Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Expert Review
  • Published:

The role of polyunsaturated fatty acids in the neurobiology of major depressive disorder and suicide risk

Abstract

Long-chain polyunsaturated fatty acids (LC-PUFAs) are obtained from diet or derived from essential shorter-chain fatty acids, and are crucial for brain development and functioning. Fundamentally, LC-PUFAs’ neurobiological effects derive from their physicochemical characteristics, including length and double bond configuration, which differentiate LC-PUFA species and give rise to functional differences between n(omega)-3 and n-6 LC-PUFAs. LC-PUFA imbalances are implicated in psychiatric disorders, including major depression and suicide risk. Dietary intake and genetic variants in enzymes involved in biosynthesis of LC-PUFAs from shorter chain fatty acids influence LC-PUFA status. Domains impacted by LC-PUFAs include 1) cell signaling, 2) inflammation, and 3) bioenergetics. 1) As major constituents of lipid bilayers, LC-PUFAs are determinants of cell membrane properties of viscosity and order, affecting lipid rafts, which play a role in regulation of membrane-bound proteins involved in cell-cell signaling, including monoaminergic receptors and transporters. 2) The n-3:n-6 LC-PUFA balance profoundly influences inflammation. Generally, metabolic products of n-6 LC-PUFAs (eicosanoids) are pro-inflammatory, while those of n-3 LC-PUFAs (docosanoids) participate in the resolution of inflammation. Additionally, n-3 LC-PUFAs suppress microglial activation and the ensuing proinflammatory cascade. 3) N-3 LC-PUFAs in the inner mitochondrial membrane affect oxidative stress, suppressing production of and scavenging reactive oxygen species (ROS), with neuroprotective benefits. Until now, this wealth of knowledge about LC-PUFA biomechanisms has not been adequately tapped to develop translational studies of LC-PUFA clinical effects in humans. Future studies integrating neurobiological mechanisms with clinical outcomes may suggest ways to identify depressed individuals most likely to respond to n-3 LC-PUFA supplementation, and mechanistic research may generate new treatment strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of DHA effects on membrane-bound proteins in the cell membrane lipid bilayer.
Fig. 2: Schematic of n-3 LC-PUFA effects on microglial-mediated inflammatory pathways.

Similar content being viewed by others

References

  1. Jump DB. The biochemistry of n-3 polyunsaturated fatty acids. J Biol Chem. 2002;277:8755–8.

    Article  CAS  PubMed  Google Scholar 

  2. Bazinet RP, Laye S. Polyunsaturated fatty acids and their metabolites in brain function and disease. Nat Rev Neurosci. 2014;15:771–85.

    Article  CAS  PubMed  Google Scholar 

  3. Liu JJ, Green P, John Mann J, Rapoport SI, Sublette ME. Pathways of polyunsaturated fatty acid utilization: implications for brain function in neuropsychiatric health and disease. Brain Res. 2015;1597:220–46.

    Article  CAS  PubMed  Google Scholar 

  4. Nadjar A, Leyrolle Q, Joffre C, Laye S. Bioactive lipids as new class of microglial modulators: When nutrition meets neuroimunology. Prog Neuropsychopharmacol Biol Psychiatry. 2017;79:19–26.

    Article  CAS  PubMed  Google Scholar 

  5. Cisbani G, Metherel AH, Smith ME, Bazinet RP. Murine and human microglial cells are relatively enriched with eicosapentaenoic acid compared to the whole brain. Neurochem Int. 2021;150:105154.

    Article  CAS  PubMed  Google Scholar 

  6. Rey C, Nadjar A, Buaud B, Vaysse C, Aubert A, Pallet V, et al. Resolvin D1 and E1 promote resolution of inflammation in microglial cells in vitro. Brain Behav Immun. 2016;55:249–59.

    Article  CAS  PubMed  Google Scholar 

  7. Yang TX, Zhu YF, Wang CC, Yang JY, Xue CH, Huang QR, et al. EPA-enriched plasmalogen attenuates the cytotoxic effects of LPS-stimulated microglia on the SH-SY5Y neuronal cell line. Brain Res Bull. 2022;186:143–52.

    Article  CAS  PubMed  Google Scholar 

  8. Dreyer C, Keller H, Mahfoudi A, Laudet V, Krey G, Wahli W. Positive regulation of the peroxisomal beta-oxidation pathway by fatty acids through activation of peroxisome proliferator-activated receptors (PPAR). Biol Cell. 1993;77:67–76.

    Article  CAS  PubMed  Google Scholar 

  9. Gold PW. The PPARg System in Major Depression: Pathophysiologic and Therapeutic Implications. Int J Mol Sci. 2021;22:9248.

  10. Cao D, Kevala K, Kim J, Moon HS, Jun SB, Lovinger D, et al. Docosahexaenoic acid promotes hippocampal neuronal development and synaptic function. J Neurochem. 2009;111:510–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Innis SM. Dietary (n-3) fatty acids and brain development. J Nutr. 2007;137:855–9.

    Article  CAS  PubMed  Google Scholar 

  12. Morris G, Walder K, Puri BK, Berk M, Maes M. The Deleterious Effects of Oxidative and Nitrosative Stress on Palmitoylation, Membrane Lipid Rafts and Lipid-Based Cellular Signalling: New Drug Targets in Neuroimmune Disorders. Mol Neurobiol. 2016;53:4638–58.

    Article  CAS  PubMed  Google Scholar 

  13. Rapoport SI. Translational studies on regulation of brain docosahexaenoic acid (DHA) metabolism in vivo. PLEFA. 2013;88:79–85.

    CAS  Google Scholar 

  14. Kiecolt-Glaser JK, Epel ES, Belury MA, Andridge R, Lin J, Glaser R, et al. Omega-3 fatty acids, oxidative stress, and leukocyte telomere length: A randomized controlled trial. Brain Behav Immun. 2013;28:16–24.

  15. Lin PY, Huang SY, Su KP. A Meta-Analytic Review of Polyunsaturated Fatty Acid Compositions in Patients with Depression. Biol Psychiatry. 2010;68:140–7.

    Article  CAS  PubMed  Google Scholar 

  16. McNamara RK, Hahn CG, Jandacek R, Rider T, Tso P, Stanford KE, et al. Selective deficits in the omega-3 fatty acid docosahexaenoic acid in the postmortem orbitofrontal cortex of patients with major depressive disorder. Biol Psychiatry. 2007;62:17–24.

    Article  CAS  PubMed  Google Scholar 

  17. Huan M, Hamazaki K, Sun Y, Itomura M, Liu H, Kang W, et al. Suicide attempt and n-3 fatty acid levels in red blood cells: a case control study in China. Biol Psychiatry. 2004;56:490–6.

    Article  CAS  PubMed  Google Scholar 

  18. Sublette ME, Hibbeln JR, Galfalvy H, Oquendo MA, Mann JJ. Omega-3 polyunsaturated essential fatty acid status as a predictor of future suicide risk. Am J Psychiatry. 2006;163:1100–2.

    Article  PubMed  Google Scholar 

  19. Lewis MD, Hibbeln JR, Johnson JE, Lin YH, Hyun DY, Loewke JD Suicide deaths of active-duty US military and omega-3 fatty-acid status: a case-control comparison. J Clin Psychiatry. 2011;72:1585–90.

  20. Zanarini MC, Frankenburg FR. omega-3 Fatty acid treatment of women with borderline personality disorder: a double-blind, placebo-controlled pilot study. Am J psychiatry. 2003;160:167–9.

    Article  PubMed  Google Scholar 

  21. van Heeringen K, Mann JJ. The neurobiology of suicide. lancet Psychiatry. 2014;1:63–72.

    Article  PubMed  Google Scholar 

  22. Beier AM, Lauritzen L, Galfalvy HC, Cooper TB, Oquendo MA, Grunebaum MF, et al. Low plasma eicosapentaenoic acid levels are associated with elevated trait aggression and impulsivity in major depressive disorder with a history of comorbid substance use disorder. J Psychiatr Res. 2014;57:133–40.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Buydens-Branchey L, Branchey M, McMakin DL, Hibbeln JR. Polyunsaturated fatty acid status and aggression in cocaine addicts. Drug Alcohol Depend. 2003;71:319–23.

    Article  CAS  PubMed  Google Scholar 

  24. Garland MR, Hallahan B, McNamara M, Carney PA, Grimes H, Hibbeln JR, et al. Lipids and essential fatty acids in patients presenting with self-harm. Br J Psychiatry. 2007;190:112–7.

    Article  PubMed  Google Scholar 

  25. Bloch MH, Hannestad J. Omega-3 fatty acids for the treatment of depression: systematic review and meta-analysis. Mol Psychiatry. 2012;17:1272–82.

    Article  CAS  PubMed  Google Scholar 

  26. Suradom C, Suttajit S, Oon-Arom A, Maneeton B, Srisurapanont M. Omega-3 polyunsaturated fatty acid (n-3 PUFA) supplementation for prevention and treatment of perinatal depression: a systematic review and meta-analysis of randomized-controlled trials. Nord J Psychiatry. 2021;75:239–46.

    Article  PubMed  Google Scholar 

  27. Bai ZG, Bo A, Wu SJ, Gai QY, Chi I. Omega-3 polyunsaturated fatty acids and reduction of depressive symptoms in older adults: A systematic review and meta-analysis. J Affect Disord. 2018;241:241–8.

    Article  CAS  PubMed  Google Scholar 

  28. Deane KHO, Jimoh OF, Biswas P, O’Brien A, Hanson S, Abdelhamid AS, et al. Omega-3 and polyunsaturated fat for prevention of depression and anxiety symptoms: systematic review and meta-analysis of randomised trials. Br J Psychiatry. 2021;218:135–42.

    Article  PubMed  Google Scholar 

  29. Liao Y, Xie B, Zhang H, He Q, Guo L, Subramaniapillai M, et al. Efficacy of omega-3 PUFAs in depression: A meta-analysis. Transl Psychiatry. 2019;9:190.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bavaresco DV, Uggioni MLR, Ferraz SD, Marques RMM, Simon CS, Dagostin VS, et al. Efficacy of infliximab in treatment-resistant depression: A systematic review and meta-analysis. Pharm Biochem Behav. 2020;188:172838.

    Article  CAS  Google Scholar 

  31. Sarris J, Murphy J, Mischoulon D, Papakostas GI, Fava M, Berk M, et al. Adjunctive Nutraceuticals for Depression: A Systematic Review and Meta-Analyses. Am J Psychiatry. 2016;173:575–87.

    Article  PubMed  Google Scholar 

  32. Hallahan B, Ryan T, Hibbeln JR, Murray IT, Glynn S, Ramsden CE, et al. Efficacy of omega-3 highly unsaturated fatty acids in the treatment of depression. Br J Psychiatry. 2016;209:192–201.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Mocking RJ, Harmsen I, Assies J, Koeter MW, Ruhé HG, Schene AH. Meta-analysis and meta-regression of omega-3 polyunsaturated fatty acid supplementation for major depressive disorder. Transl Psychiatry. 2016;6:e756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Grosso G, Pajak A, Marventano S, Castellano S, Galvano F, Bucolo C, et al. Role of omega-3 fatty acids in the treatment of depressive disorders: a comprehensive meta-analysis of randomized clinical trials. PLoS One. 2014;9:e96905.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Lin PY, Mischoulon D, Freeman MP, Matsuoka Y, Hibbeln J, Belmaker RH, et al. Are omega-3 fatty acids antidepressants or just mood-improving agents? The effect depends upon diagnosis, supplement preparation, and severity of depression. Mol Psychiatry. 2012;17:1161–3. author reply 1163-1167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sublette ME, Ellis SP, Geant AL, Mann JJ Meta-analysis of the effects of eicosapentaenoic acid (EPA) in clinical trials in depression. J Clin Psychiatry. 2011;72:1577–84.

  37. Martins JG, Bentsen H, Puri BK. Eicosapentaenoic acid appears to be the key omega-3 fatty acid component associated with efficacy in major depressive disorder: a critique of Bloch and Hannestad and updated meta-analysis. Mol Psychiatry. 2012;17:1144–9.

    Article  CAS  PubMed  Google Scholar 

  38. Lin PY, Su KP. A meta-analytic review of double-blind, placebo-controlled trials of antidepressant efficacy of omega-3 fatty acids. J Clin Psychiatry. 2007;68:1056–61.

    Article  CAS  PubMed  Google Scholar 

  39. Martins JG. EPA but not DHA appears to be responsible for the efficacy of omega-3 long chain polyunsaturated fatty acid supplementation in depression: evidence from a meta-analysis of randomized controlled trials. J Am Coll Nutr. 2009;28:525–42.

    Article  CAS  PubMed  Google Scholar 

  40. Guu TW, Mischoulon D, Sarris J, Hibbeln J, McNamara RK, Hamazaki K, et al. International Society for Nutritional Psychiatry Research Practice Guidelines for Omega-3 Fatty Acids in the Treatment of Major Depressive Disorder. Psychother Psychosom. 2019;88:263–73.

    Article  PubMed  Google Scholar 

  41. Appleton KM, Rogers PJ, Ness AR. Updated systematic review and meta-analysis of the effects of n-3 long-chain polyunsaturated fatty acids on depressed mood. Am J Clin Nutr. 2010;91:757–70.

    Article  CAS  PubMed  Google Scholar 

  42. Okereke OI, Vyas CM, Mischoulon D, Chang G, Cook NR, Weinberg A, et al. Effect of Long-term Supplementation With Marine Omega-3 Fatty Acids vs Placebo on Risk of Depression or Clinically Relevant Depressive Symptoms and on Change in Mood Scores: A Randomized Clinical Trial. JAMA. 2021;326:2385–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bai S, Guo W, Feng Y, Deng H, Li G, Nie H, et al. Efficacy and safety of anti-inflammatory agents for the treatment of major depressive disorder: a systematic review and meta-analysis of randomised controlled trials. J Neurol Neurosurg Psychiatry. 2020;91:21–32.

    Article  PubMed  Google Scholar 

  44. Rogers PJ, Appleton KM, Kessler D, Peters TJ, Gunnell D, Hayward RC, et al. No effect of n-3 long-chain polyunsaturated fatty acid (EPA and DHA) supplementation on depressed mood and cognitive function: a randomised controlled trial. Br J Nutr. 2008;99:421–31.

    Article  CAS  PubMed  Google Scholar 

  45. Ross BM, Seguin J, Sieswerda LE. Omega-3 fatty acids as treatments for mental illness: which disorder and which fatty acid? Lipids Health Dis. 2007;6:21.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Marangell L, Martinez J, Zboyan H, Kertz B, Kim H, Puryear L. A double-blind, placebo-controlled study of the omega-3 fatty acid docosahexaenoic acid in the treatment of major depression. Am J Psychiatry. 2003;160:996–8.

    Article  PubMed  Google Scholar 

  47. Mischoulon D, Best-Popescu C, Laposata M, Merens W, Murakami JL, Wu SL, et al. A double-blind dose-finding pilot study of docosahexaenoic acid (DHA) for major depressive disorder. Eur Neuropsychopharmacol : J Eur Coll Neuropsychopharmacol. 2008;18:639–45.

    Article  CAS  Google Scholar 

  48. Doornbos B, van Goor SA, Dijck-Brouwer DA, Schaafsma A, Korf J, Muskiet FA. Supplementation of a low dose of DHA or DHA+AA does not prevent peripartum depressive symptoms in a small population based sample. Prog Neuropsychopharmacol Biol Psychiatry. 2009;33:49–52.

    Article  CAS  PubMed  Google Scholar 

  49. Llorente AM, Jensen CL, Voigt RG, Fraley JK, Berretta MC, Heird WC. Effect of maternal docosahexaenoic acid supplementation on postpartum depression and information processing. Am J Obstet Gynecol. 2003;188:1348–53.

    Article  CAS  PubMed  Google Scholar 

  50. Mozaffari-Khosravi H, Yassini-Ardakani M, Karamati M, Shariati-Bafghi SE Eicosapentaenoic acid versus docosahexaenoic acid in mild-to-moderate depression: A randomized, double-blind, placebo-controlled trial. Eur Neuropsychopharmacol 2012.

  51. Mischoulon D, Nierenberg AA, Schettler PJ, Kinkead BL, Fehling K, Martinson MA, et al. A double-blind, randomized controlled clinical trial comparing eicosapentaenoic acid versus docosahexaenoic acid for depression. J Clin Psychiatry. 2015;76:54–61.

    Article  PubMed  Google Scholar 

  52. Mengelberg A, Leathem J, Podd J, Hill S, Conlon C. The effects of docosahexaenoic acid supplementation on cognition and well-being in mild cognitive impairment: A 12-month randomised controlled trial. Int J Geriatr Psychiatry. 2022;37:10.1002/gps.5707.

  53. Mischoulon D, Dunlop BW, Kinkead B, Schettler PJ, Lamon-Fava S, Rakofsky JJ, et al. Omega-3 Fatty Acids for Major Depressive Disorder With High Inflammation: A Randomized Dose-Finding Clinical Trial. J Clin Psychiatry 2022; 83.

  54. Jazayeri S, Tehrani-Doost M, Keshavarz S, Hosseini M, Djazayery A, Amini H, et al. Comparison of therapeutic effects of omega-3 fatty acid eicosapentaenoic acid and fluoxetine, separately and in combination, in major depressive disorder. Aus NZ J Psychiatry. 2008;42:192–8.

    Article  Google Scholar 

  55. Gertsik L, Poland RE, Bresee C, Rapaport MH. Omega-3 fatty acid augmentation of citalopram treatment for patients with major depressive disorder. J Clin Psychopharmacol. 2012;32:61–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hallahan B, Hibbeln JR, Davis JM, Garland MR. Omega-3 fatty acid supplementation in patients with recurrent self-harm. Single-centre double-blind randomised controlled trial. Br J Psychiatry. 2007;190:118–22.

    Article  PubMed  Google Scholar 

  57. Cholewski M, Tomczykowa M, Tomczyk M A Comprehensive Review of Chemistry, Sources and Bioavailability of Omega-3 Fatty Acids. Nutrients 2018; 10.

  58. Albert BB, Cameron-Smith D, Hofman PL, Cutfield WS. Oxidation of Marine Omega-3 Supplements and Human Health. BioMed Res Int. 2013;2013:464921.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Coltell O, Sorli JV, Asensio EM, Barragan R, Gonzalez JI, Gimenez-Alba IM. et al. Genome-Wide Association Study for Serum Omega-3 and Omega-6 Polyunsaturated Fatty Acids: Exploratory Analysis of the Sex-Specific Effects and Dietary Modulation in Mediterranean Subjects with Metabolic Syndrome. Nutrients. 2020;12:310.

  60. Kwong RY, Heydari B, Ge Y, Abdullah S, Fujikura K, Kaneko K, et al. Genetic profiling of fatty acid desaturase polymorphisms identifies patients who may benefit from high-dose omega-3 fatty acids in cardiac remodeling after acute myocardial infarction-Post-hoc analysis from the OMEGA-REMODEL randomized controlled trial. PLoS One. 2019;14:e0222061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rapaport MH, Nierenberg AA, Schettler PJ, Kinkead B, Cardoos A, Walker R, et al. Inflammation as a predictive biomarker for response to omega-3 fatty acids in major depressive disorder: a proof-of-concept study. Mol Psychiatry. 2016;21:71–9.

    Article  CAS  PubMed  Google Scholar 

  62. Shaikh SR, Kinnun JJ, Leng X, Williams JA, Wassall SR. How polyunsaturated fatty acids modify molecular organization in membranes: insight from NMR studies of model systems. Biochim Biophys Acta. 2015;1848:211–9.

    Article  CAS  PubMed  Google Scholar 

  63. Baccouch R, Shi Y, Vernay E, Mathelie-Guinlet M, Taib-Maamar N, Villette S, et al. The impact of lipid polyunsaturation on the physical and mechanical properties of lipid membranes. Biochim Biophys Acta Biomembr. 2023;1865:184084.

    Article  CAS  PubMed  Google Scholar 

  64. Kusumi A, Fujiwara TK, Tsunoyama TA, Kasai RS, Liu AA, Hirosawa KM, et al. Defining raft domains in the plasma membrane. Traffic. 2020;21:106–37.

    Article  CAS  PubMed  Google Scholar 

  65. Suzuki KGN, Kusumi A. Refinement of Singer-Nicolson fluid-mosaic model by microscopy imaging: Lipid rafts and actin-induced membrane compartmentalization. Biochim Biophys Acta Biomembr. 2023;1865:184093.

    Article  CAS  PubMed  Google Scholar 

  66. Fan YY, McMurray DN, Ly LH, Chapkin RS. Dietary (n-3) polyunsaturated fatty acids remodel mouse T-cell lipid rafts. J Nutr. 2003;133:1913–20.

    Article  CAS  PubMed  Google Scholar 

  67. Fan YY, Ly LH, Barhoumi R, McMurray DN, Chapkin RS. Dietary docosahexaenoic acid suppresses T cell protein kinase C theta lipid raft recruitment and IL-2 production. J Immunol. 2004;173:6151–60.

    Article  CAS  PubMed  Google Scholar 

  68. Hou TY, Barhoumi R, Fan YY, Rivera GM, Hannoush RN, McMurray DN, et al. n-3 polyunsaturated fatty acids suppress CD4(+) T cell proliferation by altering phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2] organization. Biochim Biophys Acta. 2016;1858:85–96.

    Article  CAS  PubMed  Google Scholar 

  69. Hou TY, Monk JM, Fan YY, Barhoumi R, Chen YQ, Rivera GM, et al. n-3 polyunsaturated fatty acids suppress phosphatidylinositol 4,5-bisphosphate-dependent actin remodelling during CD4+ T-cell activation. Biochem J. 2012;443:27–37.

    Article  CAS  PubMed  Google Scholar 

  70. Fan YY, Fuentes NR, Hou TY, Barhoumi R, Li XC, Deutz NEP, et al. Remodelling of primary human CD4+ T cell plasma membrane order by n-3 PUFA. Br J Nutr. 2018;119:163–75.

    Article  CAS  PubMed  Google Scholar 

  71. Allen MJ, Fan YY, Monk JM, Hou TY, Barhoumi R, McMurray DN, et al. n-3 PUFAs reduce T-helper 17 cell differentiation by decreasing responsiveness to interleukin-6 in isolated mouse splenic CD4(+) T cells. J Nutr. 2014;144:1306–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Canner SW, Feller SE, Wassall SR. Molecular Organization of a Raft-like Domain in a Polyunsaturated Phospholipid Bilayer: A Supervised Machine Learning Analysis of Molecular Dynamics Simulations. J Phys Chem B. 2021;125:13158–67.

    Article  CAS  PubMed  Google Scholar 

  73. Kinnun JJ, Bittman R, Shaikh SR, Wassall SR. DHA Modifies the Size and Composition of Raftlike Domains: A Solid-State (2)H NMR Study. Biophys J. 2018;114:380–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kim W, Fan YY, Barhoumi R, Smith R, McMurray DN, Chapkin RS. n-3 polyunsaturated fatty acids suppress the localization and activation of signaling proteins at the immunological synapse in murine CD4+ T cells by affecting lipid raft formation. J Immunol. 2008;181:6236–43.

    Article  CAS  PubMed  Google Scholar 

  75. Rockett BD, Teague H, Harris M, Melton M, Williams J, Wassall SR, et al. Fish oil increases raft size and membrane order of B cells accompanied by differential effects on function. J Lipid Res. 2012;53:674–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Chapkin RS, Wang N, Fan YY, Lupton JR, Prior IA. Docosahexaenoic acid alters the size and distribution of cell surface microdomains. Biochim Biophys Acta. 2008;1778:466–71.

    Article  CAS  PubMed  Google Scholar 

  77. Soni SP, LoCascio DS, Liu Y, Williams JA, Bittman R, Stillwell W, et al. Docosahexaenoic acid enhances segregation of lipids between : 2H-NMR study. Biophys J. 2008;95:203–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wassall SR, Leng X, Canner SW, Pennington ER, Kinnun JJ, Cavazos AT, et al. Docosahexaenoic acid regulates the formation of lipid rafts: A unified view from experiment and simulation. Biochimica et biophysica acta Biomembranes. 2018;1860:1985–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gurzell EA, Teague H, Harris M, Clinthorne J, Shaikh SR, Fenton JI. DHA-enriched fish oil targets B cell lipid microdomains and enhances ex vivo and in vivo B cell function. J Leukoc Biol. 2013;93:463–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Rockett BD, Melton M, Harris M, Bridges LC, Shaikh SR. Fish oil disrupts MHC class II lateral organization on the B-cell side of the immunological synapse independent of B-T cell adhesion. J Nutr Biochem. 2013;24:1810–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Teague H, Harris M, Fenton J, Lallemand P, Shewchuk BM, Shaikh SR. Eicosapentaenoic and docosahexaenoic acid ethyl esters differentially enhance B-cell activity in murine obesity. J Lipid Res. 2014;55:1420–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hellwing C, Tigistu-Sahle F, Fuhrmann H, Kakela R, Schumann J. Lipid composition of membrane microdomains isolated detergent-free from PUFA supplemented RAW264.7 macrophages. J Cell Physiol. 2018;233:2602–12.

    Article  CAS  PubMed  Google Scholar 

  83. Lingwood D, Simons K. Lipid rafts as a membrane-organizing principle. Science. 2010;327:46–50.

    Article  CAS  PubMed  Google Scholar 

  84. Levental KR, Malmberg E, Symons JL, Fan YY, Chapkin RS, Ernst R, et al. Lipidomic and biophysical homeostasis of mammalian membranes counteracts dietary lipid perturbations to maintain cellular fitness. Nat Commun. 2020;11:1339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhu Z, Tan Z, Li Y, Luo H, Hu X, Tang M, et al. Docosahexaenoic acid alters Gsalpha localization in lipid raft and potentiates adenylate cyclase. Nutrition. 2015;31:1025–30.

    Article  CAS  PubMed  Google Scholar 

  86. Wang L, Chen K, Liu K, Zhou Y, Zhang T, Wang B, et al. DHA inhibited AGEs-induced retinal microglia activation via suppression of the PPARgamma/NFkappaB pathway and reduction of signal transducers in the AGEs/RAGE axis recruitment into lipid rafts. Neurochem Res. 2015;40:713–22.

    Article  CAS  PubMed  Google Scholar 

  87. Taoro-Gonzalez L, Pereda D, Valdes-Baizabal C, Gonzalez-Gomez M, Perez JA, Mesa-Herrera F, et al. Effects of Dietary n-3 LCPUFA Supplementation on the Hippocampus of Aging Female Mice: Impact on Memory, Lipid Raft-Associated Glutamatergic Receptors and Neuroinflammation. International journal of molecular sciences 2022; 23.

  88. Liu JJ, Hezghia A, Shaikh SR, Cenido JF, Stark RE, Mann JJ, et al. Regulation of monoamine transporters and receptors by lipid microdomains: implications for depression. Neuropsychopharmacology. 2018;43:2165–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Yuan N, Chen Y, Xia Y, Dai J, Liu C. Inflammation-related biomarkers in major psychiatric disorders: a cross-disorder assessment of reproducibility and specificity in 43 meta-analyses. Transl psychiatry. 2019;9:233.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Köhler CA, Freitas TH, Maes M, de Andrade NQ, Liu CS, Fernandes BS, et al. Peripheral cytokine and chemokine alterations in depression: a meta-analysis of 82 studies. Acta Psychiatr Scand. 2017;135:373–87.

    Article  PubMed  Google Scholar 

  91. Zalsman G. How else can inflammation kill you? Eur Neuropsychopharmacol. 2022;67:1–3.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Gananca L, Galfalvy HC, Oquendo MA, Hezghia A, Cooper TB, Mann JJ, et al. Lipid correlates of antidepressant response to omega-3 polyunsaturated fatty acid supplementation: A pilot study. PLEFA. 2017;119:38–44.

    CAS  Google Scholar 

  93. Gananca L, Oquendo MA, Tyrka AR, Cisneros-Trujillo S, Mann JJ, Sublette ME. The role of cytokines in the pathophysiology of suicidal behavior. Psychoneuroendocrinology. 2016;63:296–310.

    Article  CAS  PubMed  Google Scholar 

  94. Raison CL, Miller AH. Do cytokines really sing the blues? Cerebrum : Dana forum brain Sci. 2013;2013:10.

    Google Scholar 

  95. Capuron L, Gumnick JF, Musselman DL, Lawson DH, Reemsnyder A, Nemeroff CB, et al. Neurobehavioral effects of interferon-alpha in cancer patients: phenomenology and paroxetine responsiveness of symptom dimensions. Neuropsychopharmacology. 2002;26:643–52.

    Article  CAS  PubMed  Google Scholar 

  96. Musselman DL, Lawson DH, Gumnick JF, Manatunga AK, Penna S, Goodkin RS, et al. Paroxetine for the prevention of depression induced by high-dose interferon alfa. N. Engl J Med. 2001;344:961–6.

    Article  CAS  PubMed  Google Scholar 

  97. Rao JS, Harry GJ, Rapoport SI, Kim HW. Increased excitotoxicity and neuroinflammatory markers in postmortem frontal cortex from bipolar disorder patients. Mol Psychiatry. 2010;15:384–92.

    Article  CAS  PubMed  Google Scholar 

  98. Ryan MM, Lockstone HE, Huffaker SJ, Wayland MT, Webster MJ, Bahn S. Gene expression analysis of bipolar disorder reveals downregulation of the ubiquitin cycle and alterations in synaptic genes. Mol Psychiatry. 2006;11:965–78.

    Article  CAS  PubMed  Google Scholar 

  99. Shelton RC, Claiborne J, Sidoryk-Wegrzynowicz M, Reddy R, Aschner M, Lewis DA, et al. Altered expression of genes involved in inflammation and apoptosis in frontal cortex in major depression. Mol Psychiatry. 2011;16:751–62.

    Article  CAS  PubMed  Google Scholar 

  100. Drexhage RC, Knijff EM, Padmos RC, Heul-Nieuwenhuijzen L, Beumer W, Versnel MA, et al. The mononuclear phagocyte system and its cytokine inflammatory networks in schizophrenia and bipolar disorder. Expert Rev Neurother. 2010;10:59–76.

    Article  CAS  PubMed  Google Scholar 

  101. Maes M, Meltzer HY, Bosmans E, Bergmans R, Vandoolaeghe E, Ranjan R, et al. Increased plasma concentrations of interleukin-6, soluble interleukin-6, soluble interleukin-2 and transferrin receptor in major depression. J Affect Disord. 1995;34:301–9.

    Article  CAS  PubMed  Google Scholar 

  102. Ortiz-Dominguez A, Hernandez ME, Berlanga C, Gutierrez-Mora D, Moreno J, Heinze G, et al. Immune variations in bipolar disorder: phasic differences. Bipolar Disord. 2007;9:596–602.

    Article  CAS  PubMed  Google Scholar 

  103. Benedetti F, Lucca A, Brambilla F, Colombo C, Smeraldi E. Interleukine-6 serum levels correlate with response to antidepressant sleep deprivation and sleep phase advance. Prog Neuropsychopharmacol Biol Psychiatry. 2002;26:1167–70.

    Article  CAS  PubMed  Google Scholar 

  104. Maes M, Bosmans E, De Jongh R, Kenis G, Vandoolaeghe E, Neels H. Increased serum IL-6 and IL-1 receptor antagonist concentrations in major depression and treatment resistant depression. Cytokine. 1997;9:853–8.

    Article  CAS  PubMed  Google Scholar 

  105. Lanquillon S, Krieg JC, Bening-Abu-Shach U, Vedder H. Cytokine production and treatment response in major depressive disorder. Neuropsychopharmacology. 2000;22:370–9.

    Article  CAS  PubMed  Google Scholar 

  106. Enache D, Pariante CM, Mondelli V. Markers of central inflammation in major depressive disorder: A systematic review and meta-analysis of studies examining cerebrospinal fluid, positron emission tomography and post-mortem brain tissue. Brain, Behav, Immun. 2019;81:24–40.

    Article  PubMed  Google Scholar 

  107. Richards EM, Zanotti-Fregonara P, Fujita M, Newman L, Farmer C, Ballard ED, et al. PET radioligand binding to translocator protein (TSPO) is increased in unmedicated depressed subjects. EJNMMI Res. 2018;8:57.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Serhan CN, Chiang N, Dalli J, Levy BD. Lipid mediators in the resolution of inflammation. Cold Spring Harb Perspect Biol. 2014;7:a016311.

    Article  PubMed  Google Scholar 

  109. Samson M, Edinger AL, Stordeur P, Rucker J, Verhasselt V, Sharron M, et al. ChemR23, a putative chemoattractant receptor, is expressed in monocyte-derived dendritic cells and macrophages and is a coreceptor for SIV and some primary HIV-1 strains. Eur J Immunol. 1998;28:1689–1700.

    Article  CAS  PubMed  Google Scholar 

  110. Krishnamoorthy S, Recchiuti A, Chiang N, Fredman G, Serhan CN. Resolvin D1 receptor stereoselectivity and regulation of inflammation and proresolving microRNAs. Am J Pathol. 2012;180:2018–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Xu ZZ, Berta T, Ji RR. Resolvin E1 inhibits neuropathic pain and spinal cord microglial activation following peripheral nerve injury. J NeuroImmune Pharmacol : Off J Soc NeuroImmune Pharmacol. 2013;8:37–41.

    Article  Google Scholar 

  112. Hecker M, Sommer N, Foch S, Hecker A, Hackstein H, Witzenrath M, et al. Resolvin E1 and its precursor 18R-HEPE restore mitochondrial function in inflammation. Biochim Biophys Acta Mol Cell Biol Lipids. 2018;1863:1016–28.

    Article  CAS  PubMed  Google Scholar 

  113. Li L, Wu Y, Wang Y, Wu J, Song L, Xian W, et al. Resolvin D1 promotes the interleukin-4-induced alternative activation in BV-2 microglial cells. J Neuroinflammation. 2014;11:72.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Trepanier MO, Hopperton KE, Orr SK, Bazinet RP. N-3 polyunsaturated fatty acids in animal models with neuroinflammation: An update. Eur J Pharm. 2016;785:187–206.

    Article  CAS  Google Scholar 

  115. Sun W, Wang ZP, Gui P, Xia W, Xia Z, Zhang XC, et al. Endogenous expression pattern of resolvin D1 in a rat model of self-resolution of lipopolysaccharide-induced acute respiratory distress syndrome and inflammation. Int Immunopharmacol. 2014;23:247–53.

    Article  CAS  PubMed  Google Scholar 

  116. Harrison JL, Rowe RK, Ellis TW, Yee NS, O’Hara BF, Adelson PD, et al. Resolvins AT-D1 and E1 differentially impact functional outcome, post-traumatic sleep, and microglial activation following diffuse brain injury in the mouse. Brain, Behav, Immun. 2015;47:131–40.

    Article  CAS  PubMed  Google Scholar 

  117. Yin P, Wang X, Wang S, Wei Y, Feng J, Zhu M. Maresin 1 Improves Cognitive Decline and Ameliorates Inflammation in a Mouse Model of Alzheimer’s Disease. Front Cell Neurosci. 2019;13:466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Xian W, Li T, Li L, Hu L, Cao J. Maresin 1 attenuates the inflammatory response and mitochondrial damage in mice with cerebral ischemia/reperfusion in a SIRT1-dependent manner. Brain Res. 2019;1711:83–90.

    Article  CAS  PubMed  Google Scholar 

  119. Xian W, Wu Y, Xiong W, Li L, Li T, Pan S, et al. The pro-resolving lipid mediator Maresin 1 protects against cerebral ischemia/reperfusion injury by attenuating the pro-inflammatory response. Biochem Biophys Res Commun. 2016;472:175–81.

    Article  CAS  PubMed  Google Scholar 

  120. Zhu M, Wang X, Hjorth E, Colas RA, Schroeder L, Granholm AC, et al. Pro-Resolving Lipid Mediators Improve Neuronal Survival and Increase Aβ42 Phagocytosis. Mol Neurobiol. 2016;53:2733–49.

    Article  CAS  PubMed  Google Scholar 

  121. Lamon-Fava S, Liu M, Dunlop BW, Kinkead B, Schettler PJ, Felger JC, et al. Clinical response to EPA supplementation in patients with major depressive disorder is associated with higher plasma concentrations of pro-resolving lipid mediators. Neuropsychopharmacology. 2023;48:929–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Lamon-Fava S, So J, Mischoulon D, Ziegler TR, Dunlop BW, Kinkead B, et al. Dose- and time-dependent increase in circulating anti-inflammatory and pro-resolving lipid mediators following eicosapentaenoic acid supplementation in patients with major depressive disorder and chronic inflammation. PLEFA. 2021;164:102219.

    CAS  Google Scholar 

  123. Stella N. Endocannabinoid signaling in microglial cells. Neuropharmacology. 2009;56:244–53.

    Article  CAS  PubMed  Google Scholar 

  124. Walter L, Franklin A, Witting A, Wade C, Xie Y, Kunos G, et al. Nonpsychotropic cannabinoid receptors regulate microglial cell migration. J Neurosci. 2003;23:1398–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Correa F, Docagne F, Clemente D, Mestre L, Becker C, Guaza C. Anandamide inhibits IL-12p40 production by acting on the promoter repressor element GA-12: possible involvement of the COX-2 metabolite prostamide E(2). Biochemical J. 2008;409:761–70.

    Article  CAS  Google Scholar 

  126. Correa F, Hernangómez M, Mestre L, Loría F, Spagnolo A, Docagne F, et al. Anandamide enhances IL-10 production in activated microglia by targeting CB(2) receptors: roles of ERK1/2, JNK, and NF-kappaB. Glia. 2010;58:135–47.

    Article  PubMed  Google Scholar 

  127. Foley ÉM, Parkinson JT, Mitchell RE, Turner L, Khandaker GM Peripheral blood cellular immunophenotype in depression: a systematic review and meta-analysis. Molecular psychiatry 2022.

  128. Pocock JM, Kettenmann H. Neurotransmitter receptors on microglia. Trends Neurosci. 2007;30:527–35.

    Article  CAS  PubMed  Google Scholar 

  129. Kreutzberg GW. Microglia: a sensor for pathological events in the CNS. Trends Neurosci. 1996;19:312–8.

    Article  CAS  PubMed  Google Scholar 

  130. Mecha M, Feliú A, Carrillo-Salinas FJ, Rueda-Zubiaurre A, Ortega-Gutiérrez S, de Sola RG, Guaza C. Endocannabinoids drive the acquisition of an alternative phenotype in microglia. Brain Behav Immun. 2015;49:233–45.

    Article  CAS  PubMed  Google Scholar 

  131. Abe N, Nishihara T, Yorozuya T, Tanaka J. Microglia and Macrophages in the Pathological Central and Peripheral Nervous Systems. Cells. 2020;9:2132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Paolicelli RC, Sierra A, Stevens B, Tremblay ME, Aguzzi A, Ajami B, et al. Microglia states and nomenclature: A field at its crossroads. Neuron. 2022;110:3458–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Hjorth E, Zhu M, Toro VC, Vedin I, Palmblad J, Cederholm T, et al. Omega-3 fatty acids enhance phagocytosis of Alzheimer’s disease-related amyloid-β42 by human microglia and decrease inflammatory markers. J Alzheimer’s Dis : JAD. 2013;35:697–713.

    Article  PubMed  Google Scholar 

  134. Chen S, Zhang H, Pu H, Wang G, Li W, Leak RK, et al. n-3 PUFA supplementation benefits microglial responses to myelin pathology. Sci Rep. 2014;4:7458.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Ebert S, Weigelt K, Walczak Y, Drobnik W, Mauerer R, Hume DA, et al. Docosahexaenoic acid attenuates microglial activation and delays early retinal degeneration. J Neurochem. 2009;110:1863–75.

    Article  CAS  PubMed  Google Scholar 

  136. Laye S, Nadjar A, Joffre C, Bazinet RP. Anti-Inflammatory Effects of Omega-3 Fatty Acids in the Brain: Physiological Mechanisms and Relevance to Pharmacology. Pharm Rev. 2018;70:12–38.

    Article  CAS  PubMed  Google Scholar 

  137. Lynch AM, Loane DJ, Minogue AM, Clarke RM, Kilroy D, Nally RE, et al. Eicosapentaenoic acid confers neuroprotection in the amyloid-beta challenged aged hippocampus. Neurobiol aging. 2007;28:845–55.

    Article  CAS  PubMed  Google Scholar 

  138. De Smedt-Peyrusse V, Sargueil F, Moranis A, Harizi H, Mongrand S, Layé S. Docosahexaenoic acid prevents lipopolysaccharide-induced cytokine production in microglial cells by inhibiting lipopolysaccharide receptor presentation but not its membrane subdomain localization. J Neurochem. 2008;105:296–307.

    Article  PubMed  Google Scholar 

  139. Wong SW, Kwon MJ, Choi AM, Kim HP, Nakahira K, Hwang DH. Fatty acids modulate Toll-like receptor 4 activation through regulation of receptor dimerization and recruitment into lipid rafts in a reactive oxygen species-dependent manner. J Biol Chem. 2009;284:27384–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Hellwing C, Schoeniger A, Roessler C, Leimert A, Schumann J. Lipid raft localization of TLR2 and its co-receptors is independent of membrane lipid composition. PeerJ. 2018;6:e4212.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Allam-Ndoul B, Guenard F, Barbier O, Vohl MC. Effect of n-3 fatty acids on the expression of inflammatory genes in THP-1 macrophages. Lipids Health Dis. 2016;15:69.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Li H, Ruan XZ, Powis SH, Fernando R, Mon WY, Wheeler DC, et al. EPA and DHA reduce LPS-induced inflammation responses in HK-2 cells: evidence for a PPAR-gamma-dependent mechanism. Kidney Int. 2005;67:867–74.

    Article  CAS  PubMed  Google Scholar 

  143. Gold PW, Licinio J, Pavlatou MG. Pathological parainflammation and endoplasmic reticulum stress in depression: potential translational targets through the CNS insulin, klotho and PPAR-gamma systems. Mol Psychiatry. 2013;18:154–65.

    Article  CAS  PubMed  Google Scholar 

  144. Lin KW, Wroolie TE, Robakis T, Rasgon NL. Adjuvant pioglitazone for unremitted depression: Clinical correlates of treatment response. Psychiatry Res. 2015;230:846–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Sepanjnia K, Modabbernia A, Ashrafi M, Modabbernia MJ, Akhondzadeh S. Pioglitazone adjunctive therapy for moderate-to-severe major depressive disorder: randomized double-blind placebo-controlled trial. Neuropsychopharmacology. 2012;37:2093–2100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Aftab A, Kemp DE, Ganocy SJ, Schinagle M, Conroy C, Brownrigg B, et al. Double-blind, placebo-controlled trial of pioglitazone for bipolar depression. J Affect Disord. 2019;245:957–64.

    Article  CAS  PubMed  Google Scholar 

  147. Kemp DE, Schinagle M, Gao K, Conroy C, Ganocy SJ, Ismail-Beigi F, et al. PPAR-gamma agonism as a modulator of mood: proof-of-concept for pioglitazone in bipolar depression. CNS drugs. 2014;28:571–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Zeinoddini A, Sorayani M, Hassanzadeh E, Arbabi M, Farokhnia M, Salimi S, et al. Pioglitazone adjunctive therapy for depressive episode of bipolar disorder: a randomized, double-blind, placebo-controlled trial. Depress Anxiety. 2015;32:167–73.

    Article  CAS  PubMed  Google Scholar 

  149. Woo YS, Lim HK, Wang SM, Bahk WM Clinical Evidence of Antidepressant Effects of Insulin and Anti-Hyperglycemic Agents and Implications for the Pathophysiology of Depression-A Literature Review. International journal of molecular sciences 2020; 21.

  150. Colle R, de Larminat D, Rotenberg S, Hozer F, Hardy P, Verstuyft C, et al. Pioglitazone could induce remission in major depression: a meta-analysis. Neuropsychiatr Dis Treat. 2017;13:9–16.

    Article  CAS  PubMed  Google Scholar 

  151. Low YL, Jin L, Morris ER, Pan Y, Nicolazzo JA. Pioglitazone Increases Blood-Brain Barrier Expression of Fatty Acid-Binding Protein 5 and Docosahexaenoic Acid Trafficking into the Brain. Mol Pharm. 2020;17:873–84.

    Article  CAS  PubMed  Google Scholar 

  152. Inoue T, Tanaka M, Masuda S, Ohue-Kitano R, Yamakage H, Muranaka K, et al. Omega-3 polyunsaturated fatty acids suppress the inflammatory responses of lipopolysaccharide-stimulated mouse microglia by activating SIRT1 pathways. Biochim Biophys Acta Mol Cell Biol Lipids. 2017;1862:552–60.

    Article  CAS  PubMed  Google Scholar 

  153. Chen X, Wu S, Chen C, Xie B, Fang Z, Hu W, et al. Omega-3 polyunsaturated fatty acid supplementation attenuates microglial-induced inflammation by inhibiting the HMGB1/TLR4/NF-kappaB pathway following experimental traumatic brain injury. J Neuroinflammation. 2017;14:143.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Chen X, Pan Z, Fang Z, Lin W, Wu S, Yang F, et al. Omega-3 polyunsaturated fatty acid attenuates traumatic brain injury-induced neuronal apoptosis by inducing autophagy through the upregulation of SIRT1-mediated deacetylation of Beclin-1. J Neuroinflammation. 2018;15:310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Sun YM, Shen Y, Huang H, Liu Q, Chen C, Ma LH, et al. Downregulated SIRT1 in the CeA is involved in chronic pain-depression comorbidity. Brain Res Bull. 2021;174:339–48.

    Article  CAS  PubMed  Google Scholar 

  156. Wang J, Ma SF, Yun Q, Liu WJ, Guo MN, Zhu YQ, et al. Ameliorative effect of SIRT1 in postpartum depression mediated by upregulation of the glucocorticoid receptor. Neurosci Lett. 2021;761:136112.

    Article  CAS  PubMed  Google Scholar 

  157. Abe-Higuchi N, Uchida S, Yamagata H, Higuchi F, Hobara T, Hara K, et al. Hippocampal Sirtuin 1 Signaling Mediates Depression-like Behavior. Biol Psychiatry. 2016;80:815–26.

    Article  CAS  PubMed  Google Scholar 

  158. Kim HD, Hesterman J, Call T, Magazu S, Keeley E, Armenta K, et al. SIRT1 Mediates Depression-Like Behaviors in the Nucleus Accumbens. J Neurosci. 2016;36:8441–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Luo XJ, Zhang C. Down-Regulation of SIRT1 Gene Expression in Major Depressive Disorder. Am J Psychiatry. 2016;173:1046.

    Article  PubMed  Google Scholar 

  160. McGrory CL, Ryan KM, Kolshus E, Finnegan M, McLoughlin DM. Peripheral blood SIRT1 mRNA levels in depression and treatment with electroconvulsive therapy. Eur Neuropsychopharmacol. 2018;28:1015–23.

    Article  CAS  PubMed  Google Scholar 

  161. Abe N, Uchida S, Otsuki K, Hobara T, Yamagata H, Higuchi F, et al. Altered sirtuin deacetylase gene expression in patients with a mood disorder. J Psychiatr Res. 2011;45:1106–12.

    Article  PubMed  Google Scholar 

  162. Lo Iacono L, Visco-Comandini F, Valzania A, Viscomi MT, Coviello M, Giampa A, et al. Adversity in childhood and depression: linked through SIRT1. Transl psychiatry. 2015;5:e629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Wang X, Wang B, Zhao J, Liu C, Qu X, Li Y MiR-155 is involved in major depression disorder and antidepressant treatment via targeting SIRT1. Biosci Rep 2018; 38.

  164. Converge consortium. Sparse whole-genome sequencing identifies two loci for major depressive disorder. Nature. 2015;523:588–91.

    Article  PubMed Central  Google Scholar 

  165. Hirata T, Otsuka I, Okazaki S, Mouri K, Horai T, Boku S, et al. Major depressive disorder-associated SIRT1 locus affects the risk for suicide in women after middle age. Psychiatry Res. 2019;278:141–5.

    Article  CAS  PubMed  Google Scholar 

  166. Inamori T, Goda T, Kasezawa N, Yamakawa-Kobayashi K. The combined effects of genetic variation in the SIRT1 gene and dietary intake of n-3 and n-6 polyunsaturated fatty acids on serum LDL-C and HDL-C levels: a population based study. Lipids Health Dis. 201311;12:4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Borsini A, Alboni S, Horowitz MA, Tojo LM, Cannazza G, Su KP, et al. Rescue of IL-1beta-induced reduction of human neurogenesis by omega-3 fatty acids and antidepressants. Brain Behav Immun. 2017;65:230–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. de Gomes MG, Souza LC, Goes AR, Del Fabbro L, Filho CB, Donato F, et al. Fish oil ameliorates sickness behavior induced by lipopolysaccharide in aged mice through the modulation of kynurenine pathway. J Nutr Biochem. 2018;58:37–48.

    Article  PubMed  Google Scholar 

  169. Xyda SE, Vuckovic I, Petterson XM, Dasari S, Lalia AZ, Parvizi M, et al. Distinct Influence of Omega-3 Fatty Acids on the Plasma Metabolome of Healthy Older Adults. J Gerontol A Biol Sci Med Sci. 2020;75:875–84.

    Article  CAS  PubMed  Google Scholar 

  170. Sullivan EM, Pennington ER, Green WD, Beck MA, Brown DA, Shaikh SR. Mechanisms by Which Dietary Fatty Acids Regulate Mitochondrial Structure-Function in Health and Disease. Adv Nutr. 2018;9:247–62.

    Article  PubMed  PubMed Central  Google Scholar 

  171. Altinkilic S, Naziroglu M, Uguz AC, Ozcankaya R. Fish oil and antipsychotic drug risperidone modulate oxidative stress in PC12 cell membranes through regulation of cytosolic calcium ion release and antioxidant system. J Membr Biol. 2010;235:211–8.

    Article  CAS  PubMed  Google Scholar 

  172. Arunagiri P, Rajeshwaran K, Shanthakumar J, Tamilselvan T, Balamurugan E. Combination of omega-3 Fatty acids, lithium, and aripiprazole reduces oxidative stress in brain of mice with mania. Biol Trace Elem Res. 2014;160:409–17.

    Article  CAS  PubMed  Google Scholar 

  173. Casos K, Zaragoza MC, Zarkovic N, Zarkovic K, Andrisic L, Portero-Otin M, et al. A fish-oil-rich diet reduces vascular oxidative stress in apoE(-/-) mice. Free Radic Res. 2010;44:821–9.

    Article  CAS  PubMed  Google Scholar 

  174. Giordano E, Visioli F. Long-chain omega 3 fatty acids: molecular bases of potential antioxidant actions. PLEFA. 2014;90:1–4.

    CAS  Google Scholar 

  175. Sarsilmaz M, Songur A, Ozyurt H, Kus I, Ozen OA, Ozyurt B, et al. Potential role of dietary omega-3 essential fatty acids on some oxidant/antioxidant parameters in rats’ corpus striatum. PLEFA. 2003;69:253–9.

    CAS  Google Scholar 

  176. Shichiri M, Adkins Y, Ishida N, Umeno A, Shigeri Y, Yoshida Y, et al. DHA concentration of red blood cells is inversely associated with markers of lipid peroxidation in men taking DHA supplement. J Clin Biochem Nutr. 2014;55:196–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Lepretti M, Martucciello S, Burgos Aceves MA, Putti R, Lionetti L Omega-3 Fatty Acids and Insulin Resistance: Focus on the Regulation of Mitochondria and Endoplasmic Reticulum Stress. Nutrients 2018; 10.

  178. Sherratt SCR, Dawoud H, Bhatt DL, Malinski T, Mason RP. Omega-3 and omega-6 fatty acids have distinct effects on endothelial fatty acid content and nitric oxide bioavailability. PLEFA. 2021;173:102337.

    CAS  Google Scholar 

  179. Sherratt SCR, Juliano RA, Copland C, Bhatt DL, Libby P, Mason RP. EPA and DHA containing phospholipids have contrasting effects on membrane structure. J Lipid Res. 2021;62:100106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Mason RP, Libby P, Bhatt DL. Emerging Mechanisms of Cardiovascular Protection for the Omega-3 Fatty Acid Eicosapentaenoic Acid. Arterioscler Thromb Vasc Biol. 2020;40:1135–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Mason RP, Jacob RF, Shrivastava S, Sherratt SCR, Chattopadhyay A. Eicosapentaenoic acid reduces membrane fluidity, inhibits cholesterol domain formation, and normalizes bilayer width in atherosclerotic-like model membranes. Biochim Biophys Acta. 2016;1858:3131–40.

    Article  CAS  PubMed  Google Scholar 

  182. Ocal O, Naziroglu M. Eicosapentaenoic acid enhanced apoptotic and oxidant effects of cisplatin via activation of TRPM2 channel in brain tumor cells. Chem Biol Interact. 2022;359:109914.

    Article  CAS  PubMed  Google Scholar 

  183. Hong MY, Chapkin RS, Barhoumi R, Burghardt RC, Turner ND, Henderson CE, et al. Fish oil increases mitochondrial phospholipid unsaturation, upregulating reactive oxygen species and apoptosis in rat colonocytes. Carcinogenesis. 2002;23:1919–25.

    Article  CAS  PubMed  Google Scholar 

  184. Abdukeyum GG, Owen AJ, Larkin TA, McLennan PL Up-Regulation of Mitochondrial Antioxidant Superoxide Dismutase Underpins Persistent Cardiac Nutritional-Preconditioning by Long Chain n-3 Polyunsaturated Fatty Acids in the Rat. Journal of clinical medicine 2016; 5.

  185. Carvalho-Silva M, Gomes LM, Gomes ML, Ferreira BK, Schuck PF, Ferreira GC, et al. Omega-3 fatty acid supplementation can prevent changes in mitochondrial energy metabolism and oxidative stress caused by chronic administration of L-tyrosine in the brain of rats. Metab Brain Dis. 2019;34:1207–19.

    Article  CAS  PubMed  Google Scholar 

  186. Afshordel S, Hagl S, Werner D, Rohner N, Kogel D, Bazan NG, et al. Omega-3 polyunsaturated fatty acids improve mitochondrial dysfunction in brain aging-impact of Bcl-2 and NPD-1 like metabolites. PLEFA. 2015;92:23–31.

    CAS  Google Scholar 

  187. Morgese MG, Schiavone S, Bove M, Colia AL, Dimonte S, Tucci P, et al. N-3 PUFA Prevent Oxidative Stress in a Rat Model of Beta-Amyloid-Induced Toxicity. Pharmaceuticals (Basel). 2021;14:339.

  188. Mazereeuw G, Herrmann N, Andreazza AC, Khan MM, Lanctot KL. A meta-analysis of lipid peroxidation markers in major depression. Neuropsychiatr Dis Treat. 2015;11:2479–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Mazereeuw G, Herrmann N, Andreazza AC, Scola G, Ma DWL, Oh PI, et al. Oxidative stress predicts depressive symptom changes with omega-3 fatty acid treatment in coronary artery disease patients. Brain Behav Immun. 2017;60:136–41.

    Article  CAS  PubMed  Google Scholar 

  190. Geng X, Galano JM, Oger C, Sun GY, Durand T, Lee JC. Neuroprotective effects of DHA-derived peroxidation product 4(RS)-4-F4t-neuroprostane on microglia. Free Radic Biol Med. 2022;185:1–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Koletzko B, Demmelmair H, Schaeffer L, Illig T, Heinrich J. Genetically determined variation in polyunsaturated Fatty Acid metabolism may result in different dietary requirements. Nestle Nutr Workshop Ser Pediatr Program. 2008;62:35–49.

    Article  CAS  PubMed  Google Scholar 

  192. Schaeffer L, Gohlke H, Müller M, Heid IM, Palmer LJ, Kompauer I, et al. Common genetic variants of the FADS1 FADS2 gene cluster and their reconstructed haplotypes are associated with the fatty acid composition in phospholipids. Hum Mol Genet. 2006;15:1745–56.

    Article  CAS  PubMed  Google Scholar 

  193. Waits CMK, Bower A, Simms KN, Feldman BC, Kim N, Sergeant S, et al. A Pilot Study Assessing the Impact of rs174537 on Circulating Polyunsaturated Fatty Acids and the Inflammatory Response in Patients with Traumatic Brain Injury. J Neurotrauma. 2020;37:1880–91.

    Article  PubMed  PubMed Central  Google Scholar 

  194. Mathias RA, Sergeant S, Ruczinski I, Torgerson DG, Hugenschmidt CE, Kubala M, et al. The impact of FADS genetic variants on omega6 polyunsaturated fatty acid metabolism in African Americans. BMC Genet. 2011;12:50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Sublette ME, Vaquero C, Baca-Garcia E, Pachano G, Huang YY, Oquendo MA, et al. Lack of association of SNPs from the FADS1-FADS2 gene cluster with major depression or suicidal behavior. Psychiatr Genet. 2016;26:81–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Cribb L, Murphy J, Froud A, Oliver G, Bousman CA, Ng CH, et al. Erythrocyte polyunsaturated fatty acid composition is associated with depression and FADS genotype in Caucasians. Nutritional Neurosci. 2018;21:589–601.

    Article  CAS  Google Scholar 

  197. McNamara RK, Liu Y. Reduced expression of fatty acid biosynthesis genes in the prefrontal cortex of patients with major depressive disorder. J Affect Disord. 2011;129:359–63.

    Article  CAS  PubMed  Google Scholar 

  198. Haghighi F, Galfalvy H, Chen S, Huang YY, Cooper TB, Burke AK, et al. DNA methylation perturbations in genes involved in polyunsaturated Fatty Acid biosynthesis associated with depression and suicide risk. Front Neurol. 2015;6:92.

    Article  PubMed  PubMed Central  Google Scholar 

  199. Wu Y, Wang Y, Tian H, Lu T, Yu M, Xu W, et al. DHA intake interacts with ELOVL2 and ELOVL5 genetic variants to influence polyunsaturated fatty acids in human milk. J Lipid Res. 2019;60:1043–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Chalon S. Omega-3 fatty acids and monoamine neurotransmission. PLEFA. 2006;75:259–69.

    CAS  Google Scholar 

  201. McNamara RK, Able J, Liu Y, Jandacek R, Rider T, Tso P, et al. Omega-3 fatty acid deficiency during perinatal development increases serotonin turnover in the prefrontal cortex and decreases midbrain tryptophan hydroxylase-2 expression in adult female rats: dissociation from estrogenic effects. J Psychiatr Res. 2009;43:656–63.

    Article  PubMed  Google Scholar 

  202. Garcia MC, Kim HY. Mobilization of arachidonate and docosahexaenoate by stimulation of the 5-HT2A receptor in rat C6 glioma cells. Brain Res. 1997;768:43–48.

    Article  CAS  PubMed  Google Scholar 

  203. Verhoeckx KC, Voortman T, Balvers MG, Hendriks HF, Wortelboer HM, Witkamp RF. Presence, formation and putative biological activities of N-acyl serotonins, a novel class of fatty-acid derived mediators, in the intestinal tract. Biochim Biophys Acta. 2011;1811:578–86.

    Article  CAS  PubMed  Google Scholar 

  204. Sublette ME, Galfalvy HC, Hibbeln JR, Keilp JG, Malone KM, Oquendo MA, et al. Polyunsaturated fatty acid associations with dopaminergic indices in major depressive disorder. Int J Neuropsychopharmacol. 2014;17:383–91.

    Article  CAS  PubMed  Google Scholar 

  205. Hibbeln JR, Linnoila M, Umhau JC, Rawlings R, George DT, Salem N Jr. Essential fatty acids predict metabolites of serotonin and dopamine in cerebrospinal fluid among healthy control subjects, and early- and late-onset alcoholics. Biol Psychiatry. 1998;44:235–42.

    Article  CAS  PubMed  Google Scholar 

  206. Hibbeln JR, Umhau JC, Linnoila M, George DT, Ragan PW, Shoaf SE, et al. A replication study of violent and nonviolent subjects: cerebrospinal fluid metabolites of serotonin and dopamine are predicted by plasma essential fatty acids. Biol Psychiatry. 1998;44:243–9.

    Article  CAS  PubMed  Google Scholar 

  207. Gopaldas M, Zanderigo F, Zhan S, Ogden RT, Miller JM, Rubin-Falcone H, et al. Brain serotonin transporter binding, plasma arachidonic acid and depression severity: A positron emission tomography study of major depression. J Affect Disord. 2019;257:495–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Peters BD, Machielsen MW, Hoen WP, Caan MW, Malhotra AK, Szeszko PR, et al. Polyunsaturated fatty acid concentration predicts myelin integrity in early-phase psychosis. Schizophr Bull. 2013;39:830–8.

    Article  PubMed  Google Scholar 

  209. Trapp BD, Bernsohn J. Essential fatty acid deficiency and CNS myelin. Biochemical and morphological observations. J Neurol Sci. 1978;37:249–66.

    Article  CAS  PubMed  Google Scholar 

  210. Salvati S, Natali F, Attorri L, Di Benedetto R, Leonardi F, Di Biase A, et al. Eicosapentaenoic acid stimulates the expression of myelin proteins in rat brain. J Neurosci Res. 2008;86:776–84.

    Article  CAS  PubMed  Google Scholar 

  211. Ward RE, Huang W, Curran OE, Priestley JV, Michael-Titus AT. Docosahexaenoic acid prevents white matter damage after spinal cord injury. J Neurotrauma. 2010;27:1769–80.

    Article  PubMed  Google Scholar 

  212. Mills JD, Hadley K, Bailes JE. Dietary supplementation with the omega-3 fatty acid docosahexaenoic acid in traumatic brain injury. Neurosurgery. 2011;68:474–81. discussion 481

    Article  PubMed  Google Scholar 

  213. Pu H, Guo Y, Zhang W, Huang L, Wang G, Liou AK, et al. Omega-3 polyunsaturated fatty acid supplementation improves neurologic recovery and attenuates white matter injury after experimental traumatic brain injury. J Cereb Blood Flow Metab. 2013;33:1474–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Pu H, Jiang X, Wei Z, Hong D, Hassan S, Zhang W, et al. Repetitive and Prolonged Omega-3 Fatty Acid Treatment After Traumatic Brain Injury Enhances Long-Term Tissue Restoration and Cognitive Recovery. Cell Transpl. 2017;26:555–69.

    Article  Google Scholar 

  215. Tuzun F, Kumral A, Dilek M, Ozbal S, Ergur B, Yesilirmak DC, et al. Maternal omega-3 fatty acid supplementation protects against lipopolysaccharide-induced white matter injury in the neonatal rat brain. J Matern-fetal neonatal Med : Off J Eur Assoc Perinat Med, Federation Asia Ocean Perinat Societies, Int Soc Perinat Obstet. 2012;25:849–54.

    Article  CAS  Google Scholar 

  216. Yin Y, Li E, Sun G, Yan HQ, Foley LM, Andrzejczuk LA, et al. Effects of DHA on Hippocampal Autophagy and Lysosome Function After Traumatic Brain Injury. Mol Neurobiol. 2018;55:2454–70.

    Article  CAS  PubMed  Google Scholar 

  217. McNamara RK, Szeszko PR, Smesny S, Ikuta T, DeRosse P, Vaz FM, et al. Polyunsaturated fatty acid biostatus, phospholipase A(2) activity and brain white matter microstructure across adolescence. Neuroscience. 2017;343:423–33.

    Article  CAS  PubMed  Google Scholar 

  218. Abraham M, Mundorf A, Brodmann K, Freund N. Unraveling the mystery of white matter in depression: A translational perspective on recent advances. Brain Behav. 2022;12:e2629.

    Article  PubMed  PubMed Central  Google Scholar 

  219. Chhetry BT, Hezghia A, Miller JM, Lee S, Rubin-Falcone H, Cooper TB, et al. Omega-3 polyunsaturated fatty acid supplementation and white matter changes in major depression. J Psychiatr Res. 2016;75:65–74.

    Article  PubMed  PubMed Central  Google Scholar 

  220. Lyall AE, Nagele FL, Pasternak O, Gallego JA, Malhotra AK, McNamara RK, et al. A 16-week randomized placebo-controlled trial investigating the effects of omega-3 polyunsaturated fatty acid treatment on white matter microstructure in recent-onset psychosis patients concurrently treated with risperidone. Psychiatry Res Neuroimaging. 2021;307:111219.

    Article  PubMed  Google Scholar 

  221. Ameur A, Enroth S, Johansson A, Zaboli G, Igl W, Johansson AC, et al. Genetic adaptation of fatty-acid metabolism: a human-specific haplotype increasing the biosynthesis of long-chain omega-3 and omega-6 fatty acids. Am J Hum Genet. 2012;90:809–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Peters BD, Voineskos AN, Szeszko PR, Lett TA, DeRosse P, Guha S, et al. Brain white matter development is associated with a human-specific haplotype increasing the synthesis of long chain fatty acids. J Neurosci. 2014;34:6367–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Freemantle E, Lalovic A, Mechawar N, Turecki G. Age and haplotype variations within FADS1 interact and associate with alterations in fatty acid composition in human male cortical brain tissue. PLoS One. 2012;7:e42696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Kishi T, Sakuma K, Okuya M, Ikeda M, Iwata N. Omega-3 fatty acids for treating residual depressive symptoms in adult patients with bipolar disorder: A systematic review and meta-analysis of double-blind randomized, placebo-controlled trials. Bipolar Disord. 2021;23:730–1.

    Article  CAS  PubMed  Google Scholar 

  225. Wolters M, von der Haar A, Baalmann AK, Wellbrock M, Heise TL, Rach S Effects of n-3 Polyunsaturated Fatty Acid Supplementation in the Prevention and Treatment of Depressive Disorders-A Systematic Review and Meta-Analysis. Nutrients 2021; 13.

  226. Ginty AT, Conklin SM. Short-term supplementation of acute long-chain omega-3 polyunsaturated fatty acids may alter depression status and decrease symptomology among young adults with depression: A preliminary randomized and placebo controlled trial. Psychiatry Res. 2015;229:485–9.

    Article  CAS  PubMed  Google Scholar 

  227. Chambergo-Michilot D, Brañez-Condorena A, Falvy-Bockos I, Pacheco-Mendoza J, Benites-Zapata VA. Efficacy of omega-3 supplementation on sertraline continuous therapy to reduce depression or anxiety symptoms: A systematic review and meta-analysis. Psychiatry Res. 2021;296:113652.

    Article  CAS  PubMed  Google Scholar 

  228. Mocking RJT, Steijn K, Roos C, Assies J, Bergink V, Ruhé HG, et al. Omega-3 Fatty Acid Supplementation for Perinatal Depression: A Meta-Analysis. J Clin Psychiatry. 2020;81:19r13106.

  229. Zhang MM, Zou Y, Li SM, Wang L, Sun YH, Shi L, et al. The efficacy and safety of omega-3 fatty acids on depressive symptoms in perinatal women: a meta-analysis of randomized placebo-controlled trials. Transl Psychiatry. 2020;10:193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Luo XD, Feng JS, Yang Z, Huang QT, Lin JD, Yang B, et al. High-dose omega-3 polyunsaturated fatty acid supplementation might be more superior than low-dose for major depressive disorder in early therapy period: a network meta-analysis. BMC Psychiatry. 2020;20:248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Bae JH, Kim G. Systematic review and meta-analysis of omega-3-fatty acids in elderly patients with depression. Nutr Res. 2018;50:1–9.

    Article  PubMed  Google Scholar 

  232. Schefft C, Kilarski LL, Bschor T, Köhler S. Efficacy of adding nutritional supplements in unipolar depression: A systematic review and meta-analysis. Eur Neuropsychopharmacol. 2017;27:1090–109.

    Article  CAS  PubMed  Google Scholar 

  233. Jans LA, Giltay EJ, Van der Does AJ. The efficacy of n-3 fatty acids DHA and EPA (fish oil) for perinatal depression. Br J Nutr. 2010;104:1577–85.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported in part by NIMH grant MH090964.

Author information

Authors and Affiliations

Authors

Contributions

MES conceptualized the review, researched and wrote overall first draft and compiled and integrated the manuscript. FD researched and wrote first draft of sections on animal models and inflammation. LC researched and generated tables and initial draft of text concerning clinical trials and meta-analyses of PUFAs and depression. SRS researched and wrote first draft of sections on lipid rafts. All authors read and collaboratively edited the entire manuscript prior to submission.

Corresponding author

Correspondence to M. Elizabeth Sublette.

Ethics declarations

Competing interests

Dr. Shaikh has received funding from industry groups that produce omega-3 fatty acids related to the organizing of conferences and for scientific research. All other authors have no conflicts to declare.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sublette, M.E., Daray, F.M., Ganança, L. et al. The role of polyunsaturated fatty acids in the neurobiology of major depressive disorder and suicide risk. Mol Psychiatry (2023). https://doi.org/10.1038/s41380-023-02322-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41380-023-02322-6

Search

Quick links