Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

SRC family kinase inhibition rescues molecular and behavioral phenotypes, but not protein interaction network dynamics, in a mouse model of Fragile X syndrome

Abstract

Glutamatergic synapses encode information from extracellular inputs using dynamic protein interaction networks (PINs) that undergo widespread reorganization following synaptic activity, allowing cells to distinguish between signaling inputs and generate coordinated cellular responses. Here, we investigate how Fragile X Messenger Ribonucleoprotein (FMRP) deficiency disrupts signal transduction through a glutamatergic synapse PIN downstream of NMDA receptor or metabotropic glutamate receptor (mGluR) stimulation. In cultured cortical neurons or acute cortical slices from P7, P17 and P60 FMR1−/y mice, the unstimulated protein interaction network state resembled that of wildtype littermates stimulated with mGluR agonists, demonstrating resting state pre-activation of mGluR signaling networks. In contrast, interactions downstream of NMDAR stimulation were similar to WT. We identified the Src family kinase (SFK) Fyn as a network hub, because many interactions involving Fyn were pre-activated in FMR1−/y animals. We tested whether targeting SFKs in FMR1−/y mice could modify disease phenotypes, and found that Saracatinib (SCB), an SFK inhibitor, normalized elevated basal protein synthesis, novel object recognition memory and social behavior in FMR1−/y mice. However, SCB treatment did not normalize the PIN to a wild-type-like state in vitro or in vivo, but rather induced extensive changes to protein complexes containing Shank3, NMDARs and Fyn. We conclude that targeting abnormal nodes of a PIN can identify potential disease-modifying drugs, but behavioral rescue does not correlate with PIN normalization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: FMR1−/y cultured cortical neurons show tonic activation of DHPG-responsive protein interactions.
Fig. 2: Hyperactive tonic DHPG-like signaling throughout development in FMR1−/y brain slices.
Fig. 3: Pharmacological reduction of SFK activity restores protein synthesis rates in FMR1−/y acute cortical slices.
Fig. 4: SCB treatment rescues impaired social approach and object recognition memory in FMR1−/y mice.
Fig. 5: Acute SCB does not normalize protein interaction networks.
Fig. 6: SCB does not normalize protein interaction networks in vivo.

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available within the paper and its Supplementary Information.

References

  1. Choquet D, Triller A. The dynamic synapse. Neuron. 2013;80:691–703.

    Article  CAS  PubMed  Google Scholar 

  2. Chen X, Wu X, Wu H, Zhang M. Phase separation at the synapse. Nat Neurosci. 2020;23:301–10.

    Article  CAS  PubMed  Google Scholar 

  3. Coba MP, Pocklington AJ, Collins MO, Kopanitsa MV, Uren RT, Swamy S, et al. Neurotransmitters drive combinatorial multistate postsynaptic density networks. Sci Signal. 2009;2:ra19.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Pocklington AJ, Cumiskey M, Armstrong JD, Grant SGN. The proteomes of neurotransmitter receptor complexes form modular networks with distributed functionality underlying plasticity and behaviour. Mol Syst Biol. 2006;2:2006.0023.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lautz JD, Brown EA, Williams VanSchoiack AA, Smith SEP. Synaptic activity induces input-specific rearrangements in a targeted synaptic protein interaction network. J Neurochem. 2018;146:540–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Heavner WE, Lautz JD, Speed HE, Gniffke EP, Immendorf KB, Welsh JP, et al. Remodeling of the Homer-Shank interactome mediates homeostatic plasticity. Sci Signal. 2021;14:eabd7325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lautz JD, Tsegay KB, Zhu Z, Gniffke EP, Welsh JP, Smith SEP. Synaptic protein interaction networks encode experience by assuming stimulus-specific and brain-region-specific states. Cell Rep. 2021;37:110076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Schrum AG, Gil D. Robustness and specificity in signal transduction via physiologic protein interaction networks. Clin Exp Pharm. 2012;2:S3.001.

    Google Scholar 

  9. Neier SC, Ferrer A, Wilton KM, Smith SEP, Kelcher AMH, Pavelko KD, et al. The early proximal αβ TCR signalosome specifies thymic selection outcome through a quantitative protein interaction network. Sci Immunol. 2019;4:eaal2201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Brown EA, Lautz JD, Davis TR, Gniffke EP, VanSchoiack AAW, Neier SC, et al. Clustering the autisms using glutamate synapse protein interaction networks from cortical and hippocampal tissue of seven mouse models. Mol Autism. 2018;9:48.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chen JA, Peñagarikano O, Belgard TG, Swarup V, Geschwind DH. The emerging picture of autism spectrum disorder: genetics and pathology. Annu Rev Pathol. 2015;10:111–44.

    Article  CAS  PubMed  Google Scholar 

  12. Fu JM, Satterstrom FK, Peng M, Brand H, Collins RL, Dong S, et al. Rare coding variation provides insight into the genetic architecture and phenotypic context of autism. Nat Genet. 2022;54:1320–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lautz J, Zhu Z, Speed HE, Smith SEP, Welsh JP. Shank3 mutations impair electrical synapse scaffolding and transmission in mouse brain. BioRxiv. 2021:2021.03.25.437056.

  14. Falkovich R, Danielson EW, Perez de Arce K, Wamhoff E-C, Strother J, Lapteva AP, et al. A synaptic molecular dependency network in knockdown of autism- and schizophrenia-associated genes revealed by multiplexed imaging. Cell Rep. 2023;42:112430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Heavner WE, Smith SEP. Resolving the synaptic versus developmental dichotomy of autism risk genes. Trends Neurosci. 2020;43:227–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mullins C, Fishell G, Tsien RW. Unifying views of autism spectrum disorders: a consideration of autoregulatory feedback loops. Neuron. 2016;89:1131–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Darnell JC, Van Driesche SJ, Zhang C, Hung KYS, Mele A, Fraser CE, et al. FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell. 2011;146:247–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bassell GJ, Warren ST. Fragile X syndrome: loss of local mRNA regulation alters synaptic development and function. Neuron. 2008;60:201–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hagerman RJ, Berry-Kravis E, Hazlett HC, Bailey DB, Moine H, Kooy RF, et al. Fragile X syndrome. Nat Rev Dis Prim. 2017;3:1–19.

    Google Scholar 

  20. Utami KH, Yusof NABM, Kwa JE, Peteri U-K, Castrén ML, Pouladi MA. Elevated de novo protein synthesis in FMRP-deficient human neurons and its correction by metformin treatment. Mol Autism. 2020;11:41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Osterweil EK, Krueger DD, Reinhold K, Bear MF. Hypersensitivity to mGluR5 and ERK1/2 leads to excessive protein synthesis in the hippocampus of a mouse model of fragile X syndrome. J Neurosci. 2010;30:15616–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Richter JD, Bassell GJ, Klann E. Dysregulation and restoration of translational homeostasis in fragile X syndrome. Nat Rev Neurosci. 2015;16:595–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Louros SR, Seo SS, Maio B, Martinez-Gonzalez C, Gonzalez-Lozano MA, Muscas M, et al. Excessive proteostasis contributes to pathology in fragile X syndrome. Neuron. 2023;111:508–25.e7.

    Article  CAS  PubMed  Google Scholar 

  24. Irwin SA, Galvez R, Greenough WT. Dendritic spine structural anomalies in fragile-X mental retardation syndrome. Cereb Cortex N. Y N. 1991. 2000;10:1038–44.

    CAS  Google Scholar 

  25. Booker SA, Domanski APF, Dando OR, Jackson AD, Isaac JTR, Hardingham GE, et al. Altered dendritic spine function and integration in a mouse model of fragile X syndrome. Nat Commun. 2019;10:4813.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bear MF, Huber KM, Warren ST. The mGluR theory of fragile X mental retardation. Trends Neurosci. 2004;27:370–7.

    Article  CAS  PubMed  Google Scholar 

  27. Huber KM, Gallagher SM, Warren ST, Bear MF. Altered synaptic plasticity in a mouse model of fragile X mental retardation. Proc Natl Acad Sci. 2002;99:7746–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Toft AKH, Lundbye CJ, Banke TG. Dysregulated NMDA-receptor signaling inhibits long-term depression in a mouse model of fragile X syndrome. J Neurosci. 2016;36:9817–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ethridge LE, White SP, Mosconi MW, Wang J, Pedapati EV, Erickson CA, et al. Neural synchronization deficits linked to cortical hyper-excitability and auditory hypersensitivity in fragile X syndrome. Mol Autism. 2017;8:22.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wang J, Ethridge LE, Mosconi MW, White SP, Binder DK, Pedapati EV, et al. A resting EEG study of neocortical hyperexcitability and altered functional connectivity in fragile X syndrome. J Neurodev Disord. 2017;9:11.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lovelace JW, Ethell IM, Binder DK, Razak KA. Translation-relevant EEG phenotypes in a mouse model of fragile X syndrome. Neurobiol Dis. 2018;115:39–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sharma A, Hoeffer CA, Takayasu Y, Miyawaki T, McBride SM, Klann E, et al. Dysregulation of mTOR signaling in fragile X syndrome. J Neurosci J Soc Neurosci. 2010;30:694–702.

    Article  CAS  Google Scholar 

  33. Brown EA, Neier SC, Neuhauser C, Schrum AG, Smith SEP. Quantification of protein interaction network dynamics using multiplexed co-immunoprecipitation. JoVE J Vis Exp. 2019:e60029.

  34. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinforma. 2008;9:559.

    Article  Google Scholar 

  35. Guo W, Ceolin L, Collins KA, Perroy J, Huber KM. Elevated CaMKIIα and hyperphosphorylation of homer mediate circuit dysfunction in a fragile X syndrome mouse model. Cell Rep. 2015;13:2297–311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Smith SEP, Neier SC, Reed BK, Davis TR, Sinnwell JP, Eckel-Passow JE, et al. Multiplex matrix network analysis of protein complexes in the human TCR signalosome. Sci Signal. 2016;9:rs7.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Stoppel DC, McCamphill PK, Senter RK, Heynen AJ, Bear MF. mGluR5 negative modulators for fragile X: treatment resistance and persistence. Front Psychiatry. 2021;12.

  38. Um JW, Kaufman AC, Kostylev M, Heiss JK, Stagi M, Takahashi H, et al. Metabotropic glutamate receptor 5 is a coreceptor for alzheimer Aβ oligomer bound to cellular prion protein. Neuron. 2013;79:887–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mao L-M, Wang JQ. Dopamine D2 receptors are involved in the regulation of Fyn and metabotropic glutamate receptor 5 phosphorylation in the rat striatum in vivo. J Neurosci Res. 2016;94:329–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Trepanier CH, Jackson MF, MacDonald JF. Regulation of NMDA receptors by the tyrosine kinase Fyn. FEBS J. 2012;279:12–9.

    Article  CAS  PubMed  Google Scholar 

  41. Yang H, Wang L, Zang C, Wang Y, Shang J, Zhang Z, et al. Src inhibition attenuates neuroinflammation and protects dopaminergic neurons in Parkinson’s disease models. Front Neurosci. 2020;14.

  42. Kaufman AC, Salazar SV, Haas LT, Yang J, Kostylev MA, Jeng AT, et al. Fyn inhibition rescues established memory and synapse loss in Alzheimer mice. Ann Neurol. 2015;77:953–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Smith LM, Zhu R, Strittmatter SM. Disease-modifying benefit of Fyn blockade persists after washout in mouse Alzheimer’s model. Neuropharmacology. 2018;130:54–61.

    Article  CAS  PubMed  Google Scholar 

  44. Tang SJ, Fesharaki-Zadeh A, Takahashi H, Nies SH, Smith LM, Luo A, et al. Fyn kinase inhibition reduces protein aggregation, increases synapse density and improves memory in transgenic and traumatic Tauopathy. Acta Neuropathol Commun. 2020;8:96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sharma S, Carlson S, Puttachary S, Sarkar S, Showman L, Putra M, et al. Role of the Fyn-PKCδ signaling in SE-induced neuroinflammation and epileptogenesis in experimental models of temporal lobe epilepsy. Neurobiol Dis. 2018;110:102–21.

    Article  CAS  PubMed  Google Scholar 

  46. Luo X-M, Zhao J, Wu W-Y, Fu J, Li Z-Y, Zhang M, et al. Post-status epilepticus treatment with the Fyn inhibitor, saracatinib, improves cognitive function in mice. BMC Neurosci. 2021;22:2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gage M, Putra M, Wachter L, Dishman K, Gard M, Gomez-Estrada C, et al. Saracatinib, a Src tyrosine kinase inhibitor, as a disease modifier in the rat DFP model: sex differences, neurobehavior, gliosis, neurodegeneration, and nitro-oxidative stress. Antioxid Basel Switz. 2021;11:61.

    Article  Google Scholar 

  48. Gage M, Putra M, Gomez-Estrada C, Golden M, Wachter L, Gard M, et al. Differential impact of severity and duration of status epilepticus, medical countermeasures, and a disease-modifier, saracatinib, on brain regions in the rat diisopropylfluorophosphate model. Front Cell Neurosci. 2021;15:772868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. van Dyck CH, Nygaard HB, Chen K, Donohue MC, Raman R, Rissman RA, et al. Effect of AZD0530 on cerebral metabolic decline in Alzheimer disease: a randomized clinical trial. JAMA Neurol. 2019;76:1219–29.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Schmidt EK, Clavarino G, Ceppi M, Pierre P. SUnSET, a nonradioactive method to monitor protein synthesis. Nat Methods. 2009;6:275–7.

    Article  CAS  PubMed  Google Scholar 

  51. Yang M, Silverman JL, Crawley JN. Automated three-chambered social approach task for mice. Curr Protoc Neurosci Editor Board Jacqueline N. Crawley Al. 2011;CHAPTER 8:Unit-8.26.

    Google Scholar 

  52. Yan QJ, Rammal M, Tranfaglia M, Bauchwitz RP. Suppression of two major fragile X syndrome mouse model phenotypes by the mGluR5 antagonist MPEP. Neuropharmacology. 2005;49:1053–66.

    Article  CAS  PubMed  Google Scholar 

  53. Dölen G, Osterweil E, Rao BSS, Smith GB, Auerbach BD, Chattarji S, et al. Correction of fragile X syndrome in mice. Neuron. 2007;56:955–62.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Dine E, Gil AA, Uribe G, Brangwynne CP, Toettcher JE. Protein phase separation provides long-term memory of transient spatial stimuli. Cell Syst. 2018;6:655–63.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zeng M, Chen X, Guan D, Xu J, Wu H, Tong P, et al. Reconstituted postsynaptic density as a molecular platform for understanding synapse formation and plasticity. Cell. 2018;174:1172–87.e16.

    Article  CAS  PubMed  Google Scholar 

  56. Sawicka K, Pyronneau A, Chao M, Bennett MVL, Zukin RS. Elevated ERK/p90 ribosomal S6 kinase activity underlies audiogenic seizure susceptibility in fragile X mice. Proc Natl Acad Sci USA. 2016;113:E6290–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wang X, Snape M, Klann E, Stone JG, Singh A, Petersen RB, et al. Activation of the extracellular signal-regulated kinase pathway contributes to the behavioral deficit of fragile x-syndrome. J Neurochem. 2012;121:672–9.

    Article  CAS  PubMed  Google Scholar 

  58. Ronesi JA, Collins KA, Hays SA, Tsai N-P, Guo W, Birnbaum SG, et al. Disrupted Homer scaffolds mediate abnormal mGluR5 function in a mouse model of fragile X syndrome. Nat Neurosci. 2012;15:431–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Aloisi E, Le Corf K, Dupuis J, Zhang P, Ginger M, Labrousse V, et al. Altered surface mGluR5 dynamics provoke synaptic NMDAR dysfunction and cognitive defects in Fmr1 knockout mice. Nat Commun. 2017;8:1103.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Luján R, Nusser Z, Roberts JDB, Shigemoto R, Somogyi P. Perisynaptic location of metabotropic glutamate receptors mGluR1 and mGluR5 on dendrites and dendritic spines in the rat hippocampus. Eur J Neurosci. 1996;8:1488–1500.

    Article  PubMed  Google Scholar 

  61. Goncalves J, Bartol TM, Camus C, Levet F, Menegolla AP, Sejnowski TJ, et al. Nanoscale co-organization and coactivation of AMPAR, NMDAR, and mGluR at excitatory synapses. Proc Natl Acad Sci. 2020;117:14503–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Scheefhals N, Westra M, MacGillavry HD. mGluR5 is transiently confined in perisynaptic nanodomains to shape synaptic function. Nat Commun. 2023;14:244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Moutin E, Raynaud F, Roger J, Pellegrino E, Homburger V, Bertaso F, et al. Dynamic remodeling of scaffold interactions in dendritic spines controls synaptic excitability. J Cell Biol. 2012;198:251–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bertaso F, Roussignol G, Worley P, Bockaert J, Fagni L, Ango F. Homer1a-dependent crosstalk between NMDA and metabotropic glutamate receptors in mouse neurons. PLOS ONE. 2010;5:e9755.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Grant SG, O’Dell TJ, Karl KA, Stein PL, Soriano P, Kandel ER. Impaired long-term potentiation, spatial learning, and hippocampal development in fyn mutant mice. Science. 1992;258:1903–10.

    Article  CAS  PubMed  Google Scholar 

  66. Lisman J, Schulman H, Cline H. The molecular basis of CaMKII function in synaptic and behavioural memory. Nat Rev Neurosci. 2002;3:175–90.

    Article  CAS  PubMed  Google Scholar 

  67. Kojima N, Wang J, Mansuy IM, Grant SGN, Mayford M, Kandel ER. Rescuing impairment of long-term potentiation in fyn-deficient mice by introducing Fyn transgene. Proc Natl Acad Sci. 1997;94:4761–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kojima N, Sakamoto T, Endo S, Niki H. Impairment of conditioned freezing to tone, but not to context, in Fyn-transgenic mice: relationship to NMDA receptor subunit 2B function. Eur J Neurosci. 2005;21:1359–69.

    Article  CAS  PubMed  Google Scholar 

  69. Morisot N, Berger AL, Phamluong K, Cross A, Ron D. The Fyn kinase inhibitor, AZD0530, suppresses mouse alcohol self-administration and seeking. Addict Biol. 2019;24:1227–34.

    Article  CAS  PubMed  Google Scholar 

  70. Babus LW, Little EM, Keenoy KE, Minami SS, Chen E, Song JM, et al. Decreased dendritic spine density and abnormal spine morphology in Fyn knockout mice. Brain Res. 2011;1415:96–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Huerta PT, Scearce KA, Farris SM, Empson RM, Prusky GT. Preservation of spatial learning in fyn tyrosine kinase knockout mice. Neuroreport. 1996;7:1685–9.

    Article  CAS  PubMed  Google Scholar 

  72. Jin D-Z, Mao L-M, Wang JQ. An essential role of Fyn in the modulation of metabotropic glutamate receptor 1 in neurons. ENeuro. 2017;4:ENEURO.0096–17.2017.

    Article  PubMed  Google Scholar 

  73. Hayashi T, Huganir RL. Tyrosine phosphorylation and regulation of the AMPA receptor by Src family tyrosine kinases. J Neurosci. 2004;24:6152–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kaye S, Aamdal S, Jones R, Freyer G, Pujade-Lauraine E, de Vries EGE, et al. Phase I study of saracatinib (AZD0530) in combination with paclitaxel and/or carboplatin in patients with solid tumours. Br J Cancer. 2012;106:1728–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Baselga J, Cervantes A, Martinelli E, Chirivella I, Hoekman K, Hurwitz HI, et al. Phase I safety, pharmacokinetics, and inhibition of Src activity study of saracatinib in patients with solid tumors. Clin Cancer Res. 2010;16:4876–83.

    Article  CAS  PubMed  Google Scholar 

  76. Michalon A, Sidorov M, Ballard TM, Ozmen L, Spooren W, Wettstein JG, et al. Chronic pharmacological mGlu5 inhibition corrects fragile X in adult mice. Neuron. 2012;74:49–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Osterweil EK, Chuang S-C, Chubykin AA, Sidorov M, Bianchi R, Wong RKS, et al. Lovastatin corrects excess protein synthesis and prevents epileptogenesis in a mouse model of fragile X syndrome. Neuron. 2013;77:243–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gantois I, Khoutorsky A, Popic J, Aguilar-Valles A, Freemantle E, Cao R, et al. Metformin ameliorates core deficits in a mouse model of fragile X syndrome. Nat Med. 2017;23:674–7.

    Article  CAS  PubMed  Google Scholar 

  79. Asiminas A, Jackson AD, Louros SR, Till SM, Spano T, Dando O, et al. Sustained correction of associative learning deficits after brief, early treatment in a rat model of fragile X syndrome. Sci Transl Med. 2019;11:eaao0498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Saré RM, Song A, Loutaev I, Cook A, Maita I, Lemons A, et al. Negative effects of chronic rapamycin treatment on behavior in a mouse model of fragile X syndrome. Front Mol Neurosci. 2018;10.

  81. McCamphill PK, Stoppel LJ, Senter RK, Lewis MC, Heynen AJ, Stoppel DC, et al. Selective inhibition of glycogen synthase kinase 3α corrects pathophysiology in a mouse model of fragile X syndrome. Sci Transl Med. 2020;12:eaam8572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Fmr1 knockout mice: a model to study fragile X mental retardation. The Dutch-Belgian fragile X consortium. Cell. 1994;78:23–33.

    Google Scholar 

  83. Kooy RF, D’Hooge R, Reyniers E, Bakker CE, Nagels G, De Boulle K, et al. Transgenic mouse model for the fragile X syndrome. Am J Med Genet. 1996;64:241–5.

    Article  CAS  PubMed  Google Scholar 

  84. McNaughton CH, Moon J, Strawderman MS, Maclean KN, Evans J, Strupp BJ. Evidence for social anxiety and impaired social cognition in a mouse model of fragile X syndrome. Behav Neurosci. 2008;122:293–300.

    Article  PubMed  Google Scholar 

  85. Spencer CM, Alekseyenko O, Serysheva E, Yuva-Paylor LA, Paylor R. Altered anxiety-related and social behaviors in the Fmr1 knockout mouse model of fragile X syndrome. Genes Brain Behav. 2005;4:420–30.

    Article  CAS  PubMed  Google Scholar 

  86. Qin M, Huang T, Kader M, Krych L, Xia Z, Burlin T, et al. R-Baclofen reverses a social behavior deficit and elevated protein synthesis in a mouse model of fragile X syndrome. Int J Neuropsychopharmacol. 2015;18:pyv034.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Liu Z-H, Chuang D-M, Smith CB. Lithium ameliorates phenotypic deficits in a mouse model of fragile X syndrome. Int J Neuropsychopharmacol. 2011;14:618–30.

    Article  CAS  PubMed  Google Scholar 

  88. Liu Z-H, Smith CB. Dissociation of social and nonsocial anxiety in a mouse model of fragile X syndrome. Neurosci Lett. 2009;454:62–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Mineur YS, Huynh LX, Crusio WE. Social behavior deficits in the Fmr1 mutant mouse. Behav Brain Res. 2006;168:172–5.

    Article  CAS  PubMed  Google Scholar 

  90. Wu C-H, Tatavarty V, Jean Beltran PM, Guerrero AA, Keshishian H, Krug K, et al. A bidirectional switch in the Shank3 phosphorylation state biases synapses toward up- or downscaling. ELife. 2022;11:e74277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Jeong J, Li Y, Roche KW. CaMKII phosphorylation regulates synaptic enrichment of Shank3. ENeuro. 2021;8:ENEURO.0481–20.2021.

    Article  CAS  PubMed  Google Scholar 

  92. Ting JT, Lee BR, Chong P, Soler-Llavina G, Cobbs C, Koch C, et al. Preparation of Acute Brain Slices Using an Optimized N-Methyl-D-glucamine Protective Recovery Method. J Vis Exp JoVE. 2018. https://doi.org/10.3791/53825.

  93. Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostat Oxf Engl. 2007;8:118–27.

    Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants MH113545 and MH121487 (to SEPS), a fellowship from the FRAXA research foundation (to VS), and a NARSAD grant from the Brain and Behavior Research Foundation (to SEPS). The authors thank all members of the SEPS laboratory, as well as Drs. B.K. Reed and M. Chau for providing insight and thoughtful discussions.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: SEPS and JDL. Investigation: VS, JDL, FH. Data analysis: VS, JDL, SEPS. Writing: VS and SEPS. Funding acquisition and supervision: VS and SEPS.

Corresponding author

Correspondence to Stephen E. P. Smith.

Ethics declarations

Competing interests

Seattle Children’s Research Institute has filed a preliminary patent application describing the use of SCB in Fragile X. The authors declare no other competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stamenkovic, V., Lautz, J.D., Harsh, F.M. et al. SRC family kinase inhibition rescues molecular and behavioral phenotypes, but not protein interaction network dynamics, in a mouse model of Fragile X syndrome. Mol Psychiatry (2024). https://doi.org/10.1038/s41380-024-02418-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41380-024-02418-7

Search

Quick links