactivation. J Alzheimers Dis. 2014;39:849–59.

    Article  CAS  PubMed  Google Scholar 

  53. Pascoal TA, Benedet AL, Ashton NJ, Kang MS, Therriault J, Chamoun M, et al. Microglial activation and tau propagate jointly across Braak stages. Nat Med. 2021;27:2048–9.

    Article  CAS  PubMed  Google Scholar 

  54. Gertsik N, Chiu D, Li YM. Complex regulation of gamma-secretase: from obligatory to modulatory subunits. Front Aging Neurosci. 2014;6:342.

    PubMed  Google Scholar 

  55. Wagner SL, Zhang C, Cheng S, Nguyen P, Zhang X, Rynearson KD, et al. Soluble gamma-secretase modulators selectively inhibit the production of the 42-amino acid amyloid beta peptide variant and augment the production of multiple carboxy-truncated amyloid beta species. Biochemistry. 2014;53:702–13.

    Article  CAS  PubMed  Google Scholar 

  56. Wagner SL, Rynearson KD, Duddy SK, Zhang C, Nguyen PD, Becker A, et al. Pharmacological and toxicological properties of the potent oral gamma-secretase modulator BPN-15606. J Pharm Exp Ther. 2017;362:31–44.

    Article  CAS  Google Scholar 

  57. Kounnas MZ, Danks AM, Cheng S, Tyree C, Ackerman E, Zhang X, et al. Modulation of gamma-secretase reduces beta-amyloid deposition in a transgenic mouse model of Alzheimer’s disease. Neuron. 2010;67:769–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Crump CJ, Johnson DS, Li YM. Development and mechanism of gamma-secretase modulators for Alzheimer’s disease. Biochemistry. 2013;52:3197–216.

    Article  CAS  PubMed  Google Scholar 

  59. Galvao F Jr., Grokoski KC, da Silva BB, Lamers ML, Siqueira IR. The amyloid precursor protein (APP) processing as a biological link between Alzheimer’s disease and cancer. Ageing Res Rev. 2019;49:83–91.

    Article  CAS  PubMed  Google Scholar 

  60. O’Brien RJ, Wong PC. Amyloid precursor protein processing and Alzheimer’s disease. Annu Rev Neurosci. 2011;34:185–204.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Wolfe MS. Unraveling the complexity of gamma-secretase. Semin Cell Dev Biol. 2020;105:3–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Pascoal TA, Benedet AL, Ashton NJ, Kang MS, Therriault J, Chamoun M, et al. Microglial activation and tau propagate jointly across Braak stages. Nat Med. 2021;27:1592–9.

    Article  CAS  PubMed  Google Scholar 

  63. Karch CM, Goate AM. Alzheimer’s disease risk genes and mechanisms of disease pathogenesis. Biol Psychiatry. 2015;77:43–51.

    Article  CAS  PubMed  Google Scholar 

  64. Takao M, Ohira M. Neurological post-acute sequelae of SARS-CoV-2 infection. Psychiatry Clin Neurosci. 2023;77:72–83.

    Article  PubMed  Google Scholar 

  65. Karran E, De Strooper B. The amyloid hypothesis in Alzheimer disease: new insights from new therapeutics. Nat Rev Drug Discov. 2022;21:306–18.

    Article  CAS  PubMed  Google Scholar 

  66. Bjornevik K, Cortese M, Healy BC, Kuhle J, Mina MJ, Leng Y, et al. Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis. Science. 2022;375:296–301.

    Article  CAS  PubMed  Google Scholar 

  67. Lanz TV, Brewer RC, Ho PP, Moon JS, Jude KM, Fernandez D, et al. Clonally expanded B cells in multiple sclerosis bind EBV EBNA1 and GlialCAM. Nature. 2022;603:321–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yang D, Li XJ, Tu DZ, Li XL, Wei B. Advances in viral encephalitis: Viral transmission, host immunity, and experimental animal models. Zool Res. 2023;44:525–42.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Junjie Zhang from the Wuhan University in China for providing HSV-1 strain plasmid, Dr. Xinwei Huang from the Kunming Medical University in China for offering HSV-1 strain, and Prof. Yong-Gang Yao lab from the KIZ for providing experimental instrument convenience. This work was supported by the Ministry of Science and Technology of China (2022ZD0213500), the National Natural Science Foundation of China (92369111), the National Science Foundation of Heilongjiang Province (LH2022H031), the Yunnan Fundamental Research Projects (202201AW070020, 202301AS070065), the Science and Technology Project Fund of Harbin Science and Technology Bureau (2023ZCJNS100), and the Open Project of Yunnan Key Laboratory of Biodiversity Information (BIKF22-01).

Author information

Authors and Affiliations

Authors

Contributions

All authors read and approved the final version of the manuscript. J.Z. and X.M. conceived of the research and designed the study. J.Z., M.Z., and G.M. wrote the manuscript. G.M., M.Z., X.Y., and X.L. performed the experiments. E.W., X.X.X., and J.B.Z. discussed the data. All authors commented on the manuscript.

Corresponding authors

Correspondence to Xueling Ma or Jianxiong Zeng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, M., Ma, G., Yan, X. et al. Microbial infection promotes amyloid pathology in a mouse model of Alzheimer’s disease via modulating γ-secretase. Mol Psychiatry (2024). https://doi.org/10.1038/s41380-024-02428-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41380-024-02428-5

Search

Quick links